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Abstract. As both chip densities and clock frequencies steadily rise in
modern microprocessors, energy consumption is quickly joining perfor-
mance as a key design constraint. Power issues are increasingly important
in embedded systems, especially those found in portable devices. Much
research has focused on the memory subsystems of these devices since
they are a leading energy consumer. Compiler optimizations that are tra-
ditionally used to increase performance have shown much promise in also
reducing cache energy consumption. In this paper we study the interac-
tion between performance-oriented compiler optimizations and memory
energy consumption and demonstrate that the best performance opti-
mizations do not necessarily generate the best energy behavior in mem-
ory. We also show a simple metric that a power-optimizing compiler
can utilize in order to capture the energy impact of potential optimiza-
tions. Next, we present heuristic algorithms that determine a suitable
optimization strategy given a memory energy upper bound. Finally, we
demonstrate that our strategies will gain even more importance in the
future when leakage energy is expected to play an even larger role in the
total energy consumption equation.

1 Introduction

As the market for embedded systems continues to grow, power consumption is-
sues are becoming increasingly important. In fact, as new cell phones, PDAs, and
e-mail devices are being developed, the metric of performance / battery hours is
considered crucial [24]. Much research has been done on developing low-power
systems and techniques, ranging from circuit-level to architecture to compiler
and operating system support. Our research concentrates on the memory sub-
system mainly because it is a significant contributor of power consumption in
embedded systems [19] and high-performance processors [8].

Current optimizing compilers perform various optimizations for increasing
instruction-level parallelism and improving data locality. Many of these com-
piler optimizations, such as loop unrolling, loop tiling, and function inlining
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tend to increase code size. This increased code size is an important drawback in
embedded systems, as many of these systems execute a single or a small set of
applications, and application code sizes (executable sizes) are the primary fac-
tor that determines instruction memory size. An increase in instruction memory
size, in turn, increases both per access dynamic energy consumption and leak-
age energy. Therefore, in an energy-conscious environment, the aggressiveness
of compiler optimizations must be tuned carefully to keep instruction memory
energy consumption under control.

In this paper, we investigate the effect of performance-oriented compiler op-
timizations on the memory energy consumption. We first analyze the tradeoffs
between code size and performance by compiling several benchmark programs
with different performance-oriented optimizations. Using analytical SRAM en-
ergy dissipation models, we investigate how an increased code size increases the
memory energy consumption due to instruction accesses. In doing so, we also
illustrate that a simple metric can be used as a first-degree estimate of instruc-
tion and data memory energy. Our second contribution is a compiler algorithm
that determines a suitable optimization strategy for a given memory energy con-
straint. We study the effectiveness of our strategy in reducing memory energy
for both loop unrolling and function inlining, and examine a futuristic scenario
where leakage energy constitutes a sizeable portion of the overall memory energy
budget. Note that the leakage energy consumption is particularly important in
large SRAM memories that are active throughout execution and all trends [5]
indicate that it will be much more important in upcoming process technologies.

Our experimental results emphasize the importance of taking into account
the energy impact of optimizations early in the design process, and show that
an energy-conscious function inlining algorithm can reduce energy consumed in
memory by as much as 30% as compared to an aggressive performance-oriented
inlining strategy, with comparable results for our loop unrolling strategy. Based
on our results, we conclude that loop unrolling and function inlining are two
optimizations that illustrate the tradeoff between performance and energy.

The remainder of this paper is organized as follows. Section 2 discusses re-
lated work in low-power research and the contribution of this paper within that
framework. Section 3 presents results detailing the effects of some standard com-
piler optimizations on performance and resulting code size. Section 4 presents
and analyzes energy-conscious heuristics for loop unrolling and function inlin-
ing. Section 5 reports on the energy impact of our approach when leakage energy
is taken into account. Finally, Sect. 6 concludes the paper by summarizing our
contributions and giving an outline of the planned future research on this topic.

