
High-Performance Software Protection Using
Reconfigurable Architectures

JOSEPH ZAMBRENO, STUDENT MEMBER, IEEE, DAN HONBO, STUDENT MEMBER, IEEE,
ALOK CHOUDHARY, FELLOW, IEEE, RAHUL SIMHA, MEMBER, IEEE, AND

BHAGIRATH NARAHARI

Invited Paper

One of the key problems facing the computer industry today is en-
suring the integrity of end-user applications and data. Researchers
in the relatively new field of software protection investigate the de-
velopment and evaluation of controls that prevent the unauthorized
modification or use of system software. While many previously de-
veloped protection schemes have provided a strong level of secu-
rity, their overall effectiveness has been hindered by a lack of trans-
parency to the user in terms of performance overhead. Other ap-
proaches take to the opposite extreme and sacrifice security for the
sake of this transparency. In this work we present an architecture
for software protection that provides for a high level of both security
and user transparency by utilizing field programmable gate array
(FPGA) technology as the main protection mechanism. We demon-
strate that by relying on FPGA technology, this approach can ac-
celerate the execution of programs in a cryptographic environment,
while maintaining the flexibility through reprogramming to carry
out any compiler-driven protections that may be application-spe-
cific.

Keywords—Field programmable gate arrays (FPGAs), reconfig-
urable architectures, security, software protection.

I. INTRODUCTION AND MOTIVATION

Threats to a particular piece of software can originate from
a variety of sources. A substantial problem from an economic
perspective is the unauthorized copying and redistribution of
applications, otherwise known as software piracy. Although
the actual damage sustained from the piracy of software is
certainly a debatable matter, some industry watchdog groups

Manuscript received September 24, 2004; revised March 18, 2005. This
work was supported in part by the National Science Foundation (NSF) under
Grant CCR-0325207 and also by an National Science Foundation graduate
research fellowship.

J. Zambreno, D. Honbo and A. Choudhary are with the Department of
Electrical and Computer Engineering, Northwestern University, Evanston,
IL 60208 USA (e-mail: zambro1@ece.northwestern.edu; d-honbo@north-
western.edu; choudhar@ece.northwestern.edu).

R. Simha and B. Narahari are with the Department of Computer Sci-
ence, George Washington University, Washington, DC 20052 USA (e-mail:
simha@gwu.edu; narahari@gwu.edu).

Digital Object Identifier 10.1109/JPROC.2005.862474

Fig. 1. Performance and security strength of various software protection
approaches.

have estimated that software firms in 2002 lost as much as
$2 billion in North American sales alone [1]. A threat that
presents a much more direct harm to the end user is software
tampering, whereby a hacker maliciously modifies and redis-
tributes code in order to cause large-scale disruptions in soft-
ware systems or to gain access to critical information. For
these reasons, software protection is considered one of the
more important unresolved research challenges in security
today [2]. In general, any software protection infrastructure
should include: 1) a method of limiting an attacker’s ability to
understand the higher level semantics of an application given
a low-level (usually binary) representation and 2) a system
of checks that make it suitably difficult to modify the code at
that low level. When used in combination, these two features
can be extremely effective in preventing the circumvention
of software authorization mechanisms.

0018-9219/$20.00 © 2006 IEEE

PROCEEDINGS OF THE IEEE, VOL. 94, NO. 2, FEBRUARY 2006 1

Fig. 2. Conceptual view.

Current approaches to software protection can be catego-
rized both by the strength of security provided and the per-
formance overhead when compared to an unprotected envi-
ronment (see Fig. 1). Two distinct categories emerge from
this depiction: on one end of the security spectrum are the
solely compiler-based techniques that implement both static
and dynamic code validation through the insertion of ob-
jects into the generated executable; on the other end are the
somewhat more radical methods that encrypt all instructions
and data and that often require the processor to be archi-
tected with cryptographic hardware. Both of these methods
have some practical limitations. The software-based tech-
niques will only hinder an attacker, since tools can be built to
identify and circumvent the protective checks. On the other
hand, the cryptographic hardware approaches, while inher-
ently more secure, are limited in the sense that their prac-
tical implementation requires a wholesale commitment to
a custom processor technology. More background on these
software protection schemes can be found in Section II.

Also, as can be inferred from Fig. 1, software protection
is not an all-or-nothing concept, as opposed to other aspects
of computer security where the effectiveness of an approach
depends on its mathematical intractability; the resultant per-
formance overhead is often not a key design consideration
of these systems. In contrast, performance is equally impor-
tant to the strength of security when protecting user appli-
cations, as there is generally some level of user control over
the system as a whole. Consequently, any software protection
scheme that is burdensome from a performance perspective
will likely be turned off or routed around.

Field programmable gate arrays (FPGAs) are hardware re-
sources that combine various amounts of user-defined dig-
ital logic with customizable interconnect and I/O. A key fea-
ture of FPGAs is that their functionality can be reconfig-
ured on multiple occasions, allowing for changes in the de-
sign to be implemented after the initial time of development.
FPGAs have become an increasingly popular choice among
architects in fields such as multimedia processing or cryp-
tography—this has been attributed to the fact that the design
process is much more streamlined than that for ASICs, as
FPGAs are a fixed hardware target.

In this paper we present a high-performance architecture
for software protection that uses this type of reconfigurable
technology. By utilizing FPGAs as the main protection
mechanism, this approach is able to merge the application

tunability of the compiler-based methods with the additional
security that comes with a hardware implementation. As can
be seen in Fig. 2, our proposed method works by supple-
menting a standard processor with an FPGA-based integrity
validation unit (IVU) that sits between the highest level of
on-chip cache and main memory. This IVU is capable of
performing fast decryption similar to any other hardware
accelerated cryptographic coprocessing scheme, but more
importantly the IVU also has the ability to recognize and
certify binary messages hidden inside regular unencrypted
instructions. Consequently our approach is completely
complementary to current code restructuring techniques
found in the software protection literature, with the added
benefit that as the runtime code checking can be performed
entirely in hardware it will be considerably more efficient.
Our experiments show, that for most of our benchmarks,
the inclusion of the FPGA within the instruction stream
incurs a performance penalty of less than 20%, and that this
number can be greatly improved upon with the utilization
of unreserved reconfigurable resources for architectural
optimizations, such as buffering and prefetching.

