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Abstract. Field-Programmable Gate Arrays (FPGAs) have lately be-
come a popular target for implementing cryptographic block ciphers, as
a well-designed FPGA solution can combine some of the algorithmic flex-
ibility and cost efficiency of an equivalent software implementation with
throughputs that are comparable to custom ASIC designs. The recently
selected Advanced Encryption Standard (AES) is slowly replacing older
ciphers as the building block of choice for secure systems and is well
suited to an FPGA implementation. In this paper we explore the design
decisions that lead to area/delay tradeoffs in a single-core AES FPGA
implementation. This work provides a more thorough description of the
defining AES hardware characteristics than is currently available in the
research literature, along with implementation results that are pareto
optimal in terms of throughput, latency, and area efficiency.

1 Introduction and Motivation

Cryptography is one of the strongest tools for controlling against many kinds
of security threats [1]. These algorithms and techniques form the basic building
blocks of secure systems that serve a variety of purposes, including cryptographic
hashing, secure key exchange, and digitally signing documents. Secure storage
and transmission solutions are needed for all types of platforms, ranging from
embedded devices where area is key to massively parallel machines that empha-
size high performance. Such a diversity of requirements motivates the exploration
of a wide range of cryptographic implementation characteristics.

Field-Programmable Gate Array (FPGA) technology is becoming a popular
target for designing cryptographic ciphers, as witnessed by the wealth of recent
research [2,3,4,5,6] and commercial [7] implementations. This increased interest
in FPGAs from the cryptographic community has been driven by several factors:

– the individual operations required by this class of algorithms are generally
simple in terms of required logic; as such any hardware implementation can
increase efficiency by reducing the overhead introduced by software.
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Fig. 1. Top-down block cipher design methodology

– the development process for FPGAs is extremely effective in terms of time-
to-market and overall cost when compared to that of custom ASIC designs.

– the reconfigurable nature of FPGAs is especially attractive to cipher design-
ers as it gives them the ability to apply modifications to the implemented
algorithm after the initial time of programming [8]. This feature can be used
to switch between a set of cryptographic algorithms at runtime [9], to ad-
dress a freshly-discovered flaw in the cipher algorithm, or to optimize the
architecture for a fixed range of inputs [5].

Much recent work in this field has focused on maximizing the theoretical
throughput for these cryptographic block ciphers, including both the Data En-
cryption Standard (DES) [4] and the newly-introduced Advanced Encryption
Standard (AES) [2,3,6]. The key distinction between the contributions of this
paper and those implementations proposed previously stems from our top-down
design methodology (Fig. 1) that allows for area and delay tradeoffs to be man-
aged at several levels of the design hierarchy using a single parameterizable AES
core.

As can be seen in Fig. 1, many current block ciphers can be described as a
series of logic operations (rounds) that are repeated in an iterative fashion. At
the inter-round level, decisions can be made as to how each round is laid out in
terms of classical optimizations such as unrolling, tiling, and pipelining. Internal
to each round structure there are intra-round decisions, which can include trans-
formation partitioning and internal pipelining. Also, when considering FPGA
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hardware, technology mapping is especially important, as these decisions can
greatly influence designs by allocating specialized resources towards individual
computations. Ultimately, making these decisions at each level of the design hi-
erarchy provides much additional control over the performance and area charac-
teristics of the resulting AES FPGA implementation. Our experimental results
using Xilinx Virtex-II technology demonstrate that the careful application of
this concept can lead to different designs with small area, high throughput, and
low latency. One such implementation obtained a maximum throughput of 23.57
Gbps, which to the authors’ knowledge is greater than any previously published
value.

The remainder of this paper is organized as follows. In Sect. 2, an overview
is provided of the AES encryption algorithm, with an introduction to the or-
ganization and functionality of the individual transformations from a hardware
designer’s perspective. Section 3 explores the key design decisions that are pos-
sible at various levels in the AES FPGA implementation process, discussing
how these choices can result in significant area and delay tradeoffs. Experimen-
tal results are presented in Sect. 4, demonstrating how a single soft core can
be fine-tuned to implement optimized designs in terms of performance, area,
and efficiency metrics. Finally, the paper is concluded in Sect. 5 with a broad
summary of some relevant ideas that require further exploration.

