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A B S T R A C T

Data-driven methods are emerging as an important toolset in the studies of multiscale, multiphysics, materials
phenomena. More specifically, data mining and machine learning methods offer an efficient toolset for ex-
tracting and curating the important correlations controlling these multiscale materials phenomena in high-value
reduced-order forms called process-structure-property (PSP) linkages. Traditional machine learning methods
usually depend on intensive feature engineering, and have enjoyed some success in establishing the desired PSP
linkages. In contrast, deep learning approaches provide a feature-engineering-free framework with high learning
capability. In this work, a deep learning approach is designed and implemented to model an elastic homo-
genization structure-property linkage in a high contrast composite material system. More specifically, the pro-
posed deep learning model is employed to capture the nonlinear mapping between the three-dimensional ma-
terial microstructure and its macroscale (effective) stiffness. It is demonstrated that this end-to-end framework
can predict the effective stiffness of high contrast elastic composites with a wide of range of microstructures,
while exhibiting high accuracy and low computational cost for new evaluations.

1. Introduction

An important mission of the field of materials science is to design
new/improved materials that can meet the stringent demands placed by
emerging advanced technologies. The paradigm of process-structure-
property (PSP) linkages plays a central role in capturing and curating
the high value materials knowledge needed in this pursuit[1–11]. The
extraction and deployment of these linkages has been hindered by the
high dimensional representations needed for a rigorous description of
the inherently heterogeneous material structure spanning multiple
length or internal structure scales. Indeed, the precise physics-based
connections between the material structure and its associated proper-
ties are very complex. However, from a practical viewpoint of materials
design, it is imperative that we capture the high value information in
these complex linkages in forms that allow computationally efficient
explorations of the extremely large design spaces. Broadly speaking,
PSP linkages can be cast in both directions of scale-bridging: (i)
homogenization (going from smaller scales to larger scales) [12–14]
and (ii) localization (going from larger scales to smaller scales)

[11,15–20]. Our focus here will be on homogenization, i.e., prediction
of macroscale elastic properties of a high contrast composite given its
microstructure information. Contrast in this context refers to the dif-
ferences in the individual properties of the microscale constituents
present in the material microstructure.

The conventional approaches for establishing structure-property
linkages in composite materials have relied either on highly sophisti-
cated analytical approaches based on statistical continuum theories
[21–23] or on numerical approaches based on finite element (FE)
models. Although the statistical continuum theories are very attractive
because of their low computational cost (especially significant in ex-
ploring large design spaces), progress in this direction has been largely
hindered by the need to establish accurately the Green’s functions based
kernels used in these theories, and the slow convergence of the series
expansions for high contrast composites [24,25]. While the numerical
approaches such as the finite element models circumvent these chal-
lenges effectively, they are not best suited for design explorations of the
potentially very large materials space (i.e., solving inverse problems
identifying the specific microstructures meeting a designer specified set
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of desired property combinations [4,26,27]).
In recent years, data-driven approaches have attracted the attention

of materials science researchers [28–35]. A new framework called
Materials Knowledge Systems (MKS) [9,7,15,16,18,36,37] was for-
mulated to take advantage of the relative merits of both the analytical
and the numerical approaches described above in formulating struc-
ture-property linkages. In this data-driven approach, one first ag-
gregates a sufficiently large ensemble of data points using the numerical
approaches, where each data point includes information on the material
microstructure (treated as input) and its effective property of interest
(treated as output). After establishing the data set, one then calibrates
the Green’s function based kernels in the statistical continuum theory
series expansions to the aggregated data set using suitable regression
techniques. This approach has been shown to synergistically combine
the respective merits of both the analytical and numerical approaches
described earlier, and provide remarkably accurate, low computational
cost, structure-property linkages for low to medium contrast composites
[7,9,11,15,18,38]. Although the viability of the MKS approach has also
been demonstrated for high contrast composites, there continue to be
significant hurdles as the application to the high contrast composites
requires feature engineering. In this regard, it is noted that feature
engineering (i.e., selection of the important microstructure features
influencing the effective property of interest) in the context of the MKS
framework has been explored mainly using the framework of n-point
spatial correlations and principal component analyses [6,37,39–43].
While the current feature engineering approach in the MKS framework
was demonstrated to be highly successful in the consideration of the 2-
point spatial correlations, its extension to include higher-order spatial
correlations is nontrivial. This is mainly because of the explosion in the
number of spatial correlations as one goes up systematically to the
higher order spatial correlations.

