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Abstract

Background: Pairwise statistical significance has been recognized to be able to accurately identify related
sequences, which is a very important cornerstone procedure in numerous bioinformatics applications. However, it
is both computationally and data intensive, which poses a big challenge in terms of performance and scalability.

Results: We present a GPU implementation to accelerate pairwise statistical significance estimation of local
sequence alignment using standard substitution matrices. By carefully studying the algorithm’s data access
characteristics, we developed a tile-based scheme that can produce a contiguous data access in the GPU global
memory and sustain a large number of threads to achieve a high GPU occupancy. We further extend the
parallelization technique to estimate pairwise statistical significance using position-specific substitution matrices,
which has earlier demonstrated significantly better sequence comparison accuracy than using standard substitution
matrices. The implementation is also extended to take advantage of dual-GPUs. We observe end-to-end speedups
of nearly 250 (370) × using single-GPU Tesla C2050 GPU (dual-Tesla C2050) over the CPU implementation using
Intel© Core™i7 CPU 920 processor.

Conclusions: Harvesting the high performance of modern GPUs is a promising approach to accelerate pairwise
statistical significance estimation for local sequence alignment.

Background
Introduction
The past decades have witnessed dramatically increasing
trends in the quantity and variety of publicly available
genomic and proteomic sequence data. Dealing with the
massive data and making sense of them are big chal-
lenges in bioinformatics [1,2]. One of the most widely
used procedures for extracting information from proteo-
mic and genomic data is pairwise sequence alignment
(PSA). Given two sequences, PSA finds the extent of
similarity between them. Many bioinformatics

applications have been developed based on pairwise
sequence alignment, such as BLAST [3], PSI-BLAST
[4-6], and FASTA [7]. PSA produces a score for an
alignment as a measure of the similarity between two
sequences. Generally, the higher the score, the more
related the sequences. However, the alignment score
depends on various factors such as alignment methods,
scoring schemes, sequence lengths, and sequence com-
positions [8,9]. Judging the relationship between two
sequences solely based on the scores can often lead to
wrong conclusion. Therefore, it is more appropriate to
measure the quality of PSA using the statistical signifi-
cance of the score rather than the score itself [10,11].
Statistical significance of sequence alignment scores is
very important to know whether an observed sequence
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similarity could imply a functional or evolutionary link,
or is a chance event [8,12]. Accurate estimation of sta-
tistical significance of gapped sequence alignment has
attracted a lot of research in recent years [13-26].

Pairwise statistical significance
Consider a pair of sequences s1 and s2 of lengths m and
n, respectively, the scoring scheme, SC (substitution
matrix, gap opening penalty, gap extension penalty), and
the number of permutations N of s2, pairwise statistical
significance (PSS) of the two sequences is calculated by
the following function [21], which is described below:

PSS(s1, s2, m, n, SC, N),

Through permuting s2 N times randomly, the function
generates N scores by aligning s1 against each of the N
permuted sequences and then fits these scores to an
extreme value distribution (EVD) [8,27,28] using cen-
sored maximum likelihood [29]. The returned value is
the pairwise statistical significance of s1 and s2. The
EVD describes an approximate distribution of optimal
scores of a gapless alignment [4]. Based on this distribu-
tion, the probability (i.e., P-value) of observing an
sequence pair with a score S greater than x, can be
given by:

P(S > x) ≈ 1− exp(−Kmne−λx) = 1− e−E(x) (1)

where l and K are calculational constants and E(x),
also known as E-value, is the expected number of dis-
tinct local alignments with score values of at least x.
Note that the above distribution is for a gapless align-

ment. For the cases of gapped alignment, although no
asymptotic score distribution has yet been established
analytically, computational experiments strongly indicate
these scores still roughly follow Gumbel law [8,13,30].
In addition to not needing a database to estimate the