2 Overview of AES

In 1997, the U.S. National Institute of Standards and Technology (NIST) an-
nounced an open international competition for cipher designs to replace the aging
DES as the federal information processing standard. The fifteen submissions to
become the new AES standard were publicly evaluated based on algorithmic
security, simplicity, and suitability to both hardware and software implementa-
tions. Among these submissions was the Rijndael algorithm, which was devel-
oped by Vincent Rijmen and Joan Daemen [10]. As it was well fitted to the
above factors, Rijndael was selected as the AES competition winner in 2000.

AES is what is known as a symmetric key block cipher, block cipher meaning
that it operates on fixed-length blocks of data at a time, symmetric key meaning
that the same key is used during encryption and decryption [1]. Although the
original Rijndael specification allowed for both blocks and keys of various lengths,
AES is restricted to 128-bit blocks and keys of 128, 192, or 256 bits. In symmetric
block ciphers, the algorithms for encryption and decryption using various key
lengths often contain quite a large amount of similar features. Consequently,
little context will be lost by restricting our focus for the remainder of this paper
on AES encryption using a 128-bit key (AES-128E).

The structure of AES-128E is as follows (see Fig. 2). The initial 128-bit key
is fed into the KeyExpansion function which produces separate keys for each of
the 10 required rounds. These rounds combine their scheduled keys with a two
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Fig. 2. Algorithmic view of AES-128E

dimensional representation of the input (the “state”) using various transforma-
tions [11]:

– SubBytes calculates a non-linear function independently on each byte of
the state. The substitution used by this transformation can be more simply
represented as a lookup table which is referred to as an “S-box”.

– MixColumns separately modifies each column of the state in what is essen-
tially a matrix multiplication operation. Fortunately, in the 8-bit finite math-
ematical field relied on by this class of block ciphers, multipliers can be
replaced with simpler fixed-length shifts and XOR operations.

– ShiftRows cyclically shifts the bytes in the last three rows of the state. As
this function requires no computational hardware it can be implemented on
an FPGA as simple wiring.

– AddRoundKey adds the round key to the state using a bitwise XOR operation.

For those interested in a more thorough description of the AES algorithm,
both the official AES standardization documentation [11] and the developers’
own writings [10] are informative reads.

3 Design Space Exploration

As the effects of FPGA design decisions on performance and area are often
specific to individual architectures, it is necessary to further refine the FPGA
target before proceeding in the analysis. For our experiments, we selected the
Xilinx Virtex-II device family [12]. Like most Xilinx FPGAs, the Virtex-II de-
vices can be best described as a two-dimensional array of Configurable Logic
Blocks (CLBs) that are surrounded by I/O resources and routed together using
a programmable interconnect mesh. These CLBs contain functional elements for
implementing both combinatorial and synchronous logic, and also include some
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Fig. 3. AES-128E design decisions: unrolling, pipelining, and partitioning

sequential storage. Apart from the CLBs, Virtex-II FPGAs also contain a dedi-
cated amount of dual-ported Block SelectRAM (BRAM) memory modules, each
of which can hold up to 18 Kbits of data.

Given a target FPGA similar to the Virtex-II, the first design decision that
needs to be made is in regards to the KeyExpansion routine. While the op-
erations required to generate a key schedule from the original input key are
not complicated, it makes intuitive sense to consider splitting this functionality
into smaller KeyExpansion modules that would be placed alongside the actual
round operations, in what is known as online key generation. This is due to the
fact that the round key is not used until the final operation in each round (the
AddRoundKey operation).

3.1 Inter-round Layout

Given that AES-128E is, at its highest level, essentially an iterative looping
structure, it is interesting to look at the effect of some classical loop layout
optimizations. Unrolling replaces a loop body with N copies of that loop body
(Fig. 3). As the AES-128E algorithm is a single loop that iterates 10 times, any
unrolling amount 1 ≤ N ≤ 10 is valid, with N = 1 corresponding to the original
looping case and N = 10 specifying a fully unrolled implementation.