2 Related Work

We discuss the related research in the field of low-power computing as it fits into
three categories. At the circuit-level, there have been numerous optimizations
proposed for minimizing energy consumption. Powell et al. [22] present a gated
supply voltage design that interacts with a dynamically resizable instruction



366 Joseph Zambreno, Mahmut Taylan Kandemir, and Alok Choudhary

cache. By turning off the supply voltage to unused sections of the cache, their
method effectively eliminates the leakage power consumption in those sections.
Ye et al. [30] developed a method of transistor stacking in order to reduce leakage
energy consumption while maintaining high performance. Chandrakasan and
Brodersen [5] present several techniques on low-power circuit design.

At the architectural-level, much work that has been done to improve mem-
ory and CPU performance with the added expectation that power consumption
will also improve. Also in this area several techniques have been proposed to
reduce switching and leakage energy consumption at the cost of small perfor-
mance losses. Hajj et al. [9] present instruction cache energy reduction by using
an intermediate cache between the instruction cache and main memory. Their
research shows that this smaller intermediate cache allows the main instruction
cache to remain disabled most of the time. Delaluz, Kandemir, et al. [7] discuss
using low-power operating modes for DRAMs to conserve energy consumption
by effectively shutting off the DRAM when not in use. They present compilation
techniques to analyze and exploit memory idleness and also a method by which
the memory system can use self-detection to switch to a lower-power operat-
ing mode. In [1], Balasubramonian et al. suggest a cache and TLB layout that
significantly decreases energy consumption while increasing performance. Their
suggested layout allows for a dynamic memory configuration that analyzes size
and speed tradeoffs on a per-application basis. Kaxiras, Hu, and Martonosi [13]
present a method to reduce cache leakage energy consumption by turning off
cache lines that likely will not be used again. By realizing that most cache lines
typically have a flurry of frequent use when first introduced and then a period of
“dead time” before they are evicted, Kaxiras et al. were able to reduce L1 cache
leakage energy by 5× for certain benchmarks with only a negligible performance
decrease.

At the software-level, many preliminary investigations have been conducted
into compiler techniques, more specifically to analyze how optimizations de-
veloped to increase performance can also improve energy consumption. In [4],
Catthoor et al. offer a methodology for analyzing the effect of compiler op-
timizations on memory power consumption. Mehta et al. [17] investigate the
effect of loop unrolling, software pipelining and recursion elimination on CPU
energy consumption. They also present an algorithm for register relabeling that
attempts to minimize the energy consumption of the register file decoder and
instruction register by reducing the amount of switching in those structures.
An introductory look into other high-level optimizations such as loop fusion,
loop distribution and scalar replacement is performed with SimplePower in [26].
Hajj et al. examine function inlining in [9], but only in the context of its ef-
fectiveness with custom cache architectural modifications. In [14], Ellis et al.
propose an integrated hardware/software approach for exploiting a power-aware
memory hierarchy. Ramanujam et al. [23] present an algorithm to estimate the
actual memory requirement for data transfers in embedded systems. They also
present loop transformations that attempt to minimize the amount of memory
required. In [10], Halambi et al. investigate a novel compiler technique to reduce
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the bit-width of instructions to reduce code size. Muchnick [21], Morgan [20],
and Leupers [16] propose techniques for limiting the aggressiveness of function
inlining. Our work is different from theirs in a number of ways: first, we focus
on energy consumption; second, we present a metric that captures the energy
behavior of the applications being optimized; and third, in addition to inlining,
we also study other classical performance-oriented techniques.

Before developing a low-power technique, a predetermined method of estimat-
ing its effectiveness is required. Most research in this field leverages cycle-level
simulators. Much work has been done on extending the popular SimpleScalar
simulator [3] to include power-estimation models. As an example, both the
Wattch simulator [2] and the SimplePower simulator [26] leverage the Sim-
pleScalar framework to model power consumption in a standard 5-stage pipelined
RISC datapath. The SimplePower simulator uses a table-lookup system based
on power models for memory and functional units, while Wattch relies on more
detailed parameterized models. Although these simulators provide detailed anal-
ysis of the energy consumption in the major system components, they are not
primarily meant for investigating compiler optimizations. Also in this category
are tools and methods that give run-time energy estimates. For example, the
Castle tool [11] profiles hardware performance counters and feeds that data into
energy models to estimate the overall consumption in the main CPU compo-
nents. Kamble and Ghose [12] derive analytical cache energy dissipation models
and verify them against a low-level simulator. The models in [12] are used to
investigate architectural-level cache changes. In contrast, in this work, we exclu-
sively study the impact of code optimizations on energy and performance.