In recent years, deep learning approaches have emerged as the
methods of choice in addressing the problem of automated identifica-
tion of features from an extremely large set of potential features. These
methods have enjoyed successes in a broad range of application do-
mains including computer vision (e.g., image segmentation, image
classification and face recognition) [44–50]. This emerging new ap-
proach significantly outperforms traditional machine learning methods
in its ability to learn the embedded model in an aggregated dataset.
More specifically, deep learning approaches provide an end-to-end
framework where an explicit feature design is not required. Conse-
quently, the trained models usually exhibit higher generalization. Thus,
deep learning approaches exhibit tremendous potential for addressing
some of the main hurdles in materials research. In [51] Liu et al. ap-
plied deep convolutional neural networks to model a large image data
collection of polycrastal electron patterns. Liu et al. [52] used deep
neural networks to understand the relationship between the composi-
tion and the properties of materials. In [53], Li et al. implemented
transfer learning approach to reconstruct material microstructures.
Cang et al. [54] developed a convolutional deep belief network to au-
tomate conversion between microstructure and corresponding lower-
dimensional feature representations. Later, Cang et al. [55] applied
Variational Auto-Encoder to generate artificial material samples with
same morphology distribution as the authentic ones. In [56,57], Yang
et al. and Li et al. developed a Generative Adversarial Networks to
identify the key microstructure representations and implemented it to
design material microstructure with desired properties. Gopalakrishnan
et al. [58] applied transfer learning technique to detect crack in pave-
ment.

The target in this study is to establish structure-property linkages for
homogenization of high contrast two-phase elastic composites.
Homogenization in hierarchical multiscale modeling refers to transfer
of information about the microstructure from a lower length scale to
higher length scale. This information is usually expressed as an effective
property of the material volume being studied and is calculated through
various averaging techniques [12–14]. The main challenge in

calculating the effective stiffness is to solve the governing field equa-
tions formulated at the lower length scale. This is a computationally
expensive task if one considers the large space of microstructures that
needs to be explored. The proposed deep learning approach will address
this task by building data-driven structure-property linkages (i.e., re-
duced-order models or surrogate models) between the 3-D micro-
structure and the effective elastic stiffness value.

In this paper, we explore the benefits of using deep learning ap-
proaches in establishing high value structure-property homogenization
linkages for high-contrast elastic 3-D composite microstructures. In a
prior work [59], convolutional neural networks (CNN) were employed
to build a model that converts the binary microstructure information
into a set of filters that serve as higher-order microstructure informa-
tion. However, this effort was not strongly explored as a completely
feature-engineering free approach. In this study, a standalone CNN is
built for the first time to establish structure-property linkages for high
contrast elastic 3-D composites using a completely feature-engineering
free approach. An extensive analysis of convolutional neural networks
with different numbers of convolution and pooling layers was per-
formed. The performance of the CNN is compared to structure-property
linkages established with simple physics-based approaches and so-
phisticated physics-inspired approaches (these will be introduced in
Section 3.2) employed in our prior work [7,9,60]. It will be shown
through error metrics that CNN built in this study outperforms bench-
mark methods.

2. Datasets and methods

2.1. Generation of high contrast elastic 3-D datasets

In order to explore and evaluate the performance of CNN models in
predicting the effective elastic properties of high contrast composites,
we first need to generate a dataset that reflects the ground truth. In this
work, because of the lack of a suitable experimental dataset, we assume
that the ground truth is reasonably well captured by the results of
micromechanical finite element models applied on digitally generated
microstructures. Therefore, for this study, we generated 8550 3-D mi-
crostructures which are referred to as microscale volume elements
(MVEs). The main purpose of these MVEs [7,11,15,18] is to produce the
data needed to extract the desired structure-property linkages. They
have to be large enough to capture the range of microscale interactions
occurring naturally within the microstructural volume element, but
small enough to allow for generation and aggregation of the needed
data within reasonable computational cost.