The remainder of this paper is organized as follows. In
Section II we provide additional background into the field of
software protection, with a review of some of the more com-
monly-used defensive techniques. Section III sets the back-
drop of our research, both illustrating the threat model under
which we apply our approach and making the argument for
the level of security that is provided. In Section IV we present
our architecture in more detail, illustrating how we can uti-
lize an FPGA situated in the instruction stream to ensure soft-
ware integrity. In this section we also provide an introduction
to some custom compiler techniques that are well suited to
such an architecture. Section V discusses the performance
implications of our approach, first by explicitly quantifying
the security/performance tradeoff and then by performing ex-
perimental analysis. Finally, in Section VI, we present our
conclusions alongside a discussion of future techniques that
are currently in development.

II. BACKGROUND

While the term software protection often refers to the
purely software-based defense mechanisms available to an
application after all other safeguards have been broken, in
practical systems this characterization is not necessarily so
precise. For our purposes, we classify hardware-supported

2 PROCEEDINGS OF THE IEEE, VOL. 94, NO. 2, FEBRUARY 2006

secure systems as tools for software protection as long as
they include one of the three commonly found elements of a
software-based protection scheme [3] detailed below.

Watermarking is a technique whereby messages are
hidden inside a piece of software in such a way that they
can be reliably identified [4]. While the oldest type of
watermarking is the inclusion of copyright notices into
both code and digital media, more recent watermarking
approaches have focused on embedding data structures into
an application, the existence of which structures can then be
verified at runtime. Venkatesan et al. present an interesting
variation on watermarking in [5], where the watermark is a
subprogram that has its control flow graph merged with the
original program in a stealthy manner.

The concept behind tamper-proofing is that a properly se-
cured application should be able to safely detect at runtime
if it has been altered. A type of dynamic “self-checking” is
proposed in both [6] and [7]. These approaches assert appli-
cation integrity by essentially inserting instructions to per-
form code checksums during program execution. An inter-
esting technique is proposed by Aucsmith in [8], in which
partitioned code segments are encrypted and are handled in
a fashion such that only a single segment is ever decrypted
at a time. One flaw with many of these tamper-proofing ap-
proaches is that in most architectures it is relatively easy to
build an automated tool to reveal the checking mechanisms
[9]. For example, checksum computations can be easily iden-
tified by finding code that operates directly on the instruction
address space. Accordingly, the security of these approaches
depends heavily on the security of the checking mechanisms
themselves.

Proof-carrying code (PCC) is a recently proposed solution
that has techniques in common with other tamper-proofing
approaches. PCC allows a host to verify code from an un-
trusted source [10]. Safety rules, as part of a theorem-proving
technique, are used on the host to guarantee proper program
behavior. One advantage of proof-carrying software is that
the programs are self-certifying, independent of encryption
or obscurity. The PCC method is effectively a self-checking
mechanism and is vulnerable to the same problems that arise
with the code checksum methods discussed earlier; in addi-
tion they are static methods and do not address changes to
the code after instantiation.

The goal of obfuscation is to limit code understanding
through the deliberate mangling of program structure— a
survey of such techniques can be found in [11]. Obfuscation
techniques range from simple encoding of constants to more
complex methods that completely restructure code while
maintaining correctness. Similar to tamper-proofing, obfus-
cation can only make the job of an attacker more difficult,
since tools can be built to automatically look for obfusca-
tions, and tracing through an executable in a debugger can
reveal vulnerabilities. These and other theoretical limitations
are discussed in more detail in [12].

A. Other Hardware-Based Approaches

Using our definition, there have been several hard-
ware-based software protection approaches. Secure copro-

cessors are computational devices that enable execution of
encrypted programs. Programs, or parts of the program, can
be run in an encrypted form on these devices, thus never
revealing the code in the untrusted memory and thereby
providing a tamper-resistant execution environment for that
portion of the code. A number of secure coprocessing solu-
tions have been designed and proposed, including systems
such as IBM’s Citadel [13], Dyad [14], and the Abyss [15].

Smart cards can also be viewed as type of secure copro-
cessor; a number of studies have analyzed the use of smart
cards for secure applications [16]. Sensitive computations
and data can be stored in the smart card but they offer no
direct I/O to the user. Most smart card applications focus on
the secure storage of data, although studies have been con-
ducted on using smart cards to secure an operating system
[17]. As noted in [6], smart cards can only be used to protect
small fragments of code and data.

Recent commercial hardware security initiatives have
focused primarily on cryptographic acceleration, domain
separation, and trusted computing. These initiatives are
intended to protect valuable data against software-based
attacks and generally do not provide protection against
physical attacks on the platform. MIPS and VIA have added
cryptographic acceleration hardware to their architectures.
MIPS Technologies’ SmartMIPS ASE [18] implements
specialized processor instructions designed to accelerate
software cryptography algorithms, whereas VIA’s Padlock
Hardware Security Suite [19] adds a full AES encryption en-
gine to the processor die. Both extensions seek to eliminate
the need for cryptographic coprocessors.

Intel’s LaGrande Technology [20], ARM’s TrustZone
Technology [21], and MIPS Technologies’ SmartMIPS ASE
implement secure memory restrictions in order to enforce
domain separation. These restrictions segregate memory
into secure and normal partitions and prevent the leakage
of secure memory contents to foreign processes. Intel and
ARM further strengthen their products’ domain separation
capabilities by adding a processor privilege level. A Security
Monitor process is allowed to run at the added privilege
level and oversee security-sensitive operations. The Security
Monitor resides in protected memory and is not susceptible
to observation by user applications or even the operating
system.

Several companies have formed the so-called Trusted
Computing Group (TCG) to provide hardware–software
solutions for software protection [22]. The TCG defines
specifications for the Trusted Platform Module, a hardware
component that provides digital signature and key manage-
ment functions, as well as shielded registers for platform
attestation. Intel’s LaGrande Technology and Microsoft’s
Next-Generation Secure Computing Base combine the TPM
module with processor and chipset enhancements to enable
platform attestation, sealed storage, strong process isolation,
and secure I/O channels. All of these approaches require
processor or board manufacturers to commit to a particular
design, and once committed, are locked into the performance
permitted by the design.

ZAMBRENO et al.: HIGH-PERFORMANCE SOFTWARE PROTECTION USING RECONFIGURABLE ARCHITECTURES 3

B. Closely Related Work

In [23], researchers at Stanford University proposed an
architecture for tamper-resistant software based on an eX-
ecute-Only Memory (XOM) model that allows instructions
stored in memory to be executed but not manipulated. A
hardware implementation is provided that is not dissimilar to
our proposed architecture, with specialized hardware being
used to accelerate cryptographic functionality needed to pro-
tect data and instructions on a per-process basis. Three key
factors differentiate our work from the XOM approach. One
distinction is that our architecture requires no changes to
the processor itself. Also, our choice of reconfigurable hard-
ware permits a wide range of optimizations that can shape
the system security and resultant performance on a per-ap-
plication basis. Most importantly, we consider a host of new
problems arising from attacks on encrypted execution and
data platforms.