statistical significance of an alignment, pairwise statisti-
cal significance is shown to be more accurate than data-
base statistical significance reported by popular database
search programs like BLAST, PSI-BLAST, and
SSEARCH [21]. However, it involves thousands of such
permutations and alignments, which are enormously
time consuming and can be impractical for estimating
pairwise statistical significance of a large number of
sequence pairs. Hence, use of high-performance com-
puting (HPC) techniques (such as multi-cores CPU,
many-core graphics processing units (GPUs), FPGAs,
etc.) is highly conducive to accelerate the computation
of PSSE. Moreover, large data sets demand more com-
puting power. In many demanding bioinformatics appli-
cations, such as sequence alignment [31,32], and protein
sequence database search [33,34], many-core GPU has
demonstrated its extreme computing power. This

strongly motivates the use of GPUs to accelerate the
PSSE. Acceleration of PSSE using MPI [35] and FPGA
[36] has been explored earlier, and in this work, we
design a GPU implementation for the same. Compared
to [35,36], we consider the estimation of multi-pair PSS
along with single-pair PSS using GPUs.

Contributions
We present a GPU implementation to accelerate pair-
wise statistical significance estimation of local sequence
alignment using standard substitution matrices. Our
parallel implementation makes use of CUDA (Compute
Unified Device Architecture) parallel programming para-
digm. Our design uses an efficient data reorganization
method to produce coalesced global memory access,
and a tiled-based memory scheme to increase the GPU
occupancy, a key measure for GPU efficiency [37].
Through careful analysis of the data dependency and
access patterns of PSSE, we reorganize the data
sequences into aligned arrays that coalesce the global
memory access pattern. Such data access contiguity
keeps the GPU cores occupied with computation and
allows the thread scheduler to overlap the global mem-
ory access with the computation. In addition to the abil-
ity to calculate the optimal tile size for data to be
shipped to the GPU, our design can also issue a large
enough number of threads to maximize the occupancy.
We further extend the parallelization technique to

estimate pairwise statistical significance using position-
specific substitution matrices, which has earlier demon-
strated significantly better sequence comparison accu-
racy than using standard substitution matrices [11]. The
implementation is also extended to take advantage of
dual-GPUs to accelerate those computations. As a
result, maximum performance could be obtained by har-
vesting the power of many-core GPUs.
The performance evaluation was carried out on NVI-

DIA Telsa C2050 GPU. For multi-pair PSSE implemen-
tation, we observe nearly 250 (370)× speedups using a
single-GPU Tesla C2050 GPU (dual-Tesla C2050) over
the CPU implementation using an Intel© Core ™i7 CPU
920 processor. The proposed optimizations and efficient
framework for PSSE, which have direct applicability to
speedup homology detection, are also applicable to
many other sequence comparison based applications,
such as DNA sequence mapping, phylogenetic tree con-
struction and database search especially in the era of
next-generation sequencing.

Methods
In this section we present GPU implementations both
for single-pair PSSE and multi-pair PSSE. Along with
the methodological details, we also discuss several per-
formance optimization techniques used in this paper,
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such as, GPU memory access optimization, occupancy
maximization, and substitution matrix customization.
These techniques have significantly speeded up PSSE.
Careful analysis of the data pipelines of PSSE shows

that the computation of PSSE can be decomposed into
three computation kernels: Permutation, Alignment and
Fitting. Permutation and Alignment comprise the over-
whelming majority (a more than 99.8%) of the overall
execution time [35]. Therefore, efforts should be spent
to optimize these two kernels to achieve high perfor-
mance. Also, we observe that permutation presents high
degrees of data independency that are naturally suitable
for single-instruction, multiple-thread (SIMT) architec-
tures [38] and therefore, can be mapped very well to
task parallelism models of GPU. Moreover, even though
the alignment task suffers from data dependency, we
show that with clever optimizations, it can be heavily
accelerated using GPUs.