The MVEs used in this study were generated by starting with a
random assignment of numbers on a uniformly tessellated 3-D spatial
(voxelized) grid, following by application of a 3-D Gaussian filter, and
finally thresholding to obtain a targeted distribution of volume frac-
tions in the ensemble (i.e., the collection of 8550 MVEs generated for
this study). In the effort to generate a rich morphological diversity in
the generated set of MVEs, 3-D Gaussian filters with different covar-
iances were employed. The filters were selected in such a way that the
MVEs had preferred directionality in three perpendicular directions.
Different combinations of diagonal entries in covariance matrix were
used to generate MVEs with different amounts of directionality. For this
case study, the off-diagonal entries were always kept zero. However, a
wider range of diversity in MVEs can be attained by using covariance
matrices with non-zero entries in off-diagonal elements as well. Some
examples of MVEs with different microstructural details are shown in
Fig. 1. The MVE in part (a) is generated by a 3-D Gaussian filter with
three identical diagonal entries in the covariance matrix. On the other
hand, the microscale constituents of MVEs in part (b), (c) and (d) have
clear directionality in x, y and z directions. The degree of directionality
of the structural features are controlled with the values of the covar-
iances used with the 3-D Gaussian filters. In total, 57 different 3-D
Gaussian filters were employed and each filter is used to generate 150
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MVEs with volume fractions ranging between 25 to 75 % for the hard
phase. 100 MVEs among 150 generated MVEs associated with each
Gaussian filter were randomly selected for training process and the rest
50 MVEs are set aside for testing process. Thus, out of the 8550 MVEs,
5700 MVEs were used for training process and 2850 MVEs for testing
process. From these 5700 MVEs, 33 % were randomly selected as va-
lidation set and the rest as training set. In other words, 8550 MVEs are
split into 3 sets, which are training set (3819 MVEs), validation set
(1881 MVEs) and testing set (2850 MVEs).

Each MVE is populated with two potential microscale constituents
(shown as white and black in Fig. 1, also referred as local states). Both
local states are assumed to exhibit isotropic elastic responses. Because
of our interest in high contrast composites for the present study, a ratio
of 50 was employed between the Young’s moduli of the local states. The
Young’s moduli of hard and soft phases were taken as =E 1201 GPa and

=E 2.42 GPa, while both phases were assigned the same Poisson ratio,
=ν 0.3.
In this study, the effective property of interest was identified as the

(1,1,1,1) component of the fourth-rank elastic stiffness tensor (usually
denoted as C1111 in the tensorial notation or simply as C11 in a reduced
notation). In order to estimate this property, finite element simulations
were performed for each MVE. The simulations employed periodic
boundary conditions [16] in such a way that the macroscale strain
tensor had only one non-zero component, 〈 〉ε11 (the angled brackets
represent the volume average). The overall approach described here
can be extended to any other desired component of the effective elastic
stiffness tensor (cf. [61]).

2.2. Artificial neural network

Artificial neural network is inspired by the biological neural net-
works. Multilayer perceptron neural network (MLP) [62] is a basic
architecture of artificial neural networks. By stacking more layers to
form a deep architecture, deep learning architecture has better learning
capability. Convolutional neural networks (CNN) [63] is one of the
deep learning architectures, which has been shown to be very powerful
in solving computer vision problems [44–50,64,65]. In the following
sections, further details of MLP and CNN are presented.