In [24], researchers at UCLA and Microsoft Research pro-
pose an intrusion prevention system known as the Secure
Program Execution Framework (SPEF). Similar to our pro-
posed work, the SPEF system is used as the basis for com-
piler transformations that both perform code obfuscation and
also embed integrity checks into the original application that
are meant to be verified at runtime by custom hardware. The
SPEF work in its current form concentrates solely on pre-
venting intruder code from being executed, and consequently
neglects similar attacks that would focus mainly on data in-
tegrity. Also, the compiler-embedded constraints in the SPEF
system require a predefined hardware platform on which to
execute; this limits the scope of any such techniques to the
original processor created for such a purpose.

Pande et al. [25] address the problem of information
leakage on the address bus wherein the attacker would be
snooping the address values to gain information about the
control flow of the program. They provide a hardware obfus-
cation technique which is based on dynamically randomizing
the instruction addresses. This is achieved through a secure
hardware coprocessor which randomizes the addresses of
the instruction blocks and rewrites them into new locations.
While this scheme provides obfuscation of the instruction
addresses, thereby providing a level of protection against
IP theft, it does not prevent an attacker from injecting their
own instructions to be executed and thereby disrupting the
processor and application.

III. SYSTEM MODEL AND RATIONALE

Consider a typical von Neumann architecture with a CPU
and main memory (RAM). In the standard model, a program
consisting of instructions and data is placed in RAM by a
loader or operating system. Then, the CPU fetches instruc-
tions and executes them. Apart from the complexity intro-
duced by multiprocessors and threads, this basic model ap-
plies to almost any computing system today including desk-
tops, servers, and small embedded devices.

However, from a security point of view, the execution of
an application is far from safe. An attacker with access to

the machine can examine the program (information leakage)
and actively interfere with the execution (disruption) while
also accumulating information useful in attacks on similar
systems.

The starting point for our proposed work is a recent body
of work that has proposed building computing platforms with
encrypted execution. We refer to these as encrypted execu-
tion and data (EED) platforms. In these platforms, the exe-
cutable and application data are encrypted. The processor or
supporting hardware is assumed to have a key. The overall
goals are to prevent leakage of information, to prevent tam-
pering and to prevent disruption. For the highest degree of
security, both instructions and data will need to be encrypted
using well-established encryption techniques. It should be
noted that full-fledged EED platforms are still in their in-
fancy.

The basis for our proposed work is the following.
• EED platforms, while undoubtedly more secure than

the standard von Neumann model, are nonetheless still
vulnerable to attacks that do not need decryption. That
is, the attacker can find vulnerabilities without needing
to decrypt and understand the software. We will refer to
these attacks as EED attacks.

• Because attackers are presumed to be sophisticated, nei-
ther the RAM nor the CPU can be fully trusted. This sit-
uation also arises when RAM and CPU manufacturing
is subcontracted to third parties whose designs or cores
cannot be easily verified.

• FPGAs have proved adept at solving performance-re-
lated problems in many computing platforms. As a re-
sult, tested FPGAs are commercially available for a va-
riety of processors. Our approach exploits the combina-
tion of the programmability of FPGAs with the inherent
additional security involved with computing directly in
hardware to address EED attacks.

• A key part of our exploiting FPGAs involves the use of
compiler technology to analyze program structure to en-
able best use of the FPGA, to help address key manage-
ment and to increase performance. Consequently our
approach allows for a level of security that is tunable
to an individual application.

In a nutshell, the addition of the FPGA to the von Neu-
mann model results in a new platform to sustain EED attacks.

A. Focus Areas

The contributions of our work can be categorized into four
areas as seen in Fig. 3. We use the term structural integrity to
refer to the proper execution path of a program when the data
is assumed to be correct. Since an EED attacker can alter the
control flow without decryption or even touching the data,
we refer to such an attack as a structural EED attack. This
first area of contributions is shown as Area 1 in the figure, in
which we use a compiler-FPGA approach to address struc-
tural attacks.

The second area of contribution arises from considering
EED attacks on data integrity. Our contribution to this
second area is the use of the compiler-FPGA approach

4 PROCEEDINGS OF THE IEEE, VOL. 94, NO. 2, FEBRUARY 2006

Fig. 3. Research focus areas as they relate to the conceptual view.

to provide key management techniques for data and data
integrity techniques for runtime data.

The third area, processor validation, arises from consid-
ering a maliciously inserted processor instrumented to allow
the attacker control over functional operations. Our approach
is to have the compiler create code with processor-valida-
tion metainstructions that are then interpreted in the FPGA
to validate desired processor operations. Finally, we have de-
veloped a compiler-FPGA infrastructure for the purpose of
implementing and testing our ideas. This infrastructure tar-
gets a modern processor (ARM family) and compiler (gcc).

B. Threat Model

As mentioned in Section I, research in the field of software
protection has seen its motivation arrive from two different
directions. On one side are vendors of various types of elec-
tronic media—their main concern is the unauthorized use or
copying of their product. On the other side are those end users
whose main interest is in protecting personal and corporate
systems from outside interference. While the goals may be
different, the approaches used by hackers in avoiding digital
rights management (DRM) schemes are often quite similar
to those used by malicious crackers in attacking web servers
and other unsecured applications. Hackers around the world
know that the first step in attacking a software system is to
first understand the software through the use of a debugger
or other tracing utilities, and then to tamper with the software
to enable a variety of exploits. Common means of exploiting

software include buffer overflows, malformed printf()
statements, and macro viruses.

Consider a sophisticated attacker who has physical control
of an EED computing platform. In a resourceful laboratory,
the attacker can control the various data, address and con-
trol lines on the board and will have access to the designs of
well-known commercial chips. Using this information, the
attacker can actively interfere with the handshaking protocol
between CPU and RAM, can insert data into RAM, or can
even switch between the actual RAM and an attacker’s RAM
during execution.

We will assume that the cryptographic strength of the
chosen encryption algorithms is such that the attacker cannot
actually decrypt the executable or data. How then does an
attacker disrupt a system without being able to decrypt and
understand? The following are examples of EED attacks.

• Replay attacks—consider an EED platform with en-
crypted instructions. An attacker can simply reissue an
instruction from the RAM to the CPU. What does such
an attack achieve? The application program logic can
be disrupted and the resulting behavior exploited by an
attacker. Indeed, by observing the results of a multitude
of replay attacks, an attacker can catalogue information
about the results of individual replay attacks and use
such attacks in tandem for greater disruption. A sample
replay attack is depicted in Fig. 4.