3 Analyzing Performance and Energy Tradeoffs

We focus on a System-on-Chip (SoC) design where we have both an instruction
memory and data memory. We also assume the existence of a data cache and a
larger off-chip data memory. Consequently, data locality optimizations [29] are
vital to take advantage of the small on-chip data memory structures. As with
other architectures, it is also important to increase instruction level parallelism
(ILP) as much as possible. This is particularly important in environments that
process digital signal processing applications as many DSP codes have high ILP
requirements.

The dynamic energy consumption in instruction memory during the execu-
tion of an application depends on two factors: the size of the instruction memory
and the number of accesses to the instruction memory [4]. Applying aggressive
performance oriented optimizations can increase both these factors. The size of
the instruction memory can increase due to the fact that many compiler op-
timizations such as function inlining, procedure cloning, iteration space tiling,
and loop unrolling increase code size. The number of instruction memory ac-
cesses can increase due to the fact that instruction reuse is decreased after most
performance-oriented compiler optimizations for data locality [21]. In this sec-
tion, we investigate the effect of various standard compiler optimizations on
performance, executable size, and energy consumption.
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3.1 Estimating Energy Consumption

In order to obtain the energy consumption results when compiler optimizations
are applied, we have enhanced the analytical models for cache energy dissipation
found in [12] to model energy consumption in instruction and data memories.
These models use the run-time data from the cache such as hit/miss counts,
data and address bit widths, and switching probabilities in order to estimate
the energy consumption in its major components. The overall cache energy con-
sumption is determined by this run-time data and also by the specifics of its
organization, such as cache size, block size, and associativity.

We have changed these models to reflect an on-chip memory hierarchy such as
would be found in an embedded SoC architecture, with an instruction memory,
a data cache, and a data memory. In many embedded devices, the memory is
of a preset size that is determined by the fixed applications that run on it.
That is, the memory size is chosen by taking the executable size into account,
plus a small amount of space for temporary variables. For our experiments, we
set the memory size equal to the code size of a given benchmark. There are
numerous capacitive coefficients that need to be evaluated in order to use our
model. These values come from the data for the 0.8µ transistor implementation
found in [27]. A memory power supply of 3.3 V is assumed, although for relative
energy calculations its value is unimportant.

3.2 Methodology

We measured the effect of compiler optimizations using benchmarks from the
SPEC CPU2000 [25] and MediaBench [15] suites. The chosen benchmarks from
the MediaBench suite perform audio/video encoding and decoding and are simi-
lar to the tasks performed by typical embedded processors in multimedia devices.
The SPEC benchmarks, while not normally considered to be indicative of an em-
bedded workload, nonetheless have interesting locality characteristics and make
for a good comparison to their MediaBench brethren.

To perform our experiments we decided to leverage a pre-existing optimiz-
ing compiler, the MIPSPro compiler from Silicon Graphics, Inc. The MIPSPro
compiler allows us to pick and apply both loop nest optimizations and inter-
procedural optimizations by using compiler directives and/or setting runtime
parameters. There are four major modes [18] of the MIPSPro compiler that
perform different performance optimizations:

–O0: No code optimization is done.
–O1: Performs copy propagation, dead code elimination, and other local
optimizations.
–O2: Performs non-loop if conversion, with some cross-iteration optimiza-
tions (no write/write elimination on loops without trip counts). This mode
also performs loop unrolling and recurrence fixing. Basic blocks are reordered
to minimize the number of taken branches.
–O3: Performs more if conversion and software pipelining. This mode also
activates the Loop Nest Optimizer (LNO) that attempts locality-enhancing
optimizations such as tiling, fission/fusion, and loop interchange [21,29].
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Used in conjunction with these four optimization modes is the –IPA flag that
turns on the interprocedural analysis optimizations, which include function inlin-
ing, interprocedural constant propagation, and dead function elimination. More
details on these optimizations can be found in [18,28,29,21].

