
NU-MineBench: Understanding the Performance and
Scalability Characteristics of Data Mining Algorithms

Jayaprakash Pisharath, Ying Liu, Wei-keng Liao, Gokhan Memik, Alok Choudhary

Department of Electrical and Computer Engineering
Northwestern University
Evanston, IL – 60208.

{ jay, yingliu, wkliao, memik, choudhar}@ece.northwestern.edu

Pradeep Dubey
Architecture Research Labs

Intel Corporation
Santa Clara. CA - 95052

pradeep.dubey@intel.com

Abstract

Data mining has become one of the most essential tools for various businesses as well as researchers in
diverse fields. The surge in the operational speed of computing systems, and also the emergence of
compact, low-cost, high-performance parallel and distributed systems have provided abundant venues for
improving the performance of data mining algorithms. However, in recent years, there has also been a
tremendous increase in the size of data that is collected and also the complexity of data mining algorithms
themselves. The rate of this growth exceeds the rate of performance improvements in computing systems,
thus widening the performance gap between data mining systems and algorithms. In this paper, our goal is
to narrow this gap by enabling designers to build systems that are tuned in accordance with the
requirements and developments of data mining algorithms. We achieve this by performing a detailed
characterization of a set of representative data mining programs from both the hardware and software
perspectives. We first study several widely-used data mining algorithms from multiple categories and,
then, use them to design NU-MineBench, a benchmarking suite containing representative data mining
applications. MineBench suite includes two classification, two association rule mining, and four
clustering applications. We evaluate the NU-MineBench applications on an 8-way shared memory
parallel machine and analyze important performance characteristics of the applications. We believe that
this information can aid designers of future systems as well as programmers of new data mining
algorithms to achieve better system and algorithmic performance. Moreover, current trends indicate that
systems are moving towards the deployment of multiple processing cores as a way to increase their total
computation power. Hence, scalability is an inevitable factor expected in future algorithms and systems.
With this in mind, we vary both the input data sets and the number of processors used in our evaluation
process. We present the results based on various characteristics that span from the software level to the
hardware level, such as I/O complexity, fraction of time spent in the OS mode, breakdown of execution
cycles, memory hierarchy behavior, communication/synchronization overhead.

1. Introduction
With the enhanced features in recent computer systems, increasingly larger amounts of data are being
accumulated in various fields. Without any sophisticated analysis tools, this data is useless. Especially, as the

Copyright © CUCIS, May 2004

CUCIS TECHNICAL REPORT # CUCIS-2004-05-001
CUCIS, Northwestern University, Evanston. IL.
Copyright © CUCIS, May 2004. Copying and distribution without permission strictly prohibited.

data sizes are exponentially increasing, the need to use automated tools to extract information from the
collected data becomes clear. Therefore, data mining programs have become essential tools in many domains
including marketing, customer relationship management, scoring and risk management, recommendation
systems, and fraud detection. In addition, data mining techniques have been adopted by various scientists to
analyze the vast amounts of data representing real-world systems. For example, data mining techniques have
been utilized in cosmology simulation, climate modeling, bioinformatics, drug discovery, and intrusion
detection.

As the amount and dimensions of data collected increases, we will need to utilize even more sophisticated
data mining applications. However, one important obstacle that has to be addressed is the fact that the
performance of computer systems is improving at a slower rate compared to the increase in the requirements
of data mining applications. Recent trends suggest that the system performance (data based on memory and
I/O bound workloads like TPC-H) has been improving at a rate of 10-15% per year, whereas, the volume of
data that is collected doubles every year. Also, existing data mining tools are not able to run efficiently on
existing systems. Researchers have focused on efficient implementations of different data mining algorithms
by proposing numerous algorithmic optimizations and by proposing parallel and distributed versions of these
algorithms. However, it is clear that even such optimized versions of algorithms have long run times. We
believe that in order to close this gap, the key is to develop an understanding of the characteristics of data
mining applications and to identify the way these applications get mapped on to existing computing systems.
This is the goal of this paper. This information in turn can be utilized during the implementation of the
algorithms and the design/setup of the computing systems. Understanding the architectural bottlenecks is
essential not only for processor designers to adapt their architectures to data mining applications, but also for
programmers to adapt their algorithms to the revised requirements of applications and architectures.

Data mining is a relatively new application area and it involves algorithms and computations from
different domains such as mathematics, machine learning, statistics, and databases. For this reason, very little
is known in terms of the characteristics of the underlying computations and data manipulation, and their
impact on computer systems. We address this issue in this paper by trying to investigate data mining
applications and their characteristics for a sequential processor as well as for a representative parallel
architecture. We first establish a benchmarking suite of applications that encompasses algorithms commonly
used in data mining. Then, we analyze the architectural properties of these applications in detail to investigate
the bottlenecks associated with them. Specifically, in this paper we make the following contributions:

1) We introduce NU-MineBench, a benchmarking suite that includes popular data mining applications from
various categories,

2) We analyze the architectural properties of the applications on a sequential processor and highlight
important performance bottlenecks, and

3) We analyze the scalability of these applications in terms of data and parallelization.

Benchmarks play a major role in all domains. SPEC [23] benchmarks have been well accepted and used by
several processor manufacturers and researchers to measure the effectiveness of their design. Other fields
have popular benchmarking suites designed for the specific application domain: TPC [24] for database
systems, SPLASH [26] for parallel machine architectures, MediaBench [15] for media and communication
processors. Benchmarks do not only play a role in measuring the relative performance of different systems.
They also aid programmers in the specific domain in various ways. For example, a programmer implementing
a new data mining application can compare the performance (in terms of output quality, scalability, and
execution time) of the new application to the applications in the benchmarking suite. In addition, the
programmer can use certain types of algorithms and programming styles from the applications in the existing
suite.