Design
GPU memory access optimization
It is especially important to optimize global memory
access as its bandwidth is low and its latency is hun-
dreds of clock cycles [38]. Moreover, global memory
coalescing is the most critical optimization for GPU
programming [39]. Since the kernels of PSSE usually
work over large numbers of sequences that reside in the
global memory, the performance is highly dependent on
hiding memory latency. When a GPU kernel is accessing
global memory, all threads in groups of 32 (i.e. warp)
access a bank of memory at one time. A batch of mem-
ory accesses is considered coalesced when the data
requested by a warp of threads are located in contiguous
memory addresses. For example, if the data requested by
threads within a warp are located in 32 consecutive
memory addresses (such that the ith address is accessed
by the ith thread), the memory can be read in a single
access. Hence, this memory access operation runs 32
times faster. If the memory access is not coalesced, it is
divided into multiple reads and hence serialized [37].
After permutation, if the sequence s2 and its N per-

muted copies were stored contiguously one after
another in the global memory, the intuitive memory lay-
out would be as shown in Figure 1 (a) Note that, we
need one byte (uchar) to store each amino acid residue.
Moreover, GPU can read four-byte (packed as a CUDA
built-in vector data type uchar4) of data from the global
memory to registers in one instruction. To achieve high
parallelism of global memory access, uchar4 is used to
store the permuted sequences. Dummy amino acid sym-
bols are padded in the end to make the length of
sequences a multiple of 4.
Considering inter-task parallelism, where each thread

works on the alignment of one of the permuted copies

of s2 to s1, in this layout the gap between the memory
accesses by the neighboring threads is at least the length
of the sequence. For example, in the intuitive layout, if
thread T0 accesses the first residue (i.e., ‘R’), and thread
T1 accesses the first residue (i.e., ‘E’), the gap between
the access data is n. This results in non-coalesced mem-
ory reads (i.e., serialized reads), which significantly dete-
riorates the performance.
We therefore reorganize the layout of sequence data

in memory to obtain coalesced reads. Now, to achieve
coalesced access, we reorganize layout of sequences in
memory as aligned structure of arrays, as shown in Fig-
ure 1 (b) In the optimized layout, the characters (in
granularity of 4 bytes) that lie at the same index in dif-
ferent permuted sequences stay at neighboring positions.
Then if the first uchar4 of the first permuted sequence
(i.e. ‘REGN’) is requested by thread T0, the first uchar4
of the second permuted sequence (i.e. ‘ARNE’) is
requested by T1, and so on. This results in reading a
consecutive memory (each thread reads 4 bytes) by a
warp of threads in a single access. Thus the global
memory access is coalesced, and therefore high perfor-
mance is achieved.
As the sequences remain unchanged during the align-

ment, they can be thought of as read-only data, which
can be bound to texture memory. For read patterns, tex-
ture memory fetches is a better alternative to global
memory reads because of texture memory cache, which
can further improve the performance.
Occupancy maximization
Hiding global memory latency is very important to
achieve high performance on the GPU. This can be
done by creating enough threads to keep the CUDA
cores always occupied while many other threads are
waiting for global memory accesses [39]. GPU occu-
pancy, as defined below, is a metric to determine how
effectively the hardware is kept busy:

Occupancy = (B× Tnum)/Tmax (2)

where Tmax is maximum number of resident threads
that can be launched on a streaming multiprocessor
(SM) (which is a constant for a specific GPU), Tnum is
the number of active threads per block and B is the
number of active blocks per Streaming Multiprocessor
(SM).
B also depends upon the GPU physical limitations (e.

g. the amount of registers, shared memory and threads
supported in each model). It can be given in the follow-
ing way:

B = min(Buser , Breg, Bshr , Bhw) (3)

where Bhw is the hardware limit (only 8 blocks are
allowed per SM), and Breg, Bshr, are the potential blocks
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determined by the available registers, shared memory,
respectively and Buser is blocks set by the user. Note that
B ≤ Bhw, therefore we obtain:

Occupancy ≤ (Bhw × Tnum)/Tmax (4)

Based on the above analysis, higher occupancy can be
pursued according to the following rules:

• To avoid wasting computation on under-populated
warps, the number of threads per block should be
chosen as a multiple of the warp size (currently, 32).
• Total number of active threads per SM should be
close to maximum number of resident threads per
multiprocessor (Tmax). In short, we should use all
the available threads if possible.