Unrolling the rounds makes them highly amenable to pipelining, which is a
technique that increases the number of blocks of data that can be processed
concurrently. As can be seen in Fig. 3, pipelining in FPGA designs can be
implemented by inserting registers between the modules that need to operate
independently. Different implementations can be created that split the unrolled
rounds into a certain number of pipeline stages, with a similar restriction as
before that each stage should be of equal length.

The main advantage of unrolling and pipelining is that it increases the par-
allelism of the AES encryption algorithm, which should have a positive effect on
throughput. It is also possible that a fully unrolled but not pipelined implemen-
tation will have a lower latency than in its iterative form. These performance
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advantages do not come without a price, as unrolling will increase the required
FPGA resources by approximately a factor of N ; registers used for pipelining
will also consume CLBs.

3.2 Intra-round Layout

The clock frequency that FPGAs can operate at is dependent on the critical
logic path of the design. As such, the unrolling and pipelining of the rounds as
discussed in the previous section will have little positive effect on the critical
path when compared to an iterative round structure. In general, this maximum
delay will be dependent on the individual transformations inside each round.

Fortunately, these sub-modules are also eligible for pipelining. Figure 3 shows
an example of this transformation pipelining, where each of the AES transfor-
mations are represented by their initials (e.g. SB for SubBytes). This will reduce
the critical path to that of the individual transformation with the greatest delay.
We can improve upon this value even further by partitioning some of the trans-
formations. Assuming that the KeyExpansion operation is performed online, it
becomes a prime candidate for partitioning as it has the most slack between
the time of its valid input and expected output. After that point it is likely
that the maximum delay path will shift to another transformation, which can
often also be partitioned. The level of partitioning can be tuned by initially cre-
ating highly-partitioned versions of the AES block transformations, and then
connecting them with a variable number of pipeline registers.

When combined with round pipelining, transformation partitioning can lead
to extremely large gains in throughput, with a relatively small increase in area
due to the additional registers that would be needed. However, these heavily
pipelined configurations will have extremely long latencies when compared to
the base iterative version of AES-128E.

3.3 Technology Mapping

While the majority of the computations needed for the round transformations
can be directly mapped to CLBs using the proper synthesis tools, the SubBytes
operation, or more specifically the S-box tables found in SubBytes, can be im-
plemented in one of several ways using Virtex-II technology:

– Block SelectRAM - the values in the lookup table for each S-box can be
loaded onto these memories at configuration time. Since the memories are
dual-ported, each RAM block can implement two separate S-boxes. Block
SelectRAMs are dedicated resources on Virtex-II FPGAs, meaning that there
is a hard upper limit on the number of them in any design.

– Distributed SelectRAM - distributed ROM primitives with the pre-loaded
S-box values can also be synthesized directly using CLBs. These are often
faster than the Block SelectRAMs, but will require additional glue logic.
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– Logic - the lookup table code can be converted to a logical representation to
be implemented on the CLBs. An advantage of this option is that it provides
additional room for the synthesis tools to optimize for area and delay.

Because they are so numerous, the choice of lookup table technology can have
a significant effect on the area/delay profile of the SubBytes operation and of
AES-128E as a whole. Although less in number, these S-box operations are also
needed in KeyExpansion, whether it is performed online or off.

4 Area and Performance Results

4.1 Experimental Setup

The AES-128E algorithm was implemented using a single VHDL core, with a
configuration file to drive preset macros for controlling the round layouts and
explicit synthesis directives to determine the mapping of S-boxes. For synthesis
we used Synplify Pro 7.2.1 from Synplicity, which was configured to target a
Xilinx XC2V4000 FPGA. The XC2V4000 is a medium-sized member of the
Virtex-II device family, containing 5760 CLBs (equivalent to 23040 slices) and
120 Block SelectRAM modules. Xilinx ISE 5.2i was used for the place-and-route
and timing analysis.