Copyright © CUCIS, May 2004

Although there has been previous work analyzing individual data mining applications [3, 14], analyzing
the behavior of a complete benchmarking suite will certainly give a better understanding of the underlying
bottlenecks for data mining applications. We analyze each application in our benchmark on a sequential
processor and present the key characteristics of each algorithm. Using our experimental results, we show that
data mining applications are highly computation intensive, where the OS, I/O and synchronization overheads
usually constitute a small fraction of the overall execution times.

Another important aspect of our study is implementing and analyzing parallel versions of our benchmark
applications. As the size of the available datasets and their dimensionality grow, parallel computers are
becoming essential platforms to execute the data mining applications. In fact, data mining is rapidly becoming
the most widely executed application category for supercomputers [11]. Some of the existing data mining
applications have already been parallelized. However, the parallelization is usually made in an ad-hoc
manner. We analyze the characteristics of the applications in shared-memory Multi-Processor (SMP)
machine. Despite their limited scalability, SMPs have become the most common parallel computing type in
the industry due to their simplicity. By analyzing the application characteristics in this representative
multiprocessor system, we provide an insight into the parallel applications, which can be potentially helpful
when developing parallel data mining algorithms on SMPs.

We believe that our study is unique in nature. While data mining algorithms are typically characterized by
people who propose them, we believe that our study highlights some of the major issues that have been
assumed to be true during such studies. It should be noted that we do not study just a single data mining
algorithm. Instead, we consider applications (not algorithms) from various data mining domains. Moreover,
our atypical approach, which is a bottom-up approach to understanding data mining algorithms, identifies the
real performance bottlenecks. The results are from real system evaluation as against a simulation setup. This
provides new insights and hence, new venues for optimizations.

The rest of the paper is organized as follows. In the next section, we overview the related work. In Section
3, we discuss the data mining applications that are included in our benchmarking suite. Section 4 presents the
evaluation methodology. The characteristics of our benchmark applications are presented in Section 5.
Section 6 summarizes the results.

2. Related work
Since fast-growing, tremendous amount of data, collected and stored in large and numerous databases, has far
exceeded our human ability for comprehension without powerful tools, data mining technologies, which can
perform fast data analysis and uncover important data patterns, have attracted a great deal of attention in
various domains in the recent years [7, 18]. However, the increase in application requirements far exceeds the
increase in computing power of systems, which suggests parallel computing as a potential solution to meet the
requirements. In the past decade, most research on parallel data mining [7, 12, 28] has been focused on
distributed-memory parallel machines due to its capability for massive parallelism. However, share-memory
parallel machines are becoming the dominant types of parallel machines in industry because of its simplicity
and low to medium degree of parallelism besides its nominal price. A few parallel algorithms on SMPs have
been proposed in [27, 28].

We include some of the commonly used data mining algorithms as representatives of each category into
our NU-MineBench, and we perform evaluation on shared-memory parallel machines at the architecture level.
Similar performance characterization work of database workloads is seen in [8, 13], and specifically targeted
for SMPs in [22, 25]. Performance characterization of individual data mining algorithm has been done in [3,
14], where they focus on the memory and cache behaviors of a decision tree induction program. However, we
believe that analyzing the behaviors of a complete data mining benchmarking suite will certainly give a better
understanding of the underlying bottlenecks for data mining applications.

Copyright © CUCIS, May 2004

3. NU-MineBench Application Suite
Data mining applications are broadly classified into classification, clustering, association rule mining,
sequence mining, similarity search, text mining, multimedia mining, and other categories based on the nature
of their algorithms [7]. We first establish NU-MineBench, a benchmarking suite containing data mining
applications. The selection of categories as well as the applications in each category is based on how
commonly these applications are used in industry and how likely to be used in the future, thereby achieving a
realistic representation of the existing applications. Another concern of the algorithm selection is the
scalability when executing on parallel or distributed systems. For instance, the flow and the set of operations
performed by algorithms in our suite can be seen in various data mining tools currently available from the
industry, like Clementine [31], IBM Intelligent Data Miner [32] and SAS Enterprise Miner [33]. NU-
MineBench has 8 applications from three of the categories listed above: classification, association rule mining
(ARM), and clustering. We parallelize 5 out of the 8 applications because they show good scalability and
performance on very large-scale databases in literature. The applications as well as important characteristics
of the applications are listed in Table 1, which presents the applications, the category they belong to, a short
description of the applications, and the programming language used to implement it. In the following sections,
we discuss each application in detail according to the category they belong to.

3.1 Classification Programs
A classification problem has an input dataset called the training set which consists of example records with a
number of attributes. The objective of a classification algorithm is to use this training dataset to build a model
such that the model can be used to assign unclassified records into one of the defined classes. Classification
has applications in diverse fields such as retail marketing, fraud detection, and design of telecommunication
service plans [7]. Representative algorithms include decision tree, Bayesian classification, backpropagation,
and neural networks.

ScalParC is an efficient and scalable variation of decision tree classification [12]. The decision tree model
is built by recursively splitting the training dataset based on an optimal criterion until all records belonging to
each of the partitions bear the same class label. Decision trees can easily be converted to classification rules
[7, 12]. Among many classification methods proposed over the years, decision trees are particularly suited for
data mining, since they can be built relatively fast compared to other methods, especially when database is
large. They are also easy to interpret [21]. Decision tree classifiers obtain similar, and often better, accuracy
compared to other methods [19].