2.2.1. Multilayer perceptron neural network
An MLP usually consists of at least three layers, and each hidden

layer (i.e., layers except input and output layers) consists of multiple
neurons. A neuron takes the weighted sum of outputs of every neuron in
the previous layer, and then pass the value through an activation
function to produce the output. An activation function is generally used
to exploit the nonlinear relationship between inputs and outputs.
Rectified Linear Unit (ReLU) [66] activation function is one of the most
commonly used activation functions. ReLU activation function can be
formulated as =f z max z( ) (0, ) and it is illustrated in Fig. 2. Fig. 3(a)
illustrates an example of four-layer perceptron neural network. The
hidden layers of MLP contain multiple neurons (blue1 nodes in

Fig. 3(a)), and each neuron is connected to every neuron in the adjacent
layers.

2.2.2. Convolutional neural network
A CNN model is usually comprised of three basic operations, with

these operations being repeated multiple times. These three unit op-
erations are referred to as a convolution layer, a pooling layer and a
fully connected layer in the CNN terminology. Fig. 4 provides a sche-
matic illustration for an example 3-D CNN configuration.

The convolution layer forms the core layer of CNN models, and its
goal is to extract important features from the input images objectively.
This is accomplished using a set of convolution filters [64] in each
convolution layer that are to be systematically learned from the avail-
able data. Fig. 5 provides a simple illustration of the computations in-
volved in the application of a convolution filter. In this illustration, a
very simple ×3 3 image (colored brown) is first padded with zeros
(colored gray) and then convolved with a ×3 3 filter (colored blue).
Finally, a bias (colored yellow) is added to produce a feature map.
Further computational details involved in the convolution layer can be
found in many references [45,47,49]. Essentially, the application of
each filter involves computing a dot product of the filter weights with
an equal sized subsection of the input image centered around the voxel
of interest in the input image. Putting together the results of the dot
products following the same spatial sequence as the individual voxels
considered in the input image produces the output of the convolution.
Note that padding the image as described in Fig. 5 allows the output
image size to be the same as the size of the input image. It is also im-
portant to recognize that a single convolution layer involves the ap-
plication of multiple filters and bias, each producing a different feature
map. The general algorithm described above is equally applicable to 2-
D or 3-D images.

Pooling layer is usually employed after one or several stacked

Fig. 1. Visualization of selected MVEs generated by applying different 3-D Gaussian filters to a random number field.

Fig. 2. Plot illustrating the Rectified Linear Unit (ReLU).

1 For interpretation of color in Fig. 3, the reader is referred to the web version of this
article.
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convolution layers. The purpose of the pooling layers is to reduce the
dimensionality of feature maps. Fig. 6 shows an example of a commonly
used ×2 2 max-pooling. In this type of pooling, the values in the out-
puts as taken as the maximum of each ×2 2 block in the input feature
map. This is depicted in Fig. 6 via suitably colored blocks. The concept
described above is easily extended to 3-D using × ×2 2 2 pooling.

The outputs obtained after employing stacks of convolution and
pooling layers (see Fig. 7 for an example) are flattened to a vector. This
vector is then fed into a fully connected layer, which is the same as a
hidden layer in the conventional multilayer perceptron neural network.
Thus, each input of this layer is a voxel from the outputs obtained after
a set of convolution and pooling layers. The final layer in CNN is called
output layer and the values in it depend on whether the network is
established for classification or regression. For classification, the output
layer contains as many neurons as the number of classes in the en-
semble of datasets and the value of each neuron in the output layer
changes between 0 to 1 to reflect the probability of a selected data point
belonging to the selected class. On the other hand, in regression, if there
is only one target, then the output layer contains one neuron with a
continuous value reflecting the predicted output of CNN.

2.3. Proposed deep learning architecture for homogenization

In order to establish homogenization linkages, it is necessary to
extract higher-order neighborhood information within three-dimen-
sional microstructures and model the relationship between the

neighborhood information and the effective stiffness of MVEs. Thus,
CNN is adapted here to build such homogenization linkages.