We also needed an accurate way to estimate the values of the run-time data
for our target embedded architecture. The MIPS R10000 we were compiling on
contains several relevant hardware counters that we were able to sample by us-
ing the SGI performance counter profiler tool, perfex [18]. Of course the R10000
is a general-purpose processor, with several advanced features that would most
likely not be present in an embedded CPU core (L2 cache, out-of-order execu-
tion, multi-instruction issuing, etc.). We were able to overcome this obstacle by
carefully choosing which hardware counters to profile, ignoring some statistics
all together (L2 cache hit/miss rates), and using other data (percentage of spec-
ulated instructions) to mask the modern features of the R10000. In the end,
we plugged the run-time data and memory size data into our analytical energy
equations and estimated the energy output for a given code optimization.

3.3 Code Size/Performance Analysis

Figure 1 shows the resultant code size and dynamic instruction count for three
of our benchmarks compiled using the various MIPSPro options. These results
are normalized with respect to –O0. From these results, we can observe several
trends. First, with the interprocedural analyzer turned off, each optimization
mode from –O1 to –O2 shows (in general) both a smaller code size and a smaller
dynamic instruction count. This is due to the fact that these levels perform many
optimizations that either remove unnecessary code or optimize for performance
without adding code. The largest benchmark, mesa, shows the least change in
code size for all of the optimization modes. Even though it executes billions
of instructions, the equake benchmark has a relatively small unoptimized code
size, and the optimizations are very successful at decreasing the code size. For
these benchmarks, there is a trend that shows that the larger the original (un-
optimized) code size, the less effect these optimizations have on decreasing that
code size. The –O2 optimization level leads to the smallest code size, on average
a 10% improvement over no optimizations at all.

Second, at the –O3 optimization level, the loop nest optimizer performs more
aggressive loop unrolling along with other trade-offing optimizations, and the re-
sults are mixed. For the benchmark codes in our experimental suite, running the
LNO at the –O3 level leads to on average a 1% performance increase over the –O2
level across all benchmarks used, at the cost of a 11% increase in code size. This
small performance improvement is due to the fact that some of our benchmarks
do not contain too many regular nested loop structures to take full advantage
of the aggressive optimizations in the LNO option. The –O3 optimization level
leads to the best overall performance, the average benchmark running in 52%
of the time of its unoptimized counterpart. On average, the optimizations have
more of an effect on instruction count than they do on code size. However, there
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Fig. 1. Normalized code size and instruction count for MIPSPro optimization settings.
These results show that the –O2 optimization level leads to the smallest code size
on average, while the –O3 –IPA optimization level leads to the best performance on
average. These results clearly show the tradeoff between code size and performance

does not appear to be a trend between the number of unoptimized instructions
executed and the effect of the optimizations on that instruction count.

Third, we see that adding the –IPA option leads to more interesting results.
Many of the optimizations in this group, most notably function inlining, gener-
ally increase the code (executable) size. On average, compiling with the –IPA
flag leads to a code size that is 19% larger as compared to the same level of
optimization without interprocedural analysis. With this penalty comes on av-
erage a 7% improvement in performance. The MediaBench benchmarks, which
have a lower unoptimized instruction count than their SPEC counterparts, show
a much smaller effect of the interprocedural analysis on performance. For ex-
ample, compiling with the –IPA flag on the mpeg2encode benchmark leads to
on average a 1% performance increase. We also observe that the most sophisti-
cated optimization level (that is, –O3 –IPA) generates an average performance
improvement of 55% and increases the executable size by 25% as compared to
the original unoptimized code. Since the instruction memory energy consump-
tion is proportional to the executable size, these results clearly show the tradeoff
between memory energy and performance.

Therefore, an important question now is to determine an optimization strat-
egy that gives an acceptable performance without too much of an increase in
energy consumption. Later in Sect. 4, we present a heuristic approach for ad-
dressing this problem. In the following, we present a simple metric that allows an
optimizing compiler to estimate instruction memory energy consumption with-
out actually using an energy estimation tool.
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Fig. 2. Normalized energy metric values compared to normalized calculated energy
consumption. These results show that the –O2 –IPA optimization level leads to the
lowest energy on average, and that the energy metric shows similar trends to the
analytically determined values (within 9% on average)

3.4 Analyzing Energy Consumption

In general, the per-access energy cost is directly related to the memory size, which
in embedded devices is determined by the number of bytes required to store its
code or data. Also, the total number of instructions executed is an accurate
measure of the number of times that an instruction memory would need to be
accessed. For this reason, we explored using the product of the code size and the
instruction count as an early estimate to how much energy a given benchmark
would be consuming in instruction memory. Similarly, for data memory, the
energy consumption would be dependent on the number of accesses and the
data size. In practice profiling can be utilized to find values for the instructions
executed and number of data accesses. We used profiling to find the instruction
count, but for simplification purposes we estimated the data access count by
assuming a constant ratio (30% is a common choice) of data accesses to total
instructions.