Bayesian classifiers are statistical classifiers. They predict the probability that a record belongs to a
particular class. It is based on Bayes’ Theorem. A simple Bayesian classifier, called Naive Bayesian classifier
[5], is comparable in performance to decision trees and exhibits high accuracy and speed when applied to
large databases.

3.2 Clustering programs
Clustering is the process of discovering the groups of similar objects from a database to characterize the
underlying data distribution. It has wide applications in market or customer segmentation, pattern recognition,
biological studies, and spatial data analysis [7]. Generally, clustering algorithms can be classified into four
categories: partitioning-based, hierarchical-based, density-based, and grid-based.

The first clustering application in NU-MineBench is K-means [16]. K-means is a partition-based method
and is arguably the most commonly used clustering technique. K-means represents a cluster by the mean
value of all objects contained in it. Given the user-provided parameter k, the initial k cluster centers are
randomly selected from the database. Then, K-means assigns each object to its nearest cluster center based on
the similarity function. For example, for spatial clustering, usually the Euclid distance is used to measure the
closeness of two objects. Once the assignments are completed, new centers are found by finding the mean of

Copyright © CUCIS, May 2004

Algorithms Category Description Lang.

Table 1. MineBench applications. Category that the application belongs
to, a short description of the application, and the programming language used
to implement it.

all the objects in each cluster. This process is repeated until two consecutive iterations generate the same
cluster assignment.

ScalParC Classification Decision tree classifier C
Naïve Bayesian Classification Statistical classifier based on class

conditional independence
C++

K-means Clustering Partitioning method C
Fuzzy K-means Clustering Fuzzy logic based K-means C
BIRCH Clustering Hierarchical method C++
HOP Clustering Density-based method C
Apriori ARM Horizontal database, level-wise min-

ing based on Apriori property
C/C++

Eclat ARM Vertical database, break large search
space into equivalence class

C++

The clusters produced by the K-means algorithm are sometimes called "hard" clusters, since any data
object either is or is not a member of a particular cluster. The Fuzzy K-means algorithm [2] relaxes this
condition by assuming that a data object can have a degree of membership in each cluster. The Fuzzy K-
means assigns each pair of object and cluster a probability. For each object, the sum of the probabilities to all
clusters equals to 1. Compared to the Euclid distance used in K-means, the calculation for the fuzzy
membership results in higher computational cost. However, the flexibility of assigning objects to multiple
clusters might be necessary to generate better clustering qualities.

BIRCH [29] is one of the hierarchical clustering methods that employ a hierarchical tree to represent the
closeness of data objects. BIRCH first scans the database to build a clustering-feature (CF) tree to summarize
the cluster representation. Then, a selected clustering algorithm, such as K-means, is applied to the leaf nodes
of the CF tree. For a large database, BIRCH can achieve good performance and scalability. It is also effective
for incremental clustering of incoming data objects.

Density-based methods grow clusters according to the density of neighboring objects or according to some
other density function. HOP [6], originally proposed in astrophysics, is a typical density-based clustering
method. After assigning an estimation of its density for each particle, HOP associates each particle with its
densest neighbor. The assignment process continues until the densest neighbor of a particle is itself. All
particles reaching this state are clustered as a group. HOP is highly scalable when applied to large databases
[30]. HOP can be applied in diverse applications in molecular biology, geology, and astronomy.

3.3 Association Rule Mining(ARM) programs
Association rule mining is to find the set of all subsets of items or attributes that frequently occur in database
records. In addition, ARM programs extract rules on how a subset of items influence the presence of another
subset [7, 28]. ARM can discover interesting association relationships among large number of business
transaction records. This can aid business decision-making processes, such as catalog design, cross-
marketing, and loss-leader analysis [7].

Apriori [1] is arguably the most influential ARM algorithm. It explores the level-wise mining of Apriori
property: all nonempty subsets of a frequent itemset must also be frequent. At the kth iteration (for k > 1), it
forms frequent (k+1)th-itemset candidates based on the frequent k-itemsets and scans the database to find the
complete set of frequent (k+1)th-itemsets, Lk+1. To improve the efficiency, a hash-based technique is used to
reduce the size of the candidate k-itemsets.

Copyright © CUCIS, May 2004

Eclat [28] uses a vertical database format. It can determine the support of any k-itemset by simply
intersecting the id-list of the first two (k-1)-length subsets that share a common prefix. It breaks the search
space into small, independent, and manageable chunks. Efficient lattice traversal techniques are used to
identify all the true maximal frequent itemsets.

3.4 Parallel implementation
As mentioned in the earlier sections, part of our goal is to study the scalability of data mining applications on
SMPs. Hence, parallel versions of our benchmark applications are also provided. Parallel experimental results
have been provided for 5 applications out of the 8 benchmark applications: ScalParC (Classification), K-
means, Fuzzy K-means, HOP (Clustering), and Apriori (ARM). We chose these applications not only because
these parallel algorithms are commonly found in the literature, but also because they demonstrate good
performance and scalability when applied to large-scale databases. ScalParC is parallelized on SMPs using
the scheme presented in [27]. Simple data parallelism is exploited to parallelize K-means, Fuzzy K-means,
and HOP. We implement parallel Apriori based on the Common Candidate Partitioned Database (CCPD)
strategy described in [28].