• To achieve 100% occupancy, (Bhw × Tnum)/Tmax ≥
1. Hence, setting Tnum such that Tnum≥ Tmax/Bhw is
preferable.

Substitution matrix customization
The Smith-Waterman (SW) algorithm [40] looks up the
substitution score matrix very frequently while comput-
ing the alignment scores. Lowering the number of look-
ups obviously reduces the overall execution time. As
suggested by [41], performance improvement could
further be obtained by customizing the matrix. Usually,
the substitution score matrix is indexed by query-
sequence symbol and the subject-sequence symbol as in
BLOSUM62. Another way is to index the substitution
score matrix by query-sequence position and the sub-
ject-sequence symbol. We refer to this customized

Figure 1 Two GPU memory layout strategies. (a) The intuitive layout that one sequence is appended after another. (b) The reorganized
layout such that the uchar4 at the same indices in different sequences stay at neighboring positions.

Zhang et al. BMC Bioinformatics 2012, 13(Suppl 5):S3
http://www.biomedcentral.com/1471-2105/13/S5/S3

Page 4 of 12



substitution matrix as local query profile. For example,
let us consider a query sequence Q of length L over a
set of residue alphabet ω. For each residue, we store a
substitution score for every query sequence position. For
example, in Figure 2 (a) the substitution scores for
matching residue ‘A’ with each symbol of the query
sequence Q are stored in the first row, and the substitu-
tion scores for matching residue ‘C’ are stored in the
next row, and so on. Here the substitution score of the
residue of subject sequence against the same symbol of
query sequence at different position is always same.
By contrast, position-specific score matrix (PSSM) [4]

offers a variation of this approach. We call this a posi-
tion specific query profile in which scores are further
refined. In this case the same residue (e.g. ‘A’) appearing
at different position of query sequence has different
scores, as shown in Figure 2 (b). For a given query
sequence, PSSM can be pre-constructed by PSI-BLAST
[3,4].
Using the customized approach, in both cases, the

dimension |ω| × |ω| of the substitution matrix is
replaced by a query-specific matrix of dimension |ω|×|

L|. This increases the memory requirement compared to
the original layout, but reduces the lookups of the sub-
stitution matrix significantly as explained below.
In traditional matrix layout, if the substitution scores

of a subject sequence residue (i.e., ‘A’) against query
sequence residues (i.e., ‘A’,’K’,’L’,’G’) are required subse-
quently, GPU has to look up the matrix four times one
by one, because the score S[A][A], S[A][K], S[A][L], S[A]
[G] are usually stored far from each other. In contrast, if
we use CUDA built-in vector data type int4 (which
packs 4 integers together) to store the customized sub-
stitution matrix in the texture memory, the same four
scores are stored at neighboring memory locations (as
shown in Figure 2 (b). By reading an int4, the GPU can
get these four scores S[A][i] in one instruction, where i
is the position of residues in query sequence. This
reduces the number of lookups by a factor of 4, there-
fore, a higher performance can be obtained.
In essence, both coalesced memory layout and custo-

mized substitution matrix optimization heighten perfor-
mance of memory access by improving data locality
among threads in GPU programming.

Figure 2 The customized substitution matrix. (a) Local query profile: the same symbol (e.g., ‘A’) at different position in query has same scores.
(b) Position specific query profile: the same symbol (e.g., ‘A’) at different position in query has different scores.