Figure 2 depicts the effect of the MIPSPro optimizations on the sum of these
two metrics and compares the observed trends with those obtained through
actual energy calculations. We see from these graphs that both our metric and
actual energy calculations indicate that the –O2 –IPA option is the most energy-
efficient one. In other words, using the most aggressive optimization strategy
(–O3 –IPA) may not be the best choice from the energy perspective. We also
observe that turning on the –IPA option appears to help the –O2 optimization
mode more than others.
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The results shown in Fig. 2 clearly indicate that the energy trends estimated
when our metric is employed are similar to those obtained when actual energy
calculations are carried out. For example, both approaches indicate that the –
O2 optimization level with the interprocedural analysis turned on leads to the
best energy conservation, consuming on average only 46% of the energy of the
unoptimized benchmarks. More importantly, the relative estimated energy con-
sumption shows very similar trends to our metric of IC · (CS + 0.3 · DS). The
metric is a good predictor of the relative energy consumed, on average being
within 9% of the energy estimate.

Based on these observations, we conclude that a compiler optimization tech-
nique that minimizes the metric of IC · (CS + 0.3 · DS) will also minimize the
memory energy consumption in most cases. That is, the IC ·(CS+0.3·DS) metric
can be utilized to rank the memory energy consumptions of different optimized
versions of a given embedded code. This is an important conclusion as it indi-
cates that, instead of using complex energy calculations, a compiler can adopt
an energy estimation strategy based on the estimation of dynamic instruction
count along with executable and data size. Also, previous work [28] shows that
accurately estimating static and dynamic instruction count at compile time is
possible even for sophisticated superscalar processors such as the MIPS R10000.
Therefore, such estimates can be used for obtaining an idea about instruction
and data memory energy consumption of a given code under a set of optimiza-
tions.

However, in many cases, instead of trying to reduce energy consumption as
much as possible (at the expense of performance), it might be more important
to compile a given application under a memory energy constraint. The following
section addresses this issue, and proposes a heuristic technique that can easily be
employed by an embedded compiler that targets both energy and performance.

4 Energy-Constrained Compiling

Since overly aggressive loop restructuring and interprocedural optimizations can
lead to an undesirable tradeoff between energy consumption and performance,
it is of interest to investigate tailoring these optimizations to fit to energy con-
straints. In this section we present and analyze heuristics that provide a system-
atic way of choosing a suitable loop unrolling strategy that attempts to improve
performance while keeping in mind energy consumption. We then provide the
same treatment to a heuristic for function inlining.

4.1 Energy-Aware Loop Unrolling Heuristic

Loop unrolling is a commonly used optimization whereby the loop body is re-
placed by several copies of the loop body [21]. The main performance benefit
of loop unrolling is the removal of the execution of many of the branches found
in the loop iteration limit test code. Unrolling code also has the potential to
improve the effectiveness of other optimizations such as software pipelining. For
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ENERGY UNROLL(C, Elimit) {
Cnew = C;
unroll factor = 1;
repeat {

Cold = Cnew;
lunroll = ∅;
L = loop list(Cold);
for each loop l ∈ L do {

if (loop size(l) < unroll factor) then {
lunroll = l;
break;

}
}
if (lunroll �= ∅) then {

Cnew = perform unrolling(Cold, lunroll, unroll factor);
E = estimate energy(Cnew);

}
else {

unroll factor = unroll factor ∗ 2;
}

}
until (E > Elimit);
return(Cold);

}

Fig. 3. Energy-aware loop unrolling heuristic

these reasons it is generally expected that applying loop unrolling will lead to
both performance and energy improvements. However, the unrolled version of a
code is in general larger than the original version. Consequently, loop unrolling
may increase the per-access energy cost of instruction memory, and it would be
important for an embedded compiler to be careful in applying unrolling to lever-
age the performance gains while limiting the increase in energy consumption.

