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Microstructural Materials Design
Via Deep Adversarial Learning
Methodology
Identifying the key microstructure representations is crucial for computational materials
design (CMD). However, existing microstructure characterization and reconstruction
(MCR) techniques have limitations to be applied for microstructural materials design.
Some MCR approaches are not applicable for microstructural materials design because
no parameters are available to serve as design variables, while others introduce signifi-
cant information loss in either microstructure representation and/or dimensionality
reduction. In this work, we present a deep adversarial learning methodology that over-
comes the limitations of existing MCR techniques. In the proposed methodology, genera-
tive adversarial networks (GAN) are trained to learn the mapping between latent
variables and microstructures. Thereafter, the low-dimensional latent variables serve as
design variables, and a Bayesian optimization framework is applied to obtain microstruc-
tures with desired material property. Due to the special design of the network architec-
ture, the proposed methodology is able to identify the latent (design) variables with
desired dimensionality, as well as capturing complex material microstructural character-
istics. The validity of the proposed methodology is tested numerically on a synthetic
microstructure dataset and its effectiveness for microstructural materials design is eval-
uated through a case study of optimizing optical performance for energy absorption.
Additional features, such as scalability and transferability, are also demonstrated in this
work. In essence, the proposed methodology provides an end-to-end solution for micro-
structural materials design, in which GAN reduces information loss and preserves more
microstructural characteristics, and the GP-Hedge optimization improves the efficiency
of design exploration. [DOI: 10.1115/1.4041371]

Keywords: microstructural materials design, microstructural analysis, deep learning,
generative adversarial network, Bayesian optimization, scalability, transfer learning

1 Introduction

To date, computational materials design (CMD) has revolutio-
narily changed the way advanced materials are developed [1–8]. In
the plethora of successes in CMD [9–15], microstructure-sensitive
design [16] has shown its significance in driving the rapid discov-
ery and manufacturing of new materials. In designing material
microstructures, the appropriate design representation of micro-
structures determines its ultimate success. A common practice of
selecting microstructural design variables is to choose key micro-
structure characteristics from existing microstructure characteriza-
tion and reconstruction techniques (MCR). A comprehensive
review of existing MCR techniques is provided by Bostanaband
et al. [17]. Together with some recent works using deep learning,
the existing techniques are classified into the following categories:

(1) Correlation function-based methods [18]
(2) Physical descriptor-based methods [19]
(3) Gaussian random field (GRF)-based methods [20]
(4) Markovian random field-based methods [21]

(5) Deep belief network-based methods [22]
(6) Spectral density function-based methods [15], and
(7) Transfer learning-based methods [23,24]

However, not all existing MCR techniques are applicable for
microstructural materials design. Two major limitations exist: (1)
Some MCR methods (methods 3, 4, 5 and 7) are not applicable
for microstructural materials design, because no parameters are
available to serve as design variables for generating new micro-
structure designs. (2) While methods 1, 2, and 6 are applicable for
microstructural materials design, their efficacy is limited by the
potential information loss (i.e., loss of either dispersive or geomet-
rical characteristics) in microstructure representation and/or
dimensionality reduction. In microstructure representations, some
approximations such as taking radial averages in method 1 and 6
or approximating cluster shapes with ellipses in method 2 could
result in the loss of microstructural characteristics. Dimension
reduction is often needed in microstructure optimization due to
the high-dimensional representation of microstructures. A com-
mon practice is to conduct a transformation of microstructure rep-
resentations (e.g., using principal component analysis (PCA)) and
remove some insignificant dimensions. Information loss would
also occur in the removal process. For instance, Paulson et al.
[25] use spatial correlation function as the microstructure repre-
sentation, and conduct a PCA transformation. It is shown in their
work that removing some principal components could lead to a
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significant reduction in explained structural variance. Another
example is the use of descriptor-based approach. After obtaining
the full list of descriptors, a supervised learning-based feature
selection step is often used to remove the lower-ranked descriptors
[26], wherein some geometric or higher order dispersive informa-
tion is lost. It should be noted that the aforementioned dimension-
ality reduction techniques do not guarantee the capability of
generating new microstructural designs using the reduced dimen-
sion. For example, while the principal components learned by
PCA are capable of identifying new dimensions that are not line-
arly correlated, it is not clear how to generate a new microstruc-
ture by sampling in the learned principal dimensions.

Compared to the existing MCR techniques, generative models
are promising alternatives to address the problems in microstruc-
tural materials design. Instead of identifying characteristics from
microstructures, generative models emphasize the ability of using
a low-dimensional latent variables Z to generate high-dimensional
data X through a generative mapping G: Z ! X to approximate
the real data probability density Pdata(x). In other words, the evalu-
ation criterion for generative models is whether it is capable of
producing very realistic samples, which are indistinguishable
from real samples. The latent variables learned in the generative
model can therefore serve as design variables for microstructural
materials design. In addition, generative models are especially
powerful for microstructural materials design because the
approach is model-based and it can rapidly generate new micro-
structures by changing the values of latent variables, while exist-
ing MCR approaches often need tedious optimization for
microstructure reconstructions (e.g., simulated annealing is used
in correlation function-based reconstruction).