For each design we used these tools to measure the maximum possible clock
rate (fclk), the number of utilized slices (Nslice), and the number of Block Selec-
tRAMs (Nbram) From these base statistics we calculated the resultant maximum
throughput using the following equation for a block cipher in non-feedback mode:

Tput =
128 · fclk

blocks per cycle
, (1)

where the number of blocks per cycle is 1 for a fully unrolled implementation, and
greater than 1 for any design that re-uses the round structures to process a single
input. Also, the latency required to encrypt a single block can be calculated as:

Lat =
10 · stages per round

fclk
, (2)

where the number of clock cycles needed to process a single round is an average
and may be a non-integer value. Finally, some idea about the efficiency of an
implementation can be obtained by analyzing the following metric:

Eff =
Tput

Nslice
, (3)

which is measured in throughput rate (bps) per utilized CLB slice.
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Table 1. AES-128E implementation results for a Xilinx XC2V4000 FPGA

Design fclk (MHz) Nslice Nbram Tput (Gbps) Lat (ns) Eff (Mbps
slice )

UF1-PP0B 110.16 387 10 1.41 90.78 3.64
UF1-PP0D 77.91 1780 0 1.00 128.4 0.56
UF1-PP0L 59.00 2744 0 0.76 169.5 0.28
UF1-PP3D 178.09 1940 0 2.28 168.5 1.18
UF1-PP3L 147.75 2909 0 1.89 203.0 0.65
UF2-PP1B 118.57 753 20 3.04 84.34 4.04
UF2-PP2B 150.02 1011 20 3.84 133.3 3.80
UF2-PP2D 119.96 3445 0 3.07 166.7 0.89
UF2-PP3B 173.37 1254 20 4.44 173.0 3.54
UF2-PP3L 118.30 5570 0 3.03 253.6 0.54
UF5-PP0B 72.438 1532 50 4.64 27.61 3.03
UF5-PP1D 68.521 7995 0 4.39 145.9 0.55
UF5-PP2B 169.92 2206 50 10.88 117.7 4.93
UF5-PP2L 76.26 11974 0 4.88 262.3 0.41
UF5-PP3B 173.73 2810 50 11.12 172.7 3.96
UF10-PP1B 95.129 2518 100 12.18 105.1 4.84
UF10-PP1D 50.239 15365 0 6.43 199.0 0.418
UF10-PP2B 179.147 3766 100 22.93 111.6 6.09
UF10-PP3B 183.58 4901 100 23.50 163.4 4.79
UF10-PP3D 184.16 16938 0 23.57 162.9 1.39

4.2 Results

A selection of our experimental results can be found in Table 1. Each design
is labeled UFX-PPYZ, where X corresponds to the round unrolling factor X ∈
{1, 2, 5, 10}. The Y value specifies the amount of transformation partitioning and
pipelining; for Y = 0 the design has no pipelining, for Y = 1 each unrolled round
is pipelined, for Y = 2 each round is split into two stages, and for Y = 3 each
round is split into three stages, with transformations being partitioned across
those stages. The Z value specifies the S-box technology mapping in the design,
where for Z = [B] Block SelectRAM is chosen, for Z = [D] distributed ROM
primitives are chosen, and for Z = [L] logic gates are instantiated. For sake of
brevity, unexceptional results from the set of possible designs were pruned when
forming Table 1.

From these results several trends can be observed. As was expected, unrolling
increased the number of slices by a significant amount. See UF10-PP3D which uses
over 8.7× the amount of slices of its iterative counterpart UF1-PP3D. The gain
in throughput often out-paced this increased area consumption, leading to an
improved area efficiency with the larger unrolling factor. Also, for many of the
designs using the distributed SelectRAM resulted in slightly higher clock rates
when compared to the dedicated Block SelectRAM. The advantage to using the
Block SelectRAM for the S-boxes can be seen in both the area consumption
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and area efficiency – see the UF2-PP2B design which for the cost of 20 BRAMs
saves 71% of the slices that UF2-PP2D requires. Since the performance of the
two designs were fairly similar, this choice leads to a 4.26× increase in effi-
ciency. It should also be noted that using logic gates to directly implement the
S-box transformations was sub-optimal in all measured metrics when compared
to using either SelectRAM type. Finally, aggressive transformation partitioning
was quite effective in improving the clock rate and resultant throughput. This
technique was successful even in the iterative case, illustrated by the UF1-PP3L
design which obtained 2.5× the throughput of UF1-PP0L by partitioning the
critical path.