Zhang et al. BMC Bioinformatics 2012, 13(Suppl 5):S3
http://www.biomedcentral.com/1471-2105/13/S5/S3

Page 5 of 12



Single-pair PSSE implementation
As mentioned previously, to simulate the required ran-
dom sequences, a lot of random numbers are needed,
since each s2 copy has to be permuted thousands of
times. Although the most widely used pseudorandom
number generators such as linear congruential genera-
tors (LCGs) can meet our requirements, the current ver-
sion of CUDA does not support calls to the host
random function. Hence, we develop an efficient ran-
dom number generator similar to lrand48() on GPUs.
The single-pair PSSE processes only one pair of query

and subject sequences. The idea of computing single-
pair PSSE is as follows. Given the query sequence s1 and
the subject sequence s2, to compute PSSE, thousands
(say N) of randomly permutations of s2 are needed. To
obtain these N random sequences of s2, first, a set of N
random numbers is generated in CPU as described in
previous section. These numbers are then transferred to
GPU and considered as seeds by the threads of GPU.
Each thread then generates new random numbers using
its own seed and swap the symbols of s2 accordingly to
obtain a permuted sequence. Thus the N random per-
mutations of s2 are obtained in parallel. The algorithm
then uses SW algorithm to compute alignment score of
s1 and the N permuted copies of s2 in parallel on GPU.
The scores are then transferred to CPU for fitting. The
details of computing single-pair PSSE is outlined by
Algorithm 1. Note that Step 4 in Algorithm 1 uses the
optimized memory layout, explained previously in detail,
for s2 and its N permuted copies.
Smith-Waterman is a dynamic programming algo-

rithm to identify the optimal local alignment between a
pair of sequences. In general, there are two different
methods for parallelizing the alignment task [33]. The
first method is regarded as inter-task parallelism. In this
case, each thread performs alignment of one pair of
sequences. Hence, in a thread block, multiple alignment
tasks are performed in parallel [42]. The second one is
intra-task parallelism. Here, alignment of each pair of
sequences is assigned to a block of threads, splitting the
whole task into a number of sub-tasks. Each thread in
the thread block then performs its own sub-tasks, coop-
erating to exploit the parallel characteristics of cells in
the anti-diagonals of the local alignment matrix [43].
We use a similar alignment kernel as proposed in [34]
with some modifications for further improvement. It is
worthwhile to mention that Step 7 describes fitting,
which is implemented on the CPU. This is because it
involves recursion that is not supported very well on
GPU.

Multi-pair PSSE implementation
The multi-pair PSSE processes multiple queries and
subject sequences. We can obtain some hints about

improving the performance by analyzing the single-pair
PSSE implementation (which we do in a later section).
Owing to a dramatic increase of data set for multiple-
pairs implementation, there are some significant differ-
ences relative to performance of GPU hardware between
the two implementations. Through analyzing our experi-
mental results of the single-pair PSSE, we observe that
inter-task parallelism performs better than intra-task
parallelism (results shown later). Hence, we consider
inter-task parallelism in computing multi-pair PSSE.
Based on the guidelines for optimizing memory and
occupancy described earlier, we compare three imple-
mentation strategies.
Algorithm 1: Pseudo-code of single-pair PSSE
Input: (s1, s2) - Sequence-pair; M - Substitution

matrix; G - Gap opening penalty; GE - Gap extension
penalty; N - Number of permutes;
Output: pss- Pairwise statistical significance

1. Initialization
(a) Generate a number N of random numbers in
CPU;
(b) Copy LCG seeds to GPU global memory;
(c) Copy s1 and s2 to GPU global memory;

2. Generate random numbers (RNs) using LCG in
GPU
3. Permute sequence s2 N times using the RNs
4. Reorganize sequences s2 and its N times permuted
copies as shown in Figure 2 (b) if using inter-task
parallel Smith-Waterman();
5. Align s2 and its N permuted copies against s1
using Smith-Waterman() (inter-task or intra-task);
6. Transfer N alignment scores from GPU into CPU;
7. Fitting in CPU