3.5 Discussion
In this section, we have presented eight applications that are included in NU-MineBench. All of these
applications are complete applications as opposed to kernels or procedures, i.e. each application can be
executed independently without affecting the others. This is an important property for the benchmarks. Our
goal is not to study a small portion of the tool, but rather to look at the whole application and investigate
bottlenecks that might be caused by I/O, OS, or the application itself. Typically algorithm developers evaluate
their algorithms based on their optimizations and also based on a fixed computing system. We believe that
when applications are implemented based on these algorithms, there are various factors that affect the overall
performance of the algorithm (for instance, the operating system overheads). Another important aspect is the
relation between the implementation and the algorithm. It is natural to question whether a bottleneck arises
because of the inefficiency of the implementation or because of the inherent nature of the algorithm.
Therefore, we have rigorously optimized the applications for our system. Hence, any characteristic we
observe during the evaluation process is likely to be inherent in the algorithm. However, due to the nature of
our study, we emphasize on the trends and relative results rather on the exact performance numbers. Such
trends and relative results are usually independent of the specific implementation.

4. Evaluation Methodology
Benchmarks are used to evaluate architectures, methodologies, implementations and application algorithms.
Hence, applications in a benchmark need to have distinct characteristics. In the next section, we consider the
applications from our NU-MineBench suite, and distinguish the characteristics that make each application
unique by studying it both from the algorithmic and the system perspective. For this, we first consider a
parallel environment and port our applications to that system. Then, each application is evaluated for
performance and scalability by varying the number of processors and data sizes. Routines within each
application are analyzed in detail both from the functional and architectural granularity, to identify the key
parameters in each algorithm.

In the following part, we present the parallel setup that forms the basis for our experiments. Subsequently,
we elaborate on the software tools that we used for parallelization, algorithm evaluation and also for studying
the architectural performance. The input data set considered in our experiments is discussed in Section 4.3.

4.1. Hardware setup
We chose an Intel IA-32 multiprocessor platform for evaluation purposes. Our setup consists of an Intel
Xeon 8-way Shared Memory Parallel (SMP) machine running Red Hat Linux Advanced Server 2.1 operating

Copyright © CUCIS, May 2004

system. The system has a 4GB shared memory and 1024 KB L2 cache for each processor. Each processor has
16KB non-blocking, integrated L1 instruction and data caches.

4.2. Software tools
In all the experiments, we use VTune Performance Analyzer [10] for profiling the functions within our
application, and for measuring their execution times. To trace subroutine calls, we use VTune calling graph,
which presents a hierarchical decomposition of the execution time. VTune counter monitor provides a wide
assortment of metrics. We look at different characteristics of the applications: execution time, fraction of time
spent in the OS space, communica-tion/synchronization complexity, I/O complexity, memory behavior, and
CPI behavior. Related VTune parameters are used to collect data for these properties.

In parallel implementations of the applications, we use OpenMP pragmas [20]. OpenMP is a specification
for a set of compiler directives, library routines, and environment variables that can be used to specify shared
memory parallelism. Due to its simplicity, OpenMP is quickly becoming one of the most widely used
programming styles for SMPs. In SMPs, processors communicate through shared variables in the single
memory space. Synchronization is used to coordinate processes. Similar to other parameters, VTune provides
the aggregate time spent on different types of pragmas that are used for job parallelization and
synchronization (includes individual loops and routines as well). This way we can accurately measure the
time spent on synchronization, and other relevant contentions. For compiling applications, we use the parallel
Intel C++ compiler, version 7.1 for Linux.

4.3. Dataset Characteristics
Input data is an integral part of the data mining applications. The data considered for our experiments are
either real data got from various fields or widely-accepted synthetic data generated using existing tools that
are used in scientific and statistical simulations. During evaluation, we use multiple data sizes to investigate
the characteristics of the NU-MineBench applications. Particularly, for each application we generate input
data in 3 different sizes: Small, Medium, and Large. For ScalParC and Naïve Bayesian, we use three synthetic
datasets (see Table 2 – “Classification”) generated by the IBM Quest data generator [9]. The notation Fx-Ay-
DzK denotes a dataset with Function x, Attribute size y, and Data comprising of z*1000 records. Function 26
is a relatively complex function and produces large trees. For Apriori and Eclat, we also use three synthetic
datasets from IBM Quest data generator (see Table 2 – “ARM”). D denotes the number of transactions, T is
the average transaction size, and I is the average size of the maximal potentially large itemsets. In Table 2, the
number of items is 1000 and the number of maximal potentially large itemsets is 2000. For HOP and BIRCH,
we use three sets of real data from a cosmology application, ENZO [4], each having 61440 particles, 491520
particles and 3932160 particles. We use a section of the real image database distributed by Corel Corporation
for K-means and Fuzzy K-means. This database consists of 17695 scenery pictures. Each picture is
represented by two features: color and edge. The color feature is a vector of 9 floating points while the edge
feature is a vector of size 18. Both K-means implementations use Euclid distance as the similarity function
and execute it for the two features separately. Since the clustering quality of K-means methods highly
depends on the input parameter k, we perform both K-means with ten different k values ranging from 4 to 13.
The timing results provided in this paper are the accumulated time for the ten runs.
Table 2. Classification and Association Rule Mining Dataset Characteristics. (Dataset size in MB)

Classification ARM
Dataset

Parameter Size Parameter Size

Small F26-A32-D125K 27 T10-I4-D1000K 47

Medium F26-A32-D250K 54 T20-I6-D2000K 175

Large F26-A64-D250K 108 T20-I6-D4000K 350

Copyright © CUCIS, May 2004

5. Program characteristics
In this section, we analyze several characteristics of NU-MineBench programs. For each characteristic, we
analyze how the results vary when we change the input data and when we change the number of processors
used in the execution. During the experiments, we investigate the performance scalability of the applications
from NU-MineBench on the SMP machine. The benefits and drawbacks of using a shared memory model for
our data mining algorithms are also discussed. Our measures of interest include the overall program execution
time, the operating system overheads, I/O times and synchronization times. The numbers presented in this
paper are for the entire application, and in relevant contexts, we present the individual processor breakups as
well.