In this work, the inputs to CNN are assumed to be 51× 51× 51
three-dimensional microstructures where each voxel is assigned a value
of either zero (i.e., hard phase) or one (i.e., soft phase). Since the ori-
ginal data is comprised of binary images with 0s and 1s, applying ele-
ment-wise convolution operations with the large amount of 0s in the
input might significantly deteriorate the functionality of the filters.
Therefore, the input data is rescaled from [0, 1] to [−0.5, 0.5] before
training the models. After rescaling, 3-D CNNs were used to establish
the desired homogenization linkage. In this approach, the structure-
property linkage is therefore directly trained on the input 3-D micro-
structure. Among various activation functions, such as ReLU, Learky
ReLU and Softplus, we found that ReLU preserves the gradients in the
microstructures better. Thus, in each layer of the CNN, ReLU function is
used as activation function to explore the nonlinearity, and weights are
initialized by normalized initialization [67]. This initialization method
samples a −U r r[ , ] with =

+
r

fan in fan out
6 where fanin and fanout are

the number of inputs and outputs of the layer, respectively. CNNs
usually have millions of parameters, which makes overfitting a common
problem. In order to avoid overfitting, L2 regularization (regularization
strength is 0.001) is used in each convolution layer and fully connected
layer and/or dropout is added after first fully connected layers. Dropout
randomly drops neurons of neural network during training, and the
percentage of dropped neurons in the total number of neurons is called

Fig. 3. Dropout (a) Conventional neural network. (b) After applying dropout.

Fig. 4. Example architecture of 3-D convolutional neural network.

Z. Yang et al. Computational Materials Science 151 (2018) 278–287

281



dropout rate. The comparison of neural network with and without ap-
plying dropout is shown in Fig. 3. Since this is a regression problem,
there is only one neuron in the output layer to produce continuous
values of the effective stiffness.

Mean square error is used as the loss function, and Adam optimizer
[68] with setting the learning rate as 0.001, β1 value as 0.9 and β2 value
as 0.999 is used as the optimizer. Adam optimizer is an advanced op-
timization algorithm compared to conventional stochastic gradient

Fig. 5. Computation process of an example ×3 3 convolution filter. (a) Input is zero padded; this allows us to keep the size of the output the same as the size of the
input image. (b) Convolution filter and computation. As an example, the value in top right corner in (c) is computed by dot product between red window and filter.
(c) Results after convolution operation are offset by a bias. (d) Output is called a feature map.

Fig. 6. ×2 2 max-pooling process. Each ×2 2 block is replaced by the maximum value in the block.

Fig. 7. Example of flattening process. Three ×2 2 feature maps are flattened to a one-dimensional vector with 12 elements.
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descent algorithm, and produces faster convergence. During each
iteration of the training process, the loss function calculates the error
between predicted values and ground truth values. Then, the optimizer
is used to propagate the error back through the entire neural network so
that the weights can be adjusted accordingly. Thus, the loss function
can be minimized through such iterative training. Early stopping
technique is applied to monitor the learning process of CNN, and it will
terminate the training process when the value of model’s loss on the
validation set does not improve for 10 epochs. We train several CNN
models with different architectures from shallow to deep, and subse-
quently explore the hyperparameters space, i.e., number of filters in
each convolution layer, batch size (i.e. number of MVEs that will be
propagated through the network in a training iteration), and dropout
rate.

3. Results and discussion

3.1. CNN performance analysis

All the experiments were carried out on a NVIDIA DIGITS DevBox
with 4 TITAN X GPUs with 12 GB memory for each GPU and Core i7-
5930 K 6 Core 3.5 GHz CPU with 64 GB DDR4 RAM. All the programs
were implemented in Python 2.7 and Keras [69], a high-level neural
networks library build on top of TensorFlow [70] used to build deep
learning models. As mentioned before, 5700 MVEs were used for
training the CNN (i.e. training set and validation set) and the remaining
2850 MVEs were solely used as testing set. The model performance is
evaluated by calculating mean absolute stiffness error (MASE) and
mean absolute error (MAE) for both training (i.e. 5700 MVEs including
validation set) and testing data. MASE for a selected set of data reflects
the average error between the predicted values and ground truth values
calculated from FE models. This error metric is defined as

̂
∑=

−
×

=

MASE
N

S S
S

1 100%
i

N
i i

average1 (1)

where N denotes the total number of MVEs in the selected set, Si and ̂Si
represent ground truth effective stiffness and predicted effective stiff-
ness for the ith MVE, respectively. Saverage denotes the average effective
stiffness of all the MVEs in the dataset. In other words, MASE can be
calculated by dividing mean absolute error between ground truth va-
lues and predicted values by the average of effective stiffness in the
dataset.