• Control-flow attacks—the sophisticated attacker
can elucidate the control-flow structure of a program

ZAMBRENO et al.: HIGH-PERFORMANCE SOFTWARE PROTECTION USING RECONFIGURABLE ARCHITECTURES 5

Fig. 4. A sample instruction stream that is targeted with a replay attack.

Fig. 5. A sample control flow graph (CFG) with a diverted flow.

without decryption. This can be done by simply sniffing
the bus, recording the pattern of accesses and extracting
the control-flow graph from the list of accesses. To
disrupt, an attacker can prematurely transfer control out
of a loop, or can transfer control to a distant part of the
executable. A sample control-flow attack is depicted in
Fig. 5.

• Runtime data attacks—by examining the pattern of
data writebacks to RAM, the attacker can determine the
location of the runtime stack and heap even when they
are encrypted. By swapping contents in the stack, the
attacker can disrupt the flow of execution or parameter
passing. Again, the attacker does not need to decrypt to
achieve this disruption.

• Improper processor computations—the CPU itself
may be untrustworthy, since an attacker with consider-
able resources may simulate the entire CPU and selec-
tively change outputs back to RAM.

Taken together, the above attacks can also be combined
with cryptanalytic techniques to uncover cribs for decryp-

tion. This suggests that a secure computing platform should
be able detect such attacks and prevent disruption.

IV. OUR APPROACH

At its highest level, our approach is best classified as
a combination the tunability of classical compiler-based
software protection techniques with the additional security
afforded through hardware. Our work is unique in that we
utilize a combined hardware/software technique, and that
we provide tremendous flexibility to application designers in
terms of positioning on the security/performance spectrum.
Also, going back to Fig. 1, our approach improves upon
previous software protection attempts by accelerating their
performance without sacrificing any security.

A. Architecture Overview

We accomplish our low-overhead software protection
through the placement of an FPGA between the highest
level of on-chip cache and main memory in a standard
processor instruction stream (see Fig. 6). In our architecture,

6 PROCEEDINGS OF THE IEEE, VOL. 94, NO. 2, FEBRUARY 2006

Fig. 6. FPGA-based software protection architecture.

the FPGA traps all instruction cache misses, and fetches
the appropriate bytes directly from higher-level memory.
These instructions would then be translated in some fashion
and possibly verified before the FPGA satisfies the cache
request. Both the translation and verification operations
could be customized.

The key features of our software protection architecture
can be summarized as follows.

• Fast decryption—Much work has been done in re-
cent years on FPGA implementations of cryptographic
algorithms; a popular target is the Advanced Encryp-
tion Standard (AES) candidate finalists [26]. These re-
sults have shown that current-generation FPGAs are ca-
pable of extremely fast decryption. As an example in
[27] an implementation of the AES cipher attained a
throughput far exceeding 10 Gb/s when fully pipelined.
Consequently, by placing AES hardware on our FPGA,
we can perform instruction stream decryption without
the prohibitive delays inherent in an equivalent software
implementation.

• Instruction translation—As a computationally less
complex alternative to the full decryption described
above, we can instantiate combinational logic on the
FPGA to perform a binary translation of specific in-
struction fields. For example, a simple lookup table can
map opcodes such that all addition instructions become
subtractions and vice versa. As the mapping would be
completely managed by the application developer, this

technique would provide an effective yet extremely
low-cost level of obfuscation.

• Dynamic validation—In order to effectively prevent
tampering, we can program the FPGA with a set of
“rules” that describe correct program functionality. For
a code segment that is fully encrypted, these rules can
be as simple as requiring that each instruction decode
properly. An example of a more complex rule would be
one based on a predetermined instruction-based water-
mark. These software integrity checks can be performed
either at each instruction or at a predefined interval—in
either case given a detection of a failure condition the
FPGA would require special attention from the system.

B. Compiler Support

As mentioned earlier, every feature that is implemented
in our architecture requires extensive compiler support to
both enhance the application binary with the desired code
transformations and to generate a hardware configuration for
an FPGA that incorporates the predetermined components.
Many of the standard stages in a compiler can be modified
to include software protection functionality. As an example,
consider the data flow analysis module. In a standard perfor-
mance-oriented compiler, the goal of this stage is to break the
program flow into basic blocks and to order those blocks in a
manner that increases instruction locality. However, it is pos-
sible to reorganize the code sequences in such a fashion that
sacrifices some performance in exchange for an increased

ZAMBRENO et al.: HIGH-PERFORMANCE SOFTWARE PROTECTION USING RECONFIGURABLE ARCHITECTURES 7

level of obfuscation. This is an example of a transformation
that requires no runtime support; for others (such as those that
use encryption), the compiler must also generate all the in-
formation needed to configure an FPGA that can reverse the
transformations and verify the output. Our work currently fo-
cuses on compiler back-end transformations (i.e., data flow
analysis, register allocation, code generation), although there
are possiblities in the front end to examine in the future as
well.

C. Example Implementations

Up to this point, in detailing the different features available
in our software protection architecture, we have maintained
a fairly high-level view. In the following sections, we delve
into the specifics of two examples that illustrate the potential
of our combined compiler/FPGA technique.

Example 1—Tamper-Resistant Register Encoding: Con-
sider a code segment in any application and focus on the in-
structions as they are fetched from memory to be executed
by the processor (the instruction stream). In most instruc-
tion set architectures, the set of instructions comprising a se-
quentially executed code segment will contain instructions
that use registers. In this example, the decoding unit in the
FPGA will extract one register in each register-based instruc-
tion—we can refer to the sequence of registers so used in
the instruction stream as the register stream. In addition, the
FPGA also extracts the opcode stream. As an example, the
sequence of instructions can
be decoded to generate the register stream of , , . After
being extracted, the register stream is then given a binary en-
coding; in our example can encode and can encode

, and therefore the particular sequence of registers corre-
sponds to the code .

A binary translation component then feeds this string
through some combinational logic to generate a key. This
function can be as simple as just flipping the bits, although
more complex transformations are possible. The key is then
compared against a function of the opcode stream. In this
example, an instruction filter module picks out a branch
instruction following the register sequence and then com-
pares the key to a hash of the instruction bits. If there is a
match, the code segment is considered valid, otherwise the
FPGA warns the system that a violation condition has been
detected. This concept is similar to those proposed in [24]
and [28].