5.1. Execution time
Table 3 shows the application execution times on 1 processor and speedups with respect to 1 processor

case. For all benchmarks, the data size is varied from Small (S), to Medium (M), and finally to Large (L)
based on the parameters of Section 4.3. We measure the scalability of the parallel applications by executing
them on 1, 4 and 8 processors. The performance numbers for the 2-processor case is not presented in our
paper due to the fact that there is minimal (or in some cases, none) improvement in performance when the
application is executed on 2 processors.

For our parallel applications, the best speedup (improvement in execution time with respect to the 1
processor case) is seen in the decision tree algorithm (ScalParC). A speedup of 6.19 for 8 processors arises
due to the balanced partitioning of data on to processors. This avoids concurrent read-write operations to the
shared variables, which minimizes the contention during memory access (note: ours is a shared memory
model). If data is evenly distributed, each processor is able to work independently (faster) by accessing only
its respective data block in the memory without requiring access to memory blocks of other processors. HOP
follows ScalParC in terms of the achieved speedups. Apriori has limitations when extended to SMPs. This is
due to the significant amount of atomic access to the shared hash-tree structure and the nature of unbalanced
transaction data. Overall, it is evident from Table 3 that data mining algorithms are scalable. Care should be
taken to make sure shared operations are minimal in applications. That way applications can be efficiently
hosted on multiple processing cores to exploit parallelism, and thus, to achieve high speedups. Typically, in
data mining algorithms, the computation kernels are significant and constitute majority of the total execution
times. It will be evident from further sections that the data retrieval is fast but data reuse is not very efficient,
which we attribute to the nature of data mining algorithms.

Table 3. Execution times for NU-MineBench applications. S is the small data set, M is
medium data set and L is the large data set, except for K-means, in which case, S is color and M
is edge data. P1, P4, P8 represent 1, 4 and 8 processor cases. The values shown under the column
for P1 are the actual execution times in seconds, while the columns P4 and P8 show the speeds
attained with respect to the 1 processor case.

Data set = S Data set = M Data set = L
Program

P1 P4 P8 P1 P4 P8 P1 P4 P8
HOP 6.3 3.5 5.25 52.7 1.92 6.06 435.3 3.4 5.34

K-means 5.7 2.85 4.38 12.9 3.9 4.96 - - -

Fuzzy K-means 164.1 3 6.02 146.8 3.44 5.42 - - -
BIRCH 3.5 - - 31.7 - - 172.6 - -

ScalParC 51.0 3.78 4.9 110.6 3.88 5.12 225.9 3.9 6.19
Bayesian 12.6 - - 25.1 - - 51.5 - -
Apriori 6.1 2.03 2.35 102.7 2.66 3.36 200.2 2.76 3.18
Eclat 11.8 - - 81.5 - - 127.8 - -

Copyright © CUCIS, May 2004

5.2. Operating system overhead
For any program, the CPU utilization is split into operating system (OS) and user space. The OS overheads in
a program include factors like system calls (for process/thread management, invoking locks, handling
hardware interrupts), and allocation of intermediate system buffers during program execution. In Figure 1, we
present the OS component (as a percentage of total execution time) of each individual application. When the
number of processors equals to one, the operating system overheads are minimal. The OS overheads that arise
in the single processor case are primarily from due to intermediate buffer allocations. The maximum overhead
(1.7%) is seen for BIRCH. When the number of processors deployed is increased, the OS component
increases drastically due to the parallelization overheads. Under the OpenMP programming environment,
each OpenMP (_omp) directive adds extra cycles of overhead. These directives include the ones used during
program initialization, thread spawning, barrier controls and also program loop hints. The individual program
locks (which are basically system locks) used during parallelization also contribute to the OS overheads.
Collectively, it is seen that when the code is parallelized to more processors, the OS overheads increase.
Among the applications, K-means has the worst overhead. The OS overheads can help explain the poor
performance of a given code. For instance, K-means shows an average speed up of 4.96 for 8 processors. This
is as a result of the 40% OS overhead (Figure 1) from the omp directives and locks during the parallelization
of K-means. The percentages of user space are similar for all data sizes and hence are not presented.

0

5

10
15

20

25

30
35

40

45

HOP K-means Fuzzy K-means BIRCH ScalParC Bayesian Apriori Eclat

P1 P4 P8

Figure 1. OS overheads of NU-MineBench applications as a percentage of the
total execution time. Data size is medium (M) for each application.

5.3 I/O time
As mentioned earlier, the external overheads of a program could affect the overall performance drastically. In
general, I/O is a key component that could affect the overall performance of a system. Figure 2 shows the
time for performing I/O as a percentage of the overall execution time. It is clear that the overheads arising
from I/O operations generated during the data retrieval process in our applications are typically small except
for Bayesian. For Bayesian, data is read as ASCII characters one by one, whereas for ScalParC (another
classification algorithm), data is read in bulk string mode (less read operation overheads). This indicates that
bulk loading of data could help. Considering the growth in memory technology (more storage, compact and
partitioned layouts, faster access and cheaper cost), such mechanisms must be easy to implement. Data
mining algorithms are yet to take full advantage of such technology advancements. To study how the I/O
scales with respect to increasing data sizes, we varied the input data sets (S, M, L). Figure 2 shows that for a
few applications, the I/O scales in an orderly fashion. For instance, in ScalParC and Apriori, on increasing the
data sizes from S to M to L, the corresponding I/O percentages reduce. When the system reads more data
(implies more I/O), the CPU gets more data to “mine”. Thus, CPU computations outperform the I/O

Copyright © CUCIS, May 2004

0.00

0.05

0.10

0.15

0.20

0.25

0.30

HOP K-means Fuzzy K-means

0

10

20

30

40

50

60

70

BIRCH ScalParC Bayesian Apriori Eclat

S M L

Figure 2. Percentage of I/O time with respect to the overall execution times.