Figure 3 shows our energy-aware unrolling heuristic. Our approach to the
problem is as follows. We start with an unoptimized program and a set of loops
inside the function that we are interested in unrolling. The value of the unrolling
factor n is set to 1 in the initial iteration. At each step, we choose the first loop
that has not been unrolled yet by a factor of n, and then unroll it by that amount.
After the unrolling, we estimate the resultant energy consumption and compare
it with the upper bound. If the upper bound has not been reached, we select
the next loop to unroll. If all the desirable loops have already been unrolled by
a factor of n or more, we increment n and repeat the process. Once the energy
consumption after an unrolling becomes larger than the upper bound, we undo
the last optimization and return the resulting code as the output.

Figure 4 shows the performance (in terms of graduated instruction count)
for the mesa benchmark when our unrolling heuristic is applied under different
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Fig. 4. Instruction count for the mesa and mpeg2decode benchmarks as a function
of the energy upper-bound of our loop unrolling heuristic algorithm. These results
show that by carefully choosing our energy upper bound, we are able to leverage the
performance gains of unrolling while saving energy consumption when compared to the
more aggressive unrolling strategies

memory energy upper bounds. The benchmark is compiled at the –O2 MIPSPro
optimization mode with unrolling turned off as the base case. It can be observed
that we achieve a performance improvement of 14% on the average across all
energy bounds used. As seen in the second bar in each subgraph in Fig. 4, in
the most restrictive case our heuristic algorithm is able on average to provide a
10% energy consumption savings while keeping performance to within 2% of the
more aggressive unrolling strategies.

4.2 Energy-Aware Function Inlining Heuristic

Function inlining is an interprocedural compiler optimization whereby a copy of
the code for a procedure call is replicated at a call site [29]. There are two major
reasons that an optimizing compiler might apply inlining. First, applying inlining
eliminates the overhead associated with a procedure call (saving and restoring
register values, passing parameters, etc.). Second, inlining exposes the function
code to the calling environment enabling subsequent code/data optimizations.
For this reason, function inlining tends to increase performance and is employed
by many commercial compilers. The main disadvantage to function inlining is
that it generally increases code size, which, as we showed in Sect. 3, can lead to
an undesirable instruction memory energy increase in embedded systems. Also,
aggressive inlining can increase the number of local variables, potentially creating
more register spills and increasing data memory energy. Therefore, an optimizing
compiler designed for embedded environments should be careful in applying
inlining and should try to strike a balance between increased performance and
increased energy consumption. In particular, it is important to maximize the
performance (through inlining) while keeping the increase in instruction memory
energy under control.

Figure 5 shows our energy-aware inlining heuristic. Our approach to this
problem is as follows. We start with the unoptimized program and, at each
step, try to select the most appropriate (function, call-site) pair and perform
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ENERGY INLINE(C, Elimit) {
Cnew = C;
repeat {

Cold = Cnew;
F = function list(Cold);
if |F | < 2 then {

return (Cold);
}
else {

[finline, csinline] = best inlinable candidate ∈ F ;
Cnew = perform inlining(Cold, finline, csinline);

}
}
until (E > Elimit);
return(Cold);

}

Fig. 5. Energy-aware function inlining heuristic

inlining. After an inlining is performed, we estimate or measure the resulting
energy consumption and compare it with the energy upper bound. If we are
still under the upper bound, we select the next (function, call-site) pair, and so
on. The process stops when the energy consumption after the inlining becomes
larger than the upper bound. When this occurs, we undo the last inlining, and
return the resulting code as the output. This algorithm does not attempt to find
an optimal inlining strategy in terms of energy consumption; it just guarantees
that a specified upper-limit is not exceeded.