How does such an approach work? As register-allocation
is performed by the compiler, there is considerable freedom
in selecting registers to allow for any key to be passed to the
FPGA (the registers need not be used in contiguous instruc-
tions, since it is only the sequence that matters). Also, the
compiler determines which mechanism will be used to filter
out the instructions that will be used for comparisons. If the
code has been tampered with, there is a very high probability
that the register sequence will be destroyed or that the op-
code filtering will pick out a different instruction. As an ex-
ample, if the filtering mechanism picks out the sixth opcode

following the end of a register sequence of length , any in-
sertion or deletion of opcodes in that set of instructions would
result in a failure.

It is important to note that this type of tamper-proofing
would not normally be feasible if implemented entirely in
software, since the checking computation could be easily
identified and avoided entirely. Also, the register sequence
can be used to encode several different items, such as
authorization codes or cryptographic keys. This technique
can also be used to achieve code obfuscation by using a
secret register-to-register mapping in the FPGA. Thus, if the
FPGA sees the sequence , this can be interpreted
by the FPGA as an intention to actually use . In this
manner, the actual programmer intentions can be concealed
by using a mapping customized to a particular processor.
Finally, we note that when examining a block of code to be
encrypted using our scheme, it will often be the case that
the compiler will lack a sufficient number of register-based
instruction with which to encode a suitable key. In this
case, “place-holder” instructions which contain the desired
sequence values, but which otherwise do not affect pro-
cessor state, will need to be inserted by the compiler. In
Section V-B we examine how these inserted instructions can
effect the overall system performance.

Example 2—Selective Basic Block Encryption: Selective
encryption is a useful technique in situations where certain
code segments have high security requirements and a full-
blown cryptographic solution is too expensive from a per-
formance perspective. The example code segment in Fig. 7
shows how the compiler could insert message instructions
to signify the start of an encrypted basic block (the com-
piler would also encrypt the block itself). As this message
is decoded by the FPGA, an internal state would be set that
directs future fetched instructions to be fed into the fast de-
cryption unit. These control signals could be used to distin-
guish between different ciphers or key choices. The freshly
decrypted plaintext instructions would then be validated be-
fore being returned to the cache of Fig. 6. The encryption
mode could then be turned off or modified with the decoding
of another message instruction.

Although properly encrypting a code segment makes it
unreadable to an attacker who does not have access to the
key, using cryptography by itself does not necessarily pro-
tect against tampering. A simple way of verifying that in-
structions have not been tampered with is to check if they de-
code properly based on the original instruction set architec-
ture specification. However, this approach does not provide a
general solution, as the overwhelming portion of binary per-
mutations are usually reserved for the instruction set of most
processors. This increases the likelihood that a tampered ci-
phertext instruction would also decode properly. A common
approach is the use of one-way hash functions (the so-called
message digest functions), but in our case, it would be pro-
hibitively slow to calculate the hash of every encrypted basic
block in even medium-sized applications. A more simple ap-
proach would be to recognize patterns of instructions in the
code segment that make sense in terms of the register ac-
cess patterns. Specific care must also be taken to ensure the

8 PROCEEDINGS OF THE IEEE, VOL. 94, NO. 2, FEBRUARY 2006

Fig. 7. Selective basic block encryption.

integrity of the message instructions themselves. This can
be implemented through a combination of the register en-
coding techniques discussed previously and other dynamic
code checking methods.

This example describes an approach that would be
inherently slow in a purely software implementation.
Consequently, using the FPGA for decryption allows the
application designer the flexibility to either improve the
overall performance or increase the level of security by
encrypting a greater number of code subsections while still
meeting the original performance constraints.

D. Advantages of Our Approach

Based on these two previous examples, we can summarize
the advantages that our approach contains over current soft-
ware protection methodologies as follows.

1) Our approach simultaneously addresses multiple at-
tacks on software integrity by limiting both code
understanding and code tampering.

2) The compiler’s knowledge of program structure, cou-
pled with the programmability of the FPGA, provides
the application developer with an extreme amount of
flexibility in terms of the security of the system. The
techniques available to any given application range
from simple obfuscation that provides limited pro-
tection with a minimal impact on performance to a
full cryptographic solution that provides the highest
level of security with a more pronounced impact on
performance.

3) Our approach provides the ability to combine both hard-
ware specific techniques with hardware-optimized im-
plementations of several of the software-based methods
proposed recently [6], [7].

4) The selection of the FPGA as our secure component
minimizes additional hardware design. Moreover, the
choice of a combined processor/FPGA architecture en-
ables our system to be immediately applicable to current
SoC designs with processors and reconfigurable logic
on-chip, such as the Xilinx Virtex-II Pro architecture
[29].

We have up to this point in this paper demonstrated the
usefulness of our architecture by providing specific exam-
ples of how our approach can be used in a software protection

scheme. What remains to be seen, however, is to the extent to
which the insertion of the FPGA in the instruction memory
hierarchy effects system security and performance. We ad-
dress this question in the following section.

V. ANALYZING PERFORMANCE OVERHEAD

Since the majority of the techniques we leverage operate
on a single program basic block at a time, it makes sense
to analyze the effect of the FPGA on instruction memory
hierarchy performance at that level of granularity. We begin
by considering the replacement penalty of a single block of
cache directly from a pipelined main memory. With a fixed
block size and memory bus width (in terms of number of
bytes), we can estimate this penalty as the sum of an initial
nonsequential memory access time for the first bytes from
memory plus the delay for a constant amount of sequential
accesses, which would be proportional to the product of the
block size with the inverse of the memory bus width.

Now, considering a basic block of instructions of a certain
length in isolation from its surrounding program, we can es-
timate the number of instruction cache misses as the number
of bytes in the basic block divided by the number of bytes in
the cache block, as each instruction in the basic block would
be fetched sequentially. Consequently the total instruction
cache miss delay for a single fetched basic block can be ap-
proximated as the product of the number of fetches and av-
erage fetch delay as described above.

What effect would our software protection architecture
have on performance? We identify two dominant factors: the
occasional insertion of new instructions into the executable
and the placement of the FPGA into the instruction fetch
stream. For the first factor, the inserted instructions will only
add a small number of cache misses for the fetching of the
modified basic block, since for most cases the number of in-
serted bytes will be considerably smaller than the size of the
cache block itself. For the second factor, we note that the
majority of the operations performed in the FPGA can be
modeled as an increase in the instruction fetch latency. As-
suming a pipelined implementation of whatever translation
and validation is performed for a given configuration, we can
estimate the delay for our FPGA as that of a similar band-
width memory device, with a single nonsequential access la-
tency followed by a number of sequential accesses. In the

ZAMBRENO et al.: HIGH-PERFORMANCE SOFTWARE PROTECTION USING RECONFIGURABLE ARCHITECTURES 9

remainder of this section, we explain our experimental ap-
proach and then provide quantitative data that demonstrates
how these terms are affected by the security requirements of
any application.