(a) (K, l) ¬ EV DCensordMLFit(Scores);
(b) pss ¬ 1 - exp(-Kmne -lx);
return pss

Intuitive strategy
Given Q query sequences and S subject sequences, the
intuitive strategy is to simply perform the same ‘single-
pair’ procedure Q × S times. In other words, in each
iteration, we send a single pair of query and subject
sequences to the GPU. The GPU processes that pair
and returns the result to the CPU. The same procedure
is repeated for all query and subject sequence pairs.
However, this strategy suffers from low occupancy. We
analyze the cause along with its performance results in
the next section.
Data reuse strategy
In the first strategy, the subject sequences from the
database are permuted for every query-subject sequence
pair. Hence, the same subject sequence is permuted
every time it is sent to the GPU. A better strategy is to
create permutations of each subject sequence only once

Zhang et al. BMC Bioinformatics 2012, 13(Suppl 5):S3
http://www.biomedcentral.com/1471-2105/13/S5/S3

Page 6 of 12



and reuse them to align with all the queries. “One per-
mutation, all queries” is the idea of the second strategy.
Because of the reuse of permuted sequences, higher per-
formance is expected than the first strategy. However,
the occupancy of GPU, to be shown in the next section,
is still not elevated.
Adaptively tile-based strategy
The low occupancy of the above two strategies is due to
the underutilized computing power of GPU. In addition,
these two strategies do not work well when the size of
subject sequence database becomes too big to be fitted
into GPU global memory. For instance, if the size of the
original subject sequence database is 5 MB, it becomes
5000 MB when each of the sequences is permuted, say,
1000 times. This prohibits transfer of all the subject
sequences to GPU at the same time. We therefore need
an optimal number of subject sequences to be shipped
to GPU keeping in mind that the subject sequences and
their permuted copies fit in global memory. Moreover,
the number of new generated sequences should be
enough to keep all CUDA cores busy, i.e., keep a high
occupancy of GPU, which is very important to harness
the GPU power.
Herein we develop a memory tiling technique that is

self-tuning based on the hardware configuration and can
achieve a close-to-optimal performance. The idea behind
the technique is as follows. In out-of-core fashion, the
data in the main memory is divided into smaller chunks
called tiles and transferred to the GPU global memory. In
our case, the tiles are the number of subject sequences to
be transferred to the GPU at a time. The tile size T can
be calculated using the following equation:

T = �SMnum × Tmax

N
� (5)

where SMnum is the total number of SMs in GPU,
Tmax is the maximum number of resident threads per
SM, and N is the number of permutations.
In Tesla C2050 used in our experiments, there are 14

SMs and the maximum number of resident threads per
SM is 1024. Let N = 1000, then, T = ⌊14 × 1024/1000⌋
= 14, which means that there are 14 distinct subject
sequences to be transferred to the GPU’s global memory
at a time. Based on the second strategy (i.e., data reuse),
14 subject sequences and their permuted copies are
aligned against one query sequence at a time, until all
the query sequences are processed. As a result, 14 ×
1000 alignment scores in total are obtained in each
round, which are subsequently transferred to CPU for
fitting. The CPU takes the 1000 alignment scores for
each subject-query sequence pair and uses them to
compute the corresponding pss. The tile-based strategy
has been described in Figure 3.

Results and discussion
All our experiments have been are carried out using
Intel© Core™i7 CPU 920 processors running @2.67
GHz. The system has 4 cores, 4 GB of memory, dual
Tesla C2050 GPU (each with 448 CUDA cores) and is
running a 64-bit Linux-based operating system. Our
program has been compiled using gcc 4.4.1 and CUDA
4.0. The sequence data used in this work comprises of a
non-redundant subset of the CATH 2.3 database [44].
This dataset consists of 2771 domain sequences as our
subject library and includes 86 CATH queries as our
query set. We derive PSSMs for the 86 test queries
against the non-redundant protein database using PSI-
BLAST (provided along with the BLAST+ package [3])
over a maximum of five iterations and with other
default parameters. BLOSUM62 and PSSMs have been
used as the scoring matrices with affine gap penalty of
10 + 2k for a gap of length k. We permute the 2771
subject sequences N = 1000 time as in several previous
studies [21,35,36,45].