In the realm of deep learning, variational auto-encoder (VAE)
[27] and generative adversarial networks (GAN) [28,29] are two
major categories of generative models. It is well recognized that
VAE suffers from the issue of “maximum likelihood training
paradigm” when combined with a conditional independence
assumption on the output given the latent variables, and they tend
to distribute probability mass diffusely over the data space and
generate blurry samples [30]. Despite these theoretical disadvan-
tages, both Cang et al. [31] and Guo et al. [32] developed VAE-
based models for representing sandstone material microstructures
and topology optimization, respectively. However, their genera-
tive capability is bottlenecked at images of size 40� 40, and it is
impossible to scale up because fully connected layers are involved
in their network architecture.

In contrast to VAE, GAN is a better choice to bypass these
problems. Different from VAE, GAN identifies the latent varia-
bles of data by training a generator-discriminator model pair in
adversarial manner. In Refs. [33] and [34], GAN is used for recon-
structing different types of microstructures, but their applications
in computational materials design are unexplored. In this work, as
illustrated in Fig. 1, we apply a fully scalable GAN-based
approach to determine the latent variables of a set of microstruc-
tures once its dimensionality is prespecified. The latent variables
are then treated as design variables in microstructure optimization.
Thereafter, the material property for the latent variables is
obtained by propagating the latent variables through the generator
in GAN, followed by physical simulations of structure–property
or structure–performance relations. Considering that physical sim-
ulations are usually computationally costly, we also want to mini-
mize the number of property evaluations. Therefore, we pursue a

response surface model-based GP-Hedge Bayesian optimization
framework to optimize microstructure with desired material prop-
erty/performance.

The proposed deep adversarial learning methodology provides
an end-to-end solution that offers a low-dimensional and nonlin-
ear embedding of microstructures for microstructural materials
design. Compared with the existing methods, which cannot fully
capture microstructural characteristics (e.g., two-point correlation
function in method 1 and physical descriptors in method 2), the
proposed method does not make any geometrical or dispersive
approximations and thus there is no information loss. In addition,
the nonlinear embedding of microstructures in the proposed
method avoids the removal of insignificant dimensions of micro-
structure representations (e.g., physical descriptors in method 2
and principal components in method 1) so that more microstruc-
tural information is preserved. Moreover, the proposed method is
also beneficial for microstructural materials design because the
dimensionality of latent variables can be prespecified as needed.
Meanwhile, since the GAN is implemented by deep neural net-
works with large model capacity, it is able to capture very com-
plex microstructural characteristics. In addition to the contribution
of the proposed approach to microstructural materials design, we
also demonstrate that the proposed approach is advantageous in:
(1) scalability: the proposed approach is capable of converting
microstructures into reasonable and computationally affordable
low-dimensional representations as needed, and the generator in
proposed model is scalable to produce arbitrary sized microstruc-
tures; (2) transferability: the discriminator in the proposed
approach could be reused to serve as a pretrained model to facili-
tate the development of structure–property predictive models. To
the best of the authors’ knowledge, this work is the first that
applies adversarial learning in computational design of materials
microstructure.

In the remainder of this paper, we break our presentation of the
deep adversarial learning design methodology into five sections.
In the first part (Sec. 2—design representation), we present the
technical fundamentals of the deep adversarial learning approach,
and show how the latent variables of microstructures are learned
using the proposed approach. The latent variables are then treated
as design variables in the latter sections. In the second part (Sec.
3—design evaluation), we demonstrate how material properties
are evaluated from design variables using the proposed model.
This demonstration is then followed by Sec. 4—design synthesis,
in which Gaussian Process metamodeling is used to create a surro-
gate response surface between the latent variables and the objec-
tive property/performance, and a GP-Hedge Bayesian
optimization is applied to optimize the microstructure to achieve
the target material property. After that, we elaborate two addi-
tional features of the proposed methodology—scalability, which
provides flexibility in taking arbitrary sized input/output, and
transferability, which makes it possible to utilize the trained
weights to build a more accurate structure-property predictive
model (Sec. 5). Last but not the least, we draw conclusions and
discuss potential directions to further extend this proposed
methodology.3

2 Microstructural Design Representation Using Deep

Adversarial Learning

In the proposed methodology, the deep adversarial learning
approach, specifically GAN, is first used to identify a set of latent
variables as microstructure design variables based on microstruc-
ture images collected for the same material system. In this section,
the fundamentals of GAN are first introduced. It is then followed
by a presentation of the proposed network architecture and desig-
nated loss function. Finally, we specify some training details of
the proposed deep adversarial learning model.

Fig. 1 The flowchart of the proposed design methodology

3The GAN model is available for download at: https://github.com/zyz293/
GAN_Materials_Design
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2.1 Fundamentals of Generative Adversarial Network.
Generative Adversarial Network is a type of deep generative neu-
ral network first proposed by Goodfellow et al. [28,29]. Originated
from game theory, the training process of GAN is essentially a
two-player competitive game. Specifically, GAN trains a genera-
tor network G z; h Gð Þ

� �
that produces samples xG from latent vari-

ables z to approximate real samples xdata, and a discriminator
network D(x) that distinguishes the generated samples from the
real samples. This competitive game would eventually lead to a
Nash Equilibrium [35] between the generator G and the discrimi-
nator D. A more vivid analogy of GAN is given by Goodfellow