A. Experimental Methodology

For the following experiments, we incorporated a behav-
ioral model of our software protection FPGA hardware into
the SimpleScalar/ARM tool set [30], a series of architectural
simulators for the ARM ISA. We examined the performance
of our techniques for a memory hierarchy that contains sep-
arate 16-KB 32-way associative instruction and data caches,
each with 32-B lines. With no secondary level of cache, our
nonsequential memory access latency is 100 cycles and our
sequential (pipelined) latency is two cycles. We inserted our
protective techniques into the back end of a modified version
of the gcc compiler targeting the ARM instruction set.

To evaluate our approach, we adapted six benchmarks
from two different embedded benchmark suites. From the
MediaBench [31] suite we selected two different voice
compression programs: adpcm—which implements adap-
tive differential pulse code modulation decompression and
compression algorithms, and g721—which implements
the more mathematically complex International Telegraph
and Telephone Consultative Committee (CCITT) standard.
We also selected from MediaBench the benchmark pegwit,
a program that implements elliptic curve algorithms for
public-key encryption. From the MiBench [32] embedded
benchmark suite, we selected three applications: cjpeg—a
utility for converting images to JPEG format through lossy
image compression; djpeg—which reverses the JPEG com-
pression; and dijkstra—an implementation of the famous
Dijkstra’s algorithm for calculating shortest paths between
nodes, customized versions of which can be found in net-
work devices like switches and routers.

It should be noted that both our simulation target and se-
lected workload characterize a processor that could be found
in a typical embedded system. This choice was motivated by
the fact that commercial chips have relatively recently been
developed that incorporate both embedded processors and
FPGAs onto a single die (for example, Xilinx Virtex-II Pro
Platform FPGAs [29]). Consequently, even though we see
our techniques as one day being useful to a wide range of
systems, the tradeoffs inherent in our approach can be best
demonstrated through experiments targeting embedded sys-
tems, as these results are directly applicable to current tech-
nology.

B. Initial Results

Using this simulation platform, we first explored the ef-
fects of our approach on performance and resultant security
with an implementation of the tamper-resistant register en-
coding example from Section III-B. In this configuration, the
compiler manipulates sequences of register-based instruc-
tions to embed codes into the executable which are verified
at runtime by the FPGA. As the operations required are rela-
tively simple, for our experiments we assumed that the oper-
ations performed by the FPGA to decode individual instruc-

tions require one clock cycle, and that verifying an individual
basic block by comparing a function of the register sequence
with a function of the filtered instruction requires three clock
cycles.

As mentioned previously, it is often the case that the
compiler will not have enough register-based instructions
in a given basic block with which to encode a relatively
long sequence string. Consequently, in these cases the
compiler must insert some instructions into the basic block
which encode a portion of the desired sequence but which
otherwise do not affect processor state. However, as these
“place-holder” instructions must also be fetched from the
instruction cache and loaded in the processor pipeline, they
can cumulatively have a significant detrimental impact on
performance.

While quantifying the security of any system is not a
simple task, we can estimate the overall coverage of an
approach independent of the instantiated tamper-checking
computations. For our register encoding approach, we can
measure this aggressiveness as a function of both the desired
register sequence length and the percentage of basic blocks
that are protected. Fig. 8 considers the performance of our
system when the sequence length is kept at a constant value
8 and the percentage of encoded basic blocks is varied from
0%–100%. For each experiment the results are normalized
to the unsecured case and are partitioned into three subsets:
1) the stall cycles spent in handling data cache misses; 2)
the “busy” cycles where the pipeline is actively executing
instructions; and 3) the stall cycles spent in handling instruc-
tion cache misses.

Fig. 8 shows that the selected embedded benchmarks do
not stress even our relatively small L1 instruction cache, as
on average these miss cycles account for less than 3% of the
total base case runtime. This is a common trait among em-
bedded applications, as they can often be characterized as a
series of deeply nested loops that iterate over large data sets
(such as a frame of video). This high inherent level of instruc-
tion locality means that, although the inserted register se-
quence instructions do affect the cycles spent in handling in-
struction cache misses, there is a relatively significant nega-
tive impact on the nonstall pipeline cycles. The average slow-
down for this scheme is approximately 48% in the case where
all the basic blocks are selected, but then drops to 20% if we
only select half the blocks.

In Fig. 9, we consider the case where the basic block se-
lection rate is kept constant at 25 and the effect of the desired
register sequence length is examined. Although, for most of
the benchmark/sequence combinations, the performance im-
pact is below 50%, there are cases where lengthening the se-
quences can lead to huge increases in execution time, as the
basic blocks are too short to supply the needed number of
register-based instructions. This can be seen in the results for
the most aggressive configuration, where the average perfor-
mance penalty is approximately 66%.

In our next set of experiments, we investigated the perfor-
mance impact of the selective basic block encryption scheme.
FPGA implementations of symmetric block often strive to
optimize for either throughput or area. Recent AES imple-

10 PROCEEDINGS OF THE IEEE, VOL. 94, NO. 2, FEBRUARY 2006

Fig. 8. Performance breakdown of the tamper-resistant register encoding scheme as a function of the basic block select rate.

Fig. 9. Performance breakdown of the tamper-resistant register encoding scheme as a function of the register sequence length.

mentations have reached a high throughput by unrolling and
pipelining the algorithmic specification [27]. The resultant
pipeline is usually quite deep. Consequently the initial access
latencies are over 40 cycles, while the pipelined transforma-
tions can be executed in a single cycle. Assuming an AES
implementation on our secure FPGA, we can make the in-
telligent assumption of a 50-cycle nonsequential access and
a single cycle sequential access delay. Note that other AES
implementations concentrate on optimizing other character-
istics besides throughput (i.e., area, latency, throughput ef-
ficiency), but an examination of the performance impact of
those designs on our architecture is outside the scope of this
paper.

Fig. 10 shows the performance breakdown of our selective
basic block encryption architecture as a function of the block
select rate. The increased nonsequential access time for the
FPGA has the expected effect on the instruction cache miss
cycles, which for several of our benchmarks become a more
significant portion of the overall execution profile. It is in-
teresting to note that the average performance penalty of the
case where the entire program is initially encrypted is less
than 20%, a number that is significantly less than the seem-
ingly simpler register-sequence encoding approach.