Note that our heuristic is not specific about how the most appropriate (func-
tion, call-site) pairs are chosen and in practice, there are several methods that
can be used in order to select these pairs. The simplest approach is by brute
force. An optimizing compiler can iterate through every possible function call to
choose the one that gives the most performance benefit when inlined. This ap-
proach, while not very efficient, works well for applications with relatively small
numbers of (function, call-site) pairs. A more advanced approach involves using
an execution-profiling tool such as the SpeedShop tool on SGI machines [18]. By
measuring hardware counters such as the number of graduated instructions, a
profiling tool can provide hints to an optimizing compiler about call-sites where
a large percentage of total instructions are executed. Many of these tools can
also generate basic-block profiling runs, where the exact number of times that a
function is called from a particular call-site can be exposed to the compiler. In
practice, any of these methods can be used separately or in some combination
to find appropriate (function, call-site) pairs for our inlining heuristic algorithm.
For our experiments, we used the SpeedShop tool to generate lists of functions
where inlining was potentially beneficial, and then we applied the brute force
approach to select the most appropriate (function, call-site) pairs.
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Fig. 6. Instruction count for the vortex and mesa benchmarks as a function of the
energy upper bound of our function inlining heuristic algorithm. These results show
that as we relax the energy upper bound, we see a diminishing benefit in terms of
performance improvements. Also, these results show that our heuristic will produce
very competitive code when compared to the MIPSPro default inliner

Figure 6 shows the energy consumption and performance (execution time)
in terms of graduated instruction count for the vortex and mesa benchmarks
compiled with the –O2 MIPSPro optimization mode when our inlining heuristic
is applied under different memory energy upper bounds. It can be observed
that we achieve a performance improvement of 10% on the average across all
energy bounds used. It can also be seen that as we increase our energy upper
bound (i.e., allow more energy consumption in memory), our function inlining
strategy produces better-performing code, demonstrating the tradeoff between
energy and performance. Comparing our heurstic to the default inliner of the
MIPSPro compiler, it can be noted that our heuristic reduces the overall memory
energy consumption while producing code that is within a few percent of the
performance. For the mesa benchmark, the default inliner leads to a code that
consumes over 83 J while our heuristic chooses an inlining strategy that consumes
just under 58 J and performs slightly better. For the vortex benchmark, our
heuristic consumes 70 J less than the default inliner, with a performance that
manages to stay within 2%. The results given in Fig. 4 and 6 indicate that
our heuristics improve performance while keeping the energy consumption in
memory below a pre-set limit.

5 Leakage Energy

Energy consumption has two major components: dynamic energy and static
(leakage) energy. While in CMOS circuits dynamic energy is the dominant part,
the current trends indicate that the contribution of leakage energy to the overall
energy budget will increase exponentially in upcoming circuit generations [5]. For
example, recent energy estimates for 0.13µ process indicate that leakage energy
accounts for 30% of L1 cache and as much as 80% of L2 cache energy [22]. Note
that leakage energy is consumed as long as the circuit is powered on independent
of whether it is actually accessed or not. This is in contrast to dynamic energy,
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Fig. 7. Total energy consumption (as the sum of both dynamic and leakage energy)
for the MIPSPro optimization modes. The value of k refers to the relative weight of
the per-cycle leakage energy to the per-access dynamic energy. These results show
that as leakage energy begins to dominate the total energy consumption equation,
optimizations that lead to code growth lead to an even greater overall energy increase

which is spent only when there is an access. The leakage energy consumption
of large SRAM memories is expected to be particularly problematic due to the
fact that it increases with the size of memory.

In this section, we first show the impact of taking leakage into account on
the tradeoff between memory energy and performance of loop restructuring and
interprocedural optimizations. After that, we show how our energy-sensitive com-
pilation approach in Sect. 4 performs when leakage is accounted for. Due to the
fact that absolute values for leakage and dynamic energy consumption are closely
tied to fabrication processes, in this work, we concentrate on the relative weight
of leakage energy to dynamic energy. A common approximation is to take the
per-cycle leakage energy consumption to be a ratio of the per-access dynamic
energy consumption. We represent that ratio as a nonnegative value k where a
smaller k value (0.1 ≤ k ≤ 0.2) represents current fabrication technologies and
larger k values (0.5 < k ≤ 1.0) represent a futuristic scenario where the effect of
leakage energy will begin to outpace that of switching energy. Note that similar
approaches have been used by previous research as well (e.g., [6]).