0.E+00

1.E+07

2.E+07

3.E+07

4.E+07

5.E+07

6.E+07

HOP K-means
0.E+00

1.E+08

2.E+08

3.E+08

4.E+08

5.E+08

6.E+08

7.E+08

8.E+08

Fuzzy K-means ScalParC Apriori

P1 P4 P8

Figure 3. Synchronization time in CPU cycles for all applications. The
synchronization time increases when computation is scaled to multiple
processor.

operations, which implies, the CPU is well utilized. Overall, these results highlight the computation-intensive
nature of our benchmark.

5.4 Communication/Synchronization Overhead
In a shared memory model, the inter-processor communication is achieved by accessing shared memory

addresses. To access a shared variable (which in turn is a shared location in the memory), the processors have
to pay a penalty. Processors request read permission to the shared variables and then “wait”. This could be a
considerable bottleneck if the shared variable is locked by another processor, in which case the requesting
processor must wait until the lock is released. Moreover, during parallel execution, there are execution
breakpoints where all processors need to synchronize their data values for all their local/shared variables. This
again, could be another bottleneck. All such inter-processor communication overheads are reflected in the
synchronization measurement of our benchmark. The synchronization costs are shown in Figure 3 for 1, 4 and
8 processor case. When using one processor, the synchronization overheads are negligible due to no inter-
processor communication. When more processors are involved, shared and private variables arise. In our case,
the synchronization overheads increase as more processors are brought into the system. We found that for all
parallel applications, the average synchronization time is just 0.14% of the overall execution time. This
implies that the idle time spent in synchronization is very less and the CPU is very well utilized for mining
information from the input data.

The synchronization times increase when more data is brought into the system. This is due to the increase
in the amount of data that is shared between processors, which in turn increases the need for timely
synchronizations. This is shown in Figure 4. It should be noted that in case of K-means, S is color dataset and
M is the edge dataset, which are independent datasets. This is the reason for the drop in synchronization
cycles as we move from S to M.

Copyright © CUCIS, May 2004

0.E+00
5.E+07
1.E+08

2.E+08
2.E+08
3.E+08
3.E+08

4.E+08
4.E+08

HOP K-means Fuzzy K-means
0.E+00

2.E+08

4.E+08

6.E+08

8.E+08

1.E+09

1.E+09

ScalParC Apriori

S M L

Figure 4. Synchronization time in CPU cycles for all applications for different
datasets. The synchronization time increases when data size is increased.

5.5 Memory Analysis
Studies have indicated that memory hierarchy is a significant performance bottleneck in modern computing
systems [17]. This is more relevant in our case due to the low I/O overhead, as seen in the pervious section.
When data is read, it is brought to the memory, which implies, understanding the program characteristics from
the memory hierarchy is essential to improve the overall performance. Here, we present the performance
characteristics of our programs with respect to the L1, L2 data caches and memory.

5.5.1 L1 D-Cache

Figure 5 shows the L1 cache miss ratio (percentages) when our applications are executed on 1, 4 and 8
processors. It is clear that the applications are drastically different in their L1 cache behaviour. The
applications can be categorized into two: one that has less cache misses (<0.6%) and those having more than
2% cache misses. The maximum cache miss ratio (system-wide) is less than 7%, which is less considering the
amount of data that is processed in our applications. We also measure the misses that occur on individual
processors. It is not presented here as the trends are similar to the overall application trends except that the
master processor incurs supplementary misses due to its additional task of managing and coordinating tasks
that run on other processors. We also varied the data sizes to study the effect of increased data processing on
L1 caches. Figure 6 shows the results. In general, the misses increase when data sizes are increased. This is
due to the limited capacity of L1 cache (16KB).

0

1

2

3

4

5

6

7

8

HOP ScalParC Apriori
0

0.1

0.2

0.3

0.4

0.5

0.6

K-means Fuzzy K-means

P1 P4 P8

Figure 5. L1 miss ratio (percentages) for NU-MineBench applications on 1, 4
and 8 processors.

Copyright © CUCIS, May 2004

0

1

2

3

4

5

6

7

8

9

HOP BIRCH ScalParC Apriori Eclat
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

K-means Fuzzy K-means Bayesian

S M L

Figure 6. L1 miss ratio (percentages) for NU-MineBench applications with
S, M and L datasets for the single processor case.

0
5

10
15
20
25
30
35
40
45
50

HOP Fuzzy K-means Apriori
0

10

20

30

40

50

60

70

80

90

K-means ScalParC

P1 P4 P8

Figure 7. L2 miss ratio (percentages) for NU-MineBench applications on 1,
4 and 8 processors.

0

1

2

3

4

5

6

HOP BIRCH Bayesian
0

10
20
30
40
50
60
70
80
90

K-means Fuzzy K-
means

ScalParC Apriori Eclat

S M L

Figure 8. L2 miss ratio (percentages) for NU-MineBench applications with S,
M and L datasets for the single processor case.