Why is this the case? This question can be answered by
again examining the ratio of the instruction cache miss cy-
cles to the pipeline execution cycles. Although the AES in-
stantiation brings with it a significant increase in the former
factor when compared to the register-based approach, the
compiler pass that encrypts the executable only requires that
two instructions (the start and stop message instructions) be
inserted for every basic block. Consequently for applications
that have excellent instruction cache locality such as our se-
lected benchmarks, we would expect the performance of this
scheme to be quite similar to that of the previous approach
configured with a sequence length value of 2. A quick com-
parison of Fig. 8 with Fig. 10 shows this to be the case.

These results clearly demonstrate the flexibility of our ap-
proach. With the modification of a few compiler flags, an ap-
plication developer can evaluate both a tamper-resistant reg-
ister encoding system that covers the entire application with
a significant performance detriment, to a cryptographic solu-
tion that has a much more measured impact on performance.
While the results in this section show that the instruction miss
penalty is not a dominant factor, this will generally not be the
case when considering the larger applications that could be
used with our approach. This, combined with the possibility

ZAMBRENO et al.: HIGH-PERFORMANCE SOFTWARE PROTECTION USING RECONFIGURABLE ARCHITECTURES 11

Fig. 10. Performance breakdown of the selective basic block encryption scheme as a function of the block select rate.

that programmable FPGA resources will not all be allocated
for software protection purposes motivates the configuration
of these resources as performance-oriented architectural op-
timizations.

VI. CONCLUSIONS AND FUTURE WORK

Both the methods used by hackers in compromising a soft-
ware system and the preventative techniques developed in
response thereto have received an increased level of atten-
tion in recent years, as the economic impact of both piracy
and malicious attacks continues to skyrocket. Many of the
recent approaches in the field of software protection have
been found wanting in that they: 1) do not provide enough
security; 2) are prohibitively slow; or 3) are not applicable to
currently available technology. This paper describes a novel
architecture for software protection that combines a standard
processor with dynamic tamper-checking techniques imple-
mented in reconfigurable hardware. We have evaluated two
distinct examples that demonstrate how such an approach
provides much flexibility in managing the security/perfor-
mance tradeoff on a per-application basis. Our results show
that a reasonable level of security can be obtained through
a combined obfuscating and tamper-proofing technique with
less than a 20% performance degradation for most applica-
tions. When a highly transparent solution is desired, FPGA
resources not allocated for software protection can be used
to mask some of the high latency operations associated with
symmetric block ciphers.

Future work on this project will include implementing a
method for calculating and storing hash values on the FPGA
in order to secure data and file storage. Also, while our cur-
rent simulation infrastructure is adequate for the experiments
presented in this paper, it is also inherently limited in the
sense that the component delays are completely user-defined.
Although we intelligently estimate these values based on pre-
vious work in hardware design, in the future it would be con-
siderably more convincing to assemble the results based on
an actual synthesized output. This would require our com-
piler to be modified to generate designs in either a full hard-
ware description language such as VHDL or Verilog, or at

a minimum, a specification language that can drive prede-
fined HDL modules. Taking this concept a step further, as
our techniques can be fully implemented with commercial
off-the-shelf components, it would be useful to port our ar-
chitecture to an actual hardware board containing both a pro-
cessor and FPGA. Such a system would allow us to obtain
real-world performance results and also to refine our threat
model based on the strengths and weaknesses of the hard-
ware.

REFERENCES

[1] International Plannning and Research Corporation, Eighth annual
BSA global software piracy study [Online]. Available: http://www.
bsa.org Jun. 2003

[2] Computer Security Institute and Federal Bureau of Investigation,
CSI/FBI 2002 computer crime and security survey [Online]. Avail-
able: http://www.gocsi.com Apr. 2002

[3] C. Collberg and C. Thomborson, “Watermarking, tamper-
proofing, obfuscation: Tools for software protection,” IEEE Trans.
Softw. Eng., vol. 28, no. 8, pp. 735–746, Aug. 2002.

[4] ——, “Software watermarking: models and dynamic embeddings,”
in Proc. 26th ACM SIGPLAN-SIGACT Symp. Principles of Pro-
gramming Languages 1999, pp. 311–324.

[5] R. Venkatesan, V. Vazirana, and S. Sinha, “A graph theoretic ap-
proach to software watermarking,” in Proc. 4th Int. Information
Hiding Workshop 2001, pp. 157–168.

[6] H. Chang and M. Atallah, “Protecting software code by guards,”
in Proc. ACM Workshop on Security and Privacy in Digital Rights
Management Nov. 2000, pp. 160–175.

[7] B. Horne, L. Matheson, C. Sheehan, and R. Tarjan, “Dynamic
self-checking techniques for improved tamper resistance,” in Proc.
ACM Workshop Security and Privacy in Digital Rights Manage-
ment 2001, pp. 141–159.

[8] D. Aucsmith, “Tamper-resistant software: An implementation,” in
Proc. 1st Int. Workshop Information Hiding 1996, pp. 317–333.

[9] G. Wurster, P. van Oorschot, and A. Somayaji, “A generic at-
tack on checksumming-based software tamper resistance,” in Proc.
IEEE Symp. Security and Privacy 2005, pp. 127–138.

[10] G. Necula, “Proof-carrying code,” in Proc. 24th ACM SIGPLAN-
SIGACT Symp. Principles of Programming Languagers 1997, pp.
106–119.

[11] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of ob-
fuscating transformations,” Dept. Comput. Sci., Univ. Auckland,
Tech. Rep. 148, Jul. 1997.

[12] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai,
S. Vadhan, and K. Yang, “On the (im)possibility of obfuscating
programs,” in Proc. Advances in Cryptology (CRYPTO ’01) pp.
1–18.

12 PROCEEDINGS OF THE IEEE, VOL. 94, NO. 2, FEBRUARY 2006

[13] S. White, S. Weingart, W. Arnold, and E. Palmer, “Introduction
to the Citadel Architecture: Security in physically exposed environ-
ments,” IBM Res. Div., T.J Waston Res. Ctr., Tech. Rep. RC 16682,
May 1991.

[14] D. Tygar and B. Yee, “Dyad: A System for Using Physically Se-
cure Coprocessors,” Dept. Comput. Sci., Carnegie Mellon Univ.,
Tech. Rep. CMU-CS-91-140R, May 1991.

[15] S. White and L. Comerford, “ABYSS: a trusted architecture for
software protection,” in Proc. IEEE Symp. Security and Privacy
1987, pp. 38–51.