Different architectures of varying depths and different number of
filters in each convolution layer of 3-D CNNs are explored to examine
which architectures produce the best model for the present application.
The depths of 3-D CNNs are gradually extended from 10 layers to 16
layers where multiple stacked convolution layers and pooling layers are
added gradually. In other trials, the number of filters in each con-
volution layer was gradually increased for a fixed depth. Table 1 pre-
sents the results of six of the 3-D CNNs explored in this study. In the
description of the architecture, “ConvBlock” denotes a combination of a
convolutional layer and a pooling layer, and “FC” a fully connected
layer. As an example, the architecture ConvBlock(16–32× 2)-
FC(2048–1024) means that there is one convolution layer with 16 fil-
ters, followed by a pooling layer, followed by two other convolution
layers (each with 32 filters), followed by a pooling layer, followed by
two fully connected layers with 2048 neurons and 1024 neurons, re-
spectively. For all the experiments, 3× 3× 3 filter is applied for each 3-
D convolution layer. L2 regularization (regularization strength is 0.001)
is applied in every convolution layer and fully connected layer, and the
batch size is 32 MVEs. Since the model’s performance is evaluated by its
performance on new data (i.e., testing set), we can observe that the
third 3-D CNN architecture with 14 layers in Table 1 achieves the best
performance (good accuracy without over-fitting). Indeed, when the
model’s complexity reaches a certain point, further increasing the depth

of model or the number of filters in convolution layers does not improve
the model performance. More specially, the results of first, third, fifth
and sixth CNNs in Table 1 suggest that further increasing depth of CNN
does not increase performance. Meanwhile, the results of second, third
and fourth CNNs in Table 1 show that further increasing the number of
filters in convolution layer might deteriorate performance for the se-
lected depth. We thus conclude that the third architecture is the best
choice for the present study, and carry out further exploration and
optimization of the hyperparameters space for this architecture.

Trials were carried out to search for the best combination of CNN
hyperparameters for the third model architecture in Table 1. Because a
deep learning model usually has many hyperparameters, and training a
deep learning model is time consuming, in practice one uses a greedy
approach to search for the best combination of hyperparameters. More
specially, we choose one hyperparameter, find its optimum value and
fix it for later trials. We repeat this process until all the hyperpara-
meters are tuned. First, the effect of different batch sizes on model
performance is explored. Table 2 shows batch size with 32 MVEs gives
the best performance. Then with the batch size as 32 MVEs, the effect of
dropout rate on model’s performance is explored and summarized in
Table 3. One can observe that the model without dropout achieves the
best performance.

3.2. Comparison with currently employed method

We compare the results obtained with deep learning approach to the
results obtained with the simple physics-based approaches (i.e. rule of
mixtures methods) and the sophisticated physics-inspired approaches
[7,9,60] (i.e., two-point statistics methods). To demonstrate the diffi-
culty of the problem, three different simple physics-based approaches
(i.e. upper (Voigt) bound, lower (Reuss) bound, average (Voigt-Reuss-
Hill)) were employed as benchmark in addition to sophisticated phy-
sics-inspired approaches. Simple physics-based approach is a direct
approach of predicting the effective stiffness of a composite material
based on the volume fraction and material property of microscale
constituents. The bounds specified with simple physics-based ap-
proaches either assumes isostrain or isostress conditions (i.e. uniform
strain or stress throughout the entire composite volume). The work-
flows used for the comparisons of simple physics-based approaches,
sophisticated physics-inspired approaches and deep learning approach
are depicted in Fig. 8.