5.5.2 L2 Cache

We also performed an analysis of the L2 cache behavior as well. Figure 7 shows the L2 miss ratios
(percentages) for the NU-MineBench applications when executed on 1, 4 and 8 processors. Figure 8 shows
the L2 miss ratio for varying data sizes. It is evident that L2 cache performance is dissimilar across
applications, for both the cases when processor sizes and data sets are increased. In certain cases, the L2 cache
misses increase, while in others it decreases. One reason for this behavior is that the data distribution is
random as we use dynamic scheduling for parallelization of our applications. In dynamic schemes, the
processor gets assigned a new block of data in a random fashion as it becomes available. Hence, the data gets
distributed to multiple caches in a random fashion, which increases the likelihood of not finding “spatial”
(nearer items in space) or “temporal” (nearer items in time) data. The scenario changes when the data size is
increased. For a single processor case, the cache is not able to accommodate all of the requested data. Hence,
as requests increase, misses also increase. But in the case of multiple processors (with large input data sizes),
each processor is able to accommodate more data (note: each processor has a 1024KB cache). Each cache is
able to accommodate more temporal and spatial data (each processor requests it). In our case, the misses
reduce when 4 processors are used instead of 1 (graphs not presented here due to space restrictions). The

Copyright © CUCIS, May 2004

misses resume to increase once data is extended to 8 processors, which implies the 4 processor case is the best
alternative for the large data sets and L2 cache size.

Overall, the cache misses are high for these applications bearing in mind the fact that data has already been
loaded efficiently into the memory (as seen before, I/O times are less for the benchmark applications). This
implies that there is poor data reuse in applications. We found that a set of applications that have high miss
rates incur nearly 0.013 misses per instruction. This indicates that an instruction is bound to miss more than
1% of the time. Considering the fact that there are applications in the suite with lesser misses per instruction
(in the order of 0.0001), it is evident that there is more room for cache optimizations in data mining
algorithms.

5.5.3 Memory Accesses
To understand the effects of caching, we study the number of memory accesses that go out of the cache to

the memory. The access cycles spent in requesting and receiving memory data is presented in Figure 9 for 1, 4
and 8 processor cases. Memory contention has a bad effect on the overall performance as can be seen in the
case of Apriori. There are a lot of memory cycles spent during data accesses (arises from wait/synchronization
modes), which results in poor speedups. ScalParC has a speedup of 3.8 on 4 processors, but 4.9 on 8
processors. This non-uniform trend in speedups (failure to attain linear speedups) is also attributed to memory
contention as well. The memory access times increase when more processors are used due to the repeated data
accesses (arising from cache misses, multiple data reads) and the increased time spent in memory idle cycles
(during synchronization, waiting for data).

0.E+00

1.E+08

2.E+08

3.E+08

4.E+08

5.E+08

6.E+08

HOP K-means ScalParC
0.E+00

2.E+08

4.E+08

6.E+08

8.E+08

1.E+09

1.E+09

1.E+09

Fuzzy K-means Apriori

P1 P4 P8

Figure 9. Memory access cycles corresponding to requests going to the memory
from cache, for 1, 4 and 8 processors. This includes all memory read/write requests
that miss the cache and access the memory.

5.6 CPI behavior
To understand the efficiency of our applications, we studied the Cycles Per Instruction (CPI). CPI is the ratio
of the total execution cycles to the number of instructions successfully handled by a processor. We show the
CPI for our applications, and with multiple processors in Table 4. The results shown are for the M dataset. For
other dataset, the trends were similar. Even though, the CPI for ScalParC and HOP are comparatively less,
they outperform other applications by avoiding repeated synchronizations. That is, the CPI is consistent
throughout the program execution for ScalParC, whereas for other applications (like Apriori), there is a huge
variation of CPI during program execution due to the presence and absence of synchronizations. This
disparity in behavior highlights the fact that data mining applications need to better utilize the processor
computational resources by hiding the overheads that arise from other non-computational components.
Memory latency hiding techniques (like prefetching) should be useful.

Copyright © CUCIS, May 2004

Table 4. CPI for applications from NU-MineBench suite. P1, P4, P8 represent 1, 4 and 8
processor cases.

Programs P1 P4 P8
HOP 1.53 1.36 1.45
K-means 1.82 1.56 1.72
Fuzzy K-means 1.36 1.53 1.61
BIRCH 1.29 - -
ScalParC 2.96 2.63 2.61
Bayesian 1.20 - -
Apriori 3.83 2.66 3.44
Eclat 9.59 - -

6. Conclusions
In this paper, we introduce and evaluate NU-MineBench, a benchmarking suite for data mining applications.
NU-MineBench can be efficiently used by system designers as well as programmers for new data mining
applications. It contains 8 representative applications: two association rule mining algorithms, two
classification algorithms, and four clustering algorithms. We have studied important characteristics of the
applications when executed on an 8-way SMP machine. While our results do highlight some existing trends in
data mining algorithms, it also identified the major bottlenecks from a different perspective. This fresh
outlook has also given us the opportunity to highlight trends that have never been studied before. The
following summarizes the broad trends seen in our benchmark applications, and also suggests newer vistas for
system and algorithm optimizations.

• Data mining applications are favorably scalable, but special care must be taken when processors share the
data, especially in a shared memory environment. Designers can optimize the system bus (interconnect)
and network mechanisms, while the algorithm specialists can make sure their algorithms have minimal
data sharing requirements.

• Typically, the OS overhead, the synchronization overhead, and the I/O times are usually small in NU-
MineBench applications.

• The L1 cache miss rates are typically small. However, the L2 cache miss rates are considerably high,
which is not seen in typical applications run on computing systems. We compared these miss rates with
those of SPEC and TPC-H benchmarks. Results indicate that data mining applications are unique.

• The weak memory hierarchy performance might be attributed to the small instruction-level parallelism
(measured in CPI). These results indicate that improvements in the performance of processors are likely
to have a significant impact on the overall performance of data mining systems. In addition, techniques,
like prefetching, should also improve the performance of the processor considerably. To improve the
performance of their applications, the programmers can utilize this information and achieve better system
performance.