Single-pair PSSE result analysis
In single-pair PSSE implementation, we use both the
intra-task and inter-task parallelism methods. We
choose four pairs of query and subject sequences of
length 200, 400, 800, and 1600 from CATH 2.3 data-
base. We compute PSSE for all these pairs using 64,
128, 256, and 512 threads per block. The experimental
results have been plotted in Figure 4. All speedups are
computed over the corresponding the CPU

Figure 3 Adaptive tile-based strategy. The optimal tile size T can
be calculated according to the hardware configuration of GPU.
After calculated, the T subject sequences together are transferred to
GPU global memory. Permutations and alignments are done in
parallel in GPU. Then T × 1000 alignment scores are moved back to
CPU for T fittings.
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implementation. We observe that the inter-task parallel
implementation performs significantly better than the
intra-task parallel implementation. Employing further
optimizations and newer version of CUDA, both meth-
ods show a higher speedup compared to our previous
results [31].
For intra-task parallel implementation, the best speed-

ups for sequences of length 200, 400, and 800 are
24.57×, 35.09×, and 43.63×, respectively. All these are
obtained using 128 threads per block. But the best
speedup for sequences of length 1600 is 46.34× and
used 256 threads per block. These results tell us that it
is hard to find a general rule to parameterize the set-
tings to achieve peak performance. A possible reason is
that many factors, such as the number of threads per
block, the available registers, and shared memory, may
contradict with each other.
The intra-task parallel implementation creates enough

thread blocks (one block for each alignment task) to
keep the occupancy high. However, the SW alignment
matrix must be serially computed from the first to the

last anti-diagonal. Only the cells of the alignment matrix
belonging to the same anti-diagonal can be computed in
parallel. In this case, most threads in a block have no
work to do. As a result, the performance of the intra-
task parallel implementation is worse than that of the
inter-task parallel implementation even though it has
higher occupancy.
In contrast, inter-task parallelism would have a total of

1000 threads (one for each alignment task). If each
block contains 64 threads, then the total number of
blocks is B = ⌈1000/64⌉ = 16. The assignment of 16
blocks to 14 available SMs will result in 12 SMs with
one active block and two SMs with two blocks. There-
fore, the occupancy for the two SMs with two blocks is
(2 × 64)/1024 = 12.5%. For the 12 SMs with only one
block its occupancy is (1 × 64)/1024 = 6.25%. Because
of the low occupancy, there are not sufficient threads to
keep CUDA cores busy when the global memory is
accessed. As a result, the latency-hiding capabilities of
this method are limited. As the number of threads per
block Tnum increases, the total active blocks (B)

Figure 4 Intra-task and inter-task parallelism for single-pair PSSE. We choose four pairs of query and subject sequences of length 200, 400,
800, and 1600 from CATH database.
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decreases and some SMs even have no blocks assigned.
For example, if Tnum = 512, then B = ⌈1000/512⌉ = 2.
Hence only two SMs are working with one block each.
However, these SMs have a higher occupancy (1 ×

512)/1024 = 50%, which compensates for the decrease
in the number of working SMs. Consequently, even
though there is a reduction in speedups, it is not
directly proportional to the reduction in the number of
active SMs. When the number of threads per block is
64, for the sequence length of 200, 400, 800, and 1600,
the best speedups are 52.14×, 56.36×, 73.39×, and
73.16×, respectively.
In brief, getting performance out of a GPU is about

keeping the CUDA cores busy. Both inter-task paralle-
lism and intra-task parallelism, under the situations of
small data set being processed, seem to fail in this
regard, but not necessarily for the same reason.