Table 1
Results comparison of different 3-D CNN architectures.

Architecture Training MASE/
MAE (GPa)

Testing MASE/
MAE (GPa)

input-ConvBlock(16-32-64-128)-
FC(2048-1024)-output

2.13%/0.71 3.12%/1.05

input-ConvBlock(8-16-32-64-128)-
FC(2048-1024)-output

3.19%/1.07 3.72%/1.25

input-ConvBlock(16-32-64-128-256)-
FC(2048-1024)-output

2.10%/0.70 3.10%/1.04

input-ConvBlock(32-64-128-256-
512)-FC(2048-1024)-output

2.65%/0.89 3.47%/1.17

input-ConvBlock(16-32-64-128-
256×2)-FC(2048-1024)-output

4.01%/1.34 4.55%/1.53

input-ConvBlock(16-32-64-128×2-
256×2)-FC(2048-1024)-output

4.37%/1.46 4.95%/1.66

Table 2
Effect of batch size on CNN performance.

Batch size Training MASE/MAE (GPa) Testing MASE/MAE (GPa)

16 3.13%/1.05 3.85%/1.29
32 2.10%/0.70 3.10%/1.04
64 4.56%/1.53 4.88%/1.64

Z. Yang et al. Computational Materials Science 151 (2018) 278–287

283



In the sophisticated physics-inspired approaches, the reduced-order
representation of spatial correlations in the microstructure are fit to the
property values through standard regression methods [7,9,60]. More
specifically, this approach computed two-point autocorrelations of a
selected microscale constituent in each MVE, and then projected that
statistical representation of microstructure to a reduced-order space by
employing PCA [7,9,60].

From the results shown in Table 4, it is clear that all three simple
physics-based approaches have inferior performance compared to so-
phisticated physics-inspired and deep learning approaches. This de-
monstrates the high level of difficulty of the problem due to the fact
that volume fraction solely is not an adequate measure to predict the
effective stiffness of high contrast 3-D elastic composites. On the other
hand, we can observe that the 3-D CNN achieves the best performance
with 2.10 % and 3.10 % for training and testing MASE, and 0.70 (GPa)
and 1.04 (GPa) for training and testing MAE. Sophisticated physics-
inspired approaches get 6.81% and 6.79 % for training and testing
MASE, and 2.28 (GPa) for both training and testing MAE. More speci-
fically, the proposed 3-D CNN improves the model performance of the
sophisticated physics-inspired approaches by as much as 54%
(1−3.10/6.79) in terms of testing MASE. The parity plots of two
methods for both training and testing sets are shown in Fig. 9. The top
and bottom rows depict the results of both methods for training and
testing sets, respectively. The left and right columns correspond to CNN
and sophisticated physics-inspired approaches, respectively. From
Fig. 9, it is seen that the parity plots of 3-D CNN for both training and
testing sets exhibit high accuracy and low variance. In particular, it is
noted that the deep learning approach performs better in very low and
very high effective stiffness values, where the sophisticated physics-
inspired approaches produce significantly higher errors in its predic-
tions.

Sophisticated physics-inspired approaches provide an approach to
extracting the salient features in the microstructure. However, in the
present study, only 2-point correlations are used. Clearly, higher-order

spatial correlations would improve the model [71–73], but do add
significantly to the cost of building the models. In this regard, 3-D CNN
provides a good alternative. The CNN filters are essentially capturing
selected higher-order spatial correlations in an automated manner that
is essentially feature-engineering-free (from the user’s perspective).
Therefore, with careful design of architecture and tunning of hy-
perparameters, deep learning approach can produce a highly reliable
and robust prediction of the effective property associated with a given
microsturcture.