Figure 7 shows our results when we compile three of our benchmarks us-
ing the major optimization modes of the MIPSPro compiler when considering
leakage energy. These results show an increasingly pronounced tradeoff between
performance and energy. For example, compiling with the –O0 –IPA optimization
mode leads to a performance/energy tradeoff when compared to un-optimized
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Fig. 8. Graduated instruction count versus memory energy upper bound for different
values of k for the mesa benchmark. These results show that as we increase the relative
weight of leakage energy, we require a greater upper energy bound to achieve the same
performance via function inlining

code. For the mpeg2encode benchmark, when k = 0.1, there is a 1.5% perfor-
mance improvement that is offset by a 4.3 J energy consumption increase. When
k = 1.0, there is an equal performance boost that is now offset by a 7.3 J energy
consumption increase. This can be explained by the fact that as we increase the
relative weight of leakage energy, optimizations that lead to code growth lead to
an even greater overall energy increase.

Figure 8 shows our results when we apply our function inlining algorithm
to the mesa benchmark with an energy upper bound that takes leakage energy
into account. For this experiment, we plotted the minimum energy upper bound
that would be required for certain performance improvements. The results in
Fig. 8 show that as we increase k, we require a greater upper energy bound to
achieve the same performance via function inlining. For example, to achieve a
performance improvement of 3.1% (as represented by the middle bar of each
subgraph of Fig. 8), there is an almost 40 J difference between energy upper
bounds when k = 0.1 and k = 1.0. Clearly, as leakage energy becomes more of
a factor in future design fabrication methodologies, it will become increasingly
important to limit code and energy growth at the expense of performance gains.

6 Conclusions and Future Work

Power consumption is an important design focus for embedded and portable
systems. In this work, we have provided a systematic methodology for analyzing
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the effect of compiler optimizations on memory energy consumption. Realizing
that many performance-oriented optimizations lead to a tradeoff between in-
creased performance and larger code sizes, we have shown that the product of
instruction count and code size is a fairly accurate energy measurement. We have
also presented heuristics that attempt to tailor the aggressiveness of both loop
unrolling and function inlining, and have analyzed their effectiveness. Finally,
we have clearly demonstrated that our techniques will gain greater importance
in future design generations, where leakage energy will constitute a larger per-
centage of the overall memory energy budget, and consequently optimizations
that increase code size will increase instruction memory energy consumption by
a greater factor.

The results in this work can be exploited in several ways. First, since em-
bedded systems can tolerate much larger compilation times than their general
purpose counterparts (as many of them run a single application for which a large
number of processor cycles can be spent in compilation), we can run different
optimized versions of the code and select the one with the best energy efficiency.
Our results presented in this paper indicate that the compiler should attempt to
minimize the product of the code size and dynamic instruction count since it is
a very good first level approximation for instruction memory energy consump-
tion. Second, systems with strict energy requirements can utilize our function
inlining and loop unrolling heuristics to improve performance without violating
design constraints. We have shown that the interprocedural optimizations such
as function inlining can often lead to dramatic energy consumption increases,
while the loop transforming optimizations, if applied intelligently, can lead to
energy decreases alongside performance gains. Since interprocedural optimiza-
tions are often applied before their loop transforming counterparts, in order to
maximize performance it would make sense to allow for the interprocedural op-
timizations to increase energy a certain percentage past the desired maximum,
as the application of the loop transformations will be able to bring the energy
consumption level back down to the limit.

In this paper, we introduced concepts and techniques that deal with embed-
ded processor and more specifically Systems-on-Chip (SoCs). In the future we
plan on extending our analysis to more generic SoCs, where perhaps embedded
CPU cores, FPGAs, and ASICs are incorporated along with numerous memory
devices. These heterogeneous SoCs require complicated interconnection proto-
cols, an example being the AMBA bus standard. Optimizations that are meant to
improve cache performance gain greater importance in an AMBA configuration,
as a cache miss from the CPU can lead to lengthy latencies due to contention on
the bus from other on-chip resources. Consequently our future work will include
adapting our energy model to reflect the AMBA bus and analyzing how our loop
restructuring and interprocedural optimizations effect the energy consumption
of different SoC configurations.
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