The bolded values in Table 1 represent the designs which are optimal in terms
of the selected area/performance characteristics. As was expected, the design
that required the least amount of area (387 slices) was UF1-PP0B, an iterative im-
plementation with no transformation partitioning that used Block SelectRAMs.
Without using these SelectRAMs, the smallest design was UF1-PP0D, which re-
quired 1780 slices. Two of the most aggressively unrolled and pipelined designs
(UF10-PP3B and UF10-PP3D) obtained clock rates of over 183 MHz, resulting in
throughputs of over 23.5 Gbps. A design that demonstrates the usefulness of
partial unrolling is UF5-PP0B, which has the lowest latency of all designs (27.61
ns). The UF10-PP2B design had the highest area efficiency (6.09 Mbps/slice).

4.3 Related Results

It is difficult to make direct comparisons between FPGA implementations of any
algorithm since the specific hardware target is often different. However, many
recent AES implementations have provided maximum throughput numbers for
Xilinx FPGAs that can be used as a measuring stick. For example, Helion Tech-
nology reports throughputs of over 16 Gbps [7] for their high-performance com-
mercial AES core. Also, several academic groups have reported high throughput
values for designs that are similar to our most aggressively pipelined version.
Järvinen et al. [6] created a cipher that operated at 17.8 Gbps, while Saggese et
al. [3] reached just over 20 Gbps. Besides ours, the highest reported throughput
for an AES implementation belongs to Hodjat and Verbauwhede [13], who de-
signed a 21.54 Gbps core. Our superior throughput numbers can be explained by
the fact that our top-down design flow motivated the discovery of additional ways
of partitioning transformations, and that doubly packing S-boxes into Block Se-
lectRAMs allowed for a completely unrolled design to fit into a relatively small
device.

As a comparison to non-FPGA technologies, a hand-optimized assembly im-
plementation of AES encryption in feedback mode achieved 1.538 Gbps on a 3.2
MHz Pentium IV processor [14]. An ASIC version of the design from [13] target-
ing 0.18µm technology was able to achieve greater than 30 Gbps [15]. While this
ASIC implementation is far superior to any published FPGA implementation in
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terms of throughput, this shortcoming is tolerable when considering the other
advantages to FPGA technology as listed in Sect. 1.

5 Conclusions

In this paper a top-down methodology for implementing cryptographic block
ciphers on FPGAs was proposed and evaluated. For AES-128E it was shown that
these design decisions can be managed in a fashion that allows for fine tuning
some of the area and delay characteristics. This methodology has been used
to discover implementations that are competitive with others in terms of area,
latency, and area efficiency. For the future, it would be interesting to see what
technology-specific features of other FPGA device families could be exploited to
further optimize AES. This same design methodology should also be extended to
other cryptographic algorithms. Finally, it would be useful to further investigate
how partial reconfiguration can optimize a block cipher given some knowledge
of the input key pattern.

References

1. W. Stallings. Cryptography and Network Security, Prentice Hall, 2003.
2. A. Elbirt, W. Yip, B. Chetwynd, and C. Paar. An FPGA implementation and

performance evaluation of the AES block cipher candidate algorithm finalists. In
Proc. of the Third Advanced Encryption Standard (AES3) Candidate Conference,
pages 13–27, 2000.

3. G. P. Saggese, A. Mazzeo, N. Mazzoca, and A. G. M. Strollo. An FPGA-based
performance analysis of the unrolling, tiling, and pipelining of the AES algorithm.
In Proc. of the 13th Int’l Conference on Field-Programmable Logic and its Appli-
cations (FPL), pages 292–302, 2003.

4. J-P. Kaps and C. Paar. Fast DES implementation for FPGAs and its application to
a universal key-search machine. In Proc. of the 5th Annual Workshop on Selected
Areas in Cryptography (SAC), pages 234–247, 1998.

5. I. Gonzalez, S. Lopez-Budeo, F. J. Gomez, and J. Martinez. Using partial reconfig-
uration in cryptographic applications: an implementation of the IDEA algorithm.
In Proc. of the 13th Int’l Conference on Field-Programmable Logic and its Appli-
cations (FPL), pages 194–203, 2003.

6. K. U. Järvinen, M. T. Tommiska, and J. O. Skyttä. A fully pipelined memo-
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