To the best knowledge of authors, this is the first time that a stan-
dalone 3-D CNN is implemented to establish structure-property linkages
for high contrast elastic 3-D composites. Thereby, the extensive ex-
ploration of CNN architecture and hyperparameters provides important
insight and guidance, and the proposed model in this work can serve as
a pre-trained model to accelerate the research of structure-property
linkages for high contrast elastic 3-D composites. In addition, the deep
learning strategies described in this work outline a new data-driven
framework that (i) allows practical inverse solutions to materials design
through the use of computationally inexpensive surrogate models ca-
librated to the expensive physics based numerical simulations, and (ii)
allow a more objective calibration of the parameters in the models
using the limited amount of experimental data. In fact, these data-
driven surrogate models offer the only avenue available today to
mediate between the multiscale experiments and multiscale simulations
in ways that can effectively inform each other.

However, there are still some limitations of current work. Firstly,
because experimental data is limited and they currently lack the desired
accuracy, resolution (i.e. spatial and temporal) and throughput, the
proposed model is trained on simulation dataset, while its effectiveness
on experimental dataset still needs to be evaluated. If a good

Table 3
Effect of dropout rate on CNN performance.

Dropout rate Training MASE/MAE (GPa) Testing MASE/MAE (GPa)

No dropout 2.10%/0.70 3.10%/1.04
0.2 3.39%/1.13 3.90%/1.31
0.4 3.70%/1.24 4.29%/1.44
0.6 5.40%/1.81 5.78%/1.94
0.8 3.51%/1.17 4.21%/1.41

Fig. 8. Framework of the comparisons between the conventional machine learning method and deep learning method. (a) Simple physics-based approaches (i.e. rule
of mixtures methods). (b) Sophisticated physics-inspired approaches (i.e. two-point statistics methods). (c) Deep learning approach.

Table 4
Performance comparison of predictive models.

Method Training MASE/
MAE (GPa)

Testing MASE/MAE
(GPa)

3-D CNN 2.10%/0.70 3.10%/1.04
Sophisticated physics-inspired

approaches
6.81%/2.28 6.79%/2.28

Simple physics-based approaches
(Upper bound)

146.25%/48.93 145.15%/48.78

Simple physics-based approaches
(Lower bound)

79.33%/26.54 79.38%/26.68

Simple physics-based approaches
(Average)

47.08%/15.75 46.66%/15.68

Z. Yang et al. Computational Materials Science 151 (2018) 278–287

284



performance on experimental dataset can be achieved, it is capable to
replace numerical approaches, such as FE model. Moreover, experi-
ments or numerical approaches are usually expensive and time con-
suming. In some tasks like materials design, we can use deep learning
model to do prescreening to select candidates that are more likely to
achieve desired properties, and then use either experiment or numerical
approaches to evaluate them, which can significantly reduce the time
and cost to discovery new materials. Secondly, though the proposed
model can achieve very accurate predictions, it still works like a black
box. Thus, how to explain deep learning with domain knowledge is an
interesting research direction.

4. Conclusions

In this paper, 3-D CNN is implemented to model elastic homo-
genization linkages for three-dimensional high-contrast composite
material system. The results show that the proposed 3-D CNN outper-
forms the sophisticated physics-inspired approaches by as much as 54%
in terms of testing MASE. The deep learning approach thus demon-
strates its superior capability for building a model with high accuracy,
low computational cost, and higher learning capability.

Although intensive search of the space of hyperparameters and CNN
architectures has been carried out to find the best model, there are still
additional possibilities to further improve the model performance. First,
we can observe from Fig. 9 that deep learning approach does not per-
form very well for some mid-range values of effective stiffness. It might
be possible to further improve the model accuracy by implementing
some advanced techniques, such as batch normalization [74], Residual
structure [75], and Inception structure [76]. In addition, applying
dropout does not improve the performance of proposed model, so other

advanced regularization techniques, such as DropConnect [77] and
stochastic pooling [78] can be explored in the future studies. Second,
deep learning is only beginning to be applied actively in materials
science problems. We believe the proposed approach is sufficiently
generalized and can be applied to other multiscale materials phe-
nomena. This can potentially lead to a transformational change in the
field of materials science and engineering, especially in the area of
multiscale materials design.
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