Overall, our results indicate that there is ample scope for improvements in the performance of both data
mining algorithms and systems. We believe our results could guide programmers and designers to achieve
this goal with ease.

Copyright © CUCIS, May 2004

Reference
1. Agrawal, R., et al., Fast Discovery of Association Rules. In Advances in Knowledge Discovery and Data

Mining. 1995, AAAI/MIT Press.

2. Bezdek, J.C., Pattern Recognition with Fuzzy Objective Function Algorithms. 1981: Plenum Press, New
York.

3. Bradford, J.P. and J. Fortes. Performance and Memory-Access Characterization of Data Mining
Applications. In Workload Characterization: Methodology and Case Studies. Nov. 1998. Dallas, TX.

4. Bryan, G., T. Abel, and M. Norman. Achieving Extreme Resolution in Numerical Cosmology Using
Adaptive Mesh Refinement: Resolving Primordial Star Formation. In SuperComputing. Nov. 2001.

5. Domingos, P. and M. Pazzani. Beyond independence: Conditions for optimality of the simple Bayesian
classifier. In 13th Internaltional Conference on Machine Learning. 1996.

6. Eisenstein, D.J. and P. Hut, HOP: A New Group Finding Alogrithm for N-Body Simulations. Journal of
Astrophysics, 1998. 498: p. 137-142.

7. Han, J. and M. Kamber, Data Mining: Concepts and Techniques. 2001: Morgan Kaufmann.

8. Hankins, R., et al., Scaling and Charaterizing Database Workloads: Bridging the Gap between Research
and Practice. In Intl. Symposium on Microarchitecture, 2003.

9. IBM, IBM synthetic data generation code.
http://www.almaden.ibm.com/software/quest/Resources/index.shtml.

10. Intel, C., VTune Performance Analyzer. http://www.intel.com/software/products/vtune/.

11. Joshi, M.V., et al., Parallel Algorithms for Data Mining. CRPC Parallel Computing Handbook. 2000:
Morgan Kaufmann.

12. Joshi, M.V., G. Karypis, and V. Kumar. ScalParC: A New Scalable and Efficient Parallel Classification
Algorithm for Mining Large Datasets. In International Parallel Processing Symposium. 1998.

13. Keeton, K., et al., Performance Characterization of a Quad Pentium Pro SMP using OLTP Workloads. In
Intl. Symposium on Computer Architecture, 1998.

14. Kim, J.-S., X. Qin, and Y. Hsu. Memory Characterization of a Parallel Data Mining Workload. In
Workshop on Workload Characterization: Methodology and Case Studies. Nov. 1998. Dallas, TX.

15. Lee, C., M. Potkonjak, and W.H. Mangione-Smith. MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communicatons Systems. In International Symposium on Microarchitecture. 1997.

16. MacQueen, J. Some Methods for Classification and Analysis of Multivariate Observations. In 5th
Berkeley Symposium on Mathematical Statistics and Probability. 1967.

17. Wolf, Wm. A, and S.A. McKee, Hitting the Memory Wall: Implications of the Obvious. Computer
Architecture News, 1995. 23(1): p. 20-24.

18. Michalski, R.S., I. Brakto, and M. Kubat, Machine Leaning and Data Mining: Methods and Applications.
1998, New York: John Wiley & Sons.

Copyright © CUCIS, May 2004

19. Michie, D., D.J. Spiegelhalter, and C.C. Taylor, Machine Learning, Neural and Statistical Classification.
1994: Ellis Horwood.

20. OpenMP, OpenMP: Simple, Portable, Scalable SMP Programming. http://www.openmp.org/.

21. Quinlan, J., C4.5 Programs for Machine Learning. 1993: Morgan Kaufmann.

22. Ranganathan, P., et al. Performance of database workloads on shared-memory system with out-of-order
processors. In 8th International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). 1998. San Jose, CA.

23. Standard, P.E.C., Spec CPU2000: Performance Evaluation in the New Millennium, Version 1.1.
December 27, 2000.

24. TPC, Transaction Processing Performance Council. http://www.tpc.org/.

25. Trancoso, P., et al. The memory performance of DSS commercial workloads in shared-memory
multiprocessors. In Third International Symposium on High-Performance Computer Architecture (HPCA).
Jan. 1997.

26. Woo, S.C., et al. The SPLASH-2 Programs: Characteriazation and methodological considerations. In
International Symposium on Computer Architecture. June 1995.

27. Zaki, M., C.-T. Ho, and R. Agrawal. Scalable Parallel Classification for Data Mining on Shared-Memory
Multiprocessors. In IEEE International Conference on Data Engineering. March 1999.

28. Zaki, M.J., Parallel and Distributed Association Mining: A Survey. IEEE Concurrency, Special Issue on
Parallel Mechanisms for Data Mining, Dec. 1999. 7(4): p. 14-25.

29. Zhang, T., R. Ramakrishnan, and M. Livny. BIRCH: An efficient data clustering method for very large
databases. In SIGMOD. June 1996.

30. Ying Liu, Wei-keng Liao, and Alok Choudhary, Design and Evaluation of a Parallel HOP Clustering
Algorithm for Cosmological Simulation. In 17th International Parallel and Distributed Processing
Symposium (IPDPS 2003), 22-26 April 2003, Nice, France.

31. Clementine, SPSS Inc. ─ http://www.spss.com/clementine/.

32. IBM Intelligent Data Miner, IBM Corporation ─ http://www.software.ibm.com/data/iminer.

33. SAS Enterprise Miner, SAS Corporation ─
http://www.sas.com/technologies/analytics/datamining/miner.

Copyright © CUCIS, May 2004