[16] B. Schneier and A. Shostack, “Breaking up is hard to do: Mod-
eling security threats for smart cards,” in Proc. USENIX Workshop
on Smartcard Technology 1999, pp. 175–185.

[17] P. Clark and L. Hoffman, “BITS: A smartcard protected operating
system,” Commun. of the ACM, vol. 37, no. 11, pp. 66–70, Nov.
1994.

[18] MIPS, SmartMIPS Application-Specific Extension [Online].
Available: http://www.mips.com 2004

[19] VIA, Padlock Hardware Security Suite [Online]. Available: http://
www.via.com 2004

[20] Intel, Intel LaGrande Technology [Online]. Available: http://www.
intel.com 2004

[21] ARM, ARM TrustZone Technology [Online]. Available:
http://www.arm.com 2004

[22] Trusted Computing Group [Online]. Available: http://www.trust-
edcomputing.org, 2003

[23] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J.
Mitchell, and M. Horowitz, “Architectural support for copy and
tamper resistant software,” in Proc. 9th Int. Conf. Architectural
Support for Programming Languages and Operating Systems
2000, pp. 168–177.

[24] D. Kirovski, M. Drinic, and M. Potkonjak, “Enabling trusted
software integrity,” in Proc. 10th Int. Conf. Architectural Support
for Programming Languages and Operating Systems 2002, pp.
108–120.

[25] X. Zhuang, T. Zhang, and S. Pande, “HIDE: An infrastructure for
efficiently protecting information leakage on the address bus,” in
Proc. Int. Conf. Architectural Support for Programming Languages
and Operating Systems 2004, pp. 72–84.

[26] A. Elbirt, W. Yip, B. Chetwynd, and C. Paar, “An FPGA im-
plementation and performance evaluation of the AES block cipher
candidate algorithm finalists,” in Proc. 3rd Advanced Encryption
Standard (AES3) Candidate Conf. 2000, pp. 13–27.

[27] K. U. Jarvinen, M. T. Tommiska, and J. O. Skytta, “A fully
pipelined memoryless 17.8 Gbps AES-128 encryptor,” in Proc.
Int. Symp. Field Programmable Gate Arrays (FPGA) 2003, pp.
207–215.

[28] J. Zambreno, A. Choudhary, R. Simha, and B. Narahari, “Flex-
ible software protection using HW/SW codesign techniques,” in
Proc. Design, Automation, and Test in Europe 2004, pp. 636–641.

[29] Xilinx, Virtex-II Pro Platform FPGA Data Sheet [Online]. Avail-
able: http://www.xilinx.com 2003

[30] D. Burger and T. M. Austin, “The Simplescalar Tool Set, Version
2.0,” Dept. Comput. Sci., Univ. Wisconsin-Madison, Tech. Rep.
CS-TR-97-1342, Jun. 1997.

[31] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Media-
Bench: a tool for evaluating and synthesizing multimedia and
communications systems,” in Proc. 30th Annu. Int. Symp. Mi-
croarchitecture Dec. 1997, pp. 330–335.

[32] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.
Mudge, and R. B. Brown, “MiBench: A free, commercially rep-
resentative embedded benchmark suite,” in Proc. 4th IEEE Annu.
Workshop Workload Characterization 2001, pp. 3–14.

Joseph Zambreno (Student Member, IEEE)
received the B.S. degree summa cum laude and
the M.S. degree from Northwestern University,
Evanston, IL, in 2001 and 2002, respectively. He
is currently working toward the Ph.D. degree in
electrical and computer engineering at North-
western University.

His most recent industry experience was a
Software Test Engineer internship at Microsoft
Corporation, Redmond, WA, in 2000. His re-
search interests include computer security and

cryptography, with a focus on runtime reconfigurable architectures and
compiler techniques for software protection.

Mr. Zambreno has been the recipient of several honors and awards, in-
cluding membership in the Tau Beta Pi and Eta Kappa Nu honor societies,
a Motorola undergraduate research award, a Walter P. Murphy graduate re-
search fellowship, and a National Science Foundation graduate research fel-
lowship. He is a member of the IEEE Computer Society.

Dan Honbo (Student Member, IEEE) received the B.S. degree in computer
engineering from Northwestern University, Evanston, IL, in 2003. He is cur-
rently working toward the Ph.D. degree at Northwestern University.

His research interests are in cryptography, software protection, and em-
bedded system design.

Alok Choudhary (Fellow, IEEE) received the
B.E. (Hons.) degree from the Birla Institute of
Technology and Science, Pilani, India in 1982,
the M.S. degree from the University of Massa-
chusetts, Amherst, in 1986, and the Ph.D. degree
in electrical and computer engineering from the
University of Illinois, Urbana-Champaign, in
1989.

From 1989 to 1996, he was on the faculty of
the Electrical and Computer Engineering Depart-
ment at Syracuse University. Since 2000, he has

been a Professor of Electrical and Computer Engineering at Northwestern
University, Evanston, IL, where he also holds an adjunct appointment with
the Kellogg School of Management in the Marketing and Technology In-
novation Departments. His research interests are in high-performance com-
puting and communication systems, power aware systems, information pro-
cessing, and in the design and evaluation of architectures and software sys-
tems.

Prof. Choudhary’s career has been highlighted by numerous honors and
awards, including the National Science Foundation Presidential Young In-
vestigator Award, an IEEE Engineering Foundation award, an IBM Faculty
Development award, and an Intel Research Council award.

Rahul Simha (Member, IEEE) received the Ph.D. degree in computer sci-
ence from the University of Massachusetts, Amherst, in 1990.

He was an Assistant Professor in the Department of Computer Science,
College of William and Mary, Williamsburg, VA, from 1990 to 1996, and
an Associate Professor from 1996 to 2000. Since June 2000, he has been an
Associate Professor in the Department of Computer Science, George Wash-
ington University, Washington, DC. His research interests include networks,
algorithms, software systems, and embedded systems.

Bhagirath Narahari received the B.E. degree
in electrical engineering from Birla Institute
of Technology and Science, Pilani, India, and
the M.S. and Ph.D. degrees in computer and
information science from the University of
Pennsylvania, Philadelphia, in 1984 and 1987,
respectively.

He is a Professor in the Department of Com-
puter Science at George Washington University,
Washington, DC, where he served as department
chair from 1999 to 2002. His research interests

include computer architecture, embedded systems, compiler optimization,
power-aware computing and communications, distributed systems, and net-
works.

ZAMBRENO et al.: HIGH-PERFORMANCE SOFTWARE PROTECTION USING RECONFIGURABLE ARCHITECTURES 13