Multi-pair PSSE result analysis
In the intuitive and data reuse strategies, most of the
SMs suffer from the same low occupancy as the single-

pair PSSE implementation using the inter-task paralle-
lism method. As expected, we observe poor performance
for both strategies, as shown in Figure 5. The data reuse
strategy produces higher performance than the intuitive
strategy, because the number of permutations is reduced
by a factor of Q, the number of query sequences. To
alleviate the low occupancy problem, our proposed tile-
based strategy uses a carefully tuned tile size that effec-
tively increase the occupancy. Recall that, as a result of
tiling, we send 14 subject sequences and one query
sequence to the GPU in each round. After the permuta-
tion step, we have 14 × 1000 alignments to be per-
formed, assuming each subject sequence is permuted
1000 times. Consequently, each SM has 1000 alignments
to perform. Also, note that, the maximum number of
blocks that can be launched simultaneously on an SM is
8. Therefore, when the number of threads per block is
64, the number of blocks per SM is min(⌈1024/64⌉, 8) =
8, resulting in an occupancy of (8 × 64)/1024 = 50%,
based on Equation (2) and (3). This is a significant
improvement over the intuitive and data-reuse

Figure 5 Performance of three strategies for multi-pair PSSE. All experiments are run using 2771 subject sequences and 86 query sequences
from the CATH 2.3 database.
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strategies. The maximum theoretical occupancy of an
SM for the three strategies is given in Table 1.
Due to a high occupancy, the tile-based strategy using

single (dual) GPU(s) achieves speedups of 240.31
(338.63)×, 243.51 (361.63)×, 240.71 (363.99)×, and
243.84 (369.95)× using 64, 128, 256, and 512 threads
per block, respectively, as shown in Figure 5.
The billion cell updates per second (GCUPS) value is

another commonly used performance measure in
bioinformatics [33]. The tile-based strategy using single
(dual) GPU(s) achieves performance results in the
range of 16.55 (23.34) to 16.79 (25.50) GCUPS, as
shown in Figure 5. Although a direct comparison
across different GPU implementations and hardware in
not fair, just for the sake of completeness, we cited
below the performance in GCUPS reported by some
existing implementations of the Smith-Waterman
alignment task. It is worthwhile to mention here that
[46] has a peak performance of 4.65 to 8.99 GCUPS
for various query lengths on an NVIDIA 9800 and [42]
has a peak performance of 3.5 GCUPS on a worksta-
tion running two GeForce 8800 GTX. Our implemen-
tation show higher GCUPS.
In summary, low occupancy is known to interfere with

the ability to hide latency on memory-bound kernels,
causing performance degradation. However, increasing
occupancy does not necessarily increase performance. In
general, once a 50% occupancy is achieved, further opti-
mization to gain additional occupancy has little effect
on performance [37]. Our experiments verify this claim.
Since the GPU implementation presented in this paper

uses the same algorithm for PSSE (specifically the
Smith-Waterman algorithm for getting alignment scores,
the same fitting routine to get statistical parameters K
and l, and the same algorithm parameters) as in [11],
the retrieval accuracy of the proposed implementation is
expected to be identical to [11]. According to [11], pair-
wise statistical significance with standard substitution
matrices performs at least comparable or significantly
better than database statistical significance (using
BLAST, PSI-BLAST, and SSEARCH). Moreover, pair-
wise statistical significance with PSSMs performs signifi-
cantly better than using standard substitution matrices,
and also better than PSI-BLAST using pre-constructed
position-specific substitution matrices. More details can
be found in [11]. The implementation of the proposed

method and related programs in CUDA is available for
free academic use at http://cucis.ece.northwestern.edu/
projects/PSSE/.

Conclusions
In this paper, we present a high performance accelerator
to estimate the pairwise statistical significance of local
sequence alignment, which supports standard substitu-
tion matrix like BLOSUM62 as well as PSSMs.
Our accelerator harvests the computation power of

many-core GPUs by using CUDA, which results in high
end-to-end speedups for PSSE. We also demonstrate a
comparative performance analysis of single-pair and
multi-pair implementations. The proposed optimizations
and efficient framework are applicable to a wide variety
of next-generation sequencing comparison based appli-
cations, such as, DNA sequence mapping and database
search. As the size of biological sequence databases are
increasing rapidly, even more powerful high perfor-
mance computing accelerator platforms are expected to
be more and more common and imperative for
sequence analysis, for which our work can serve as a
meaningful stepping stone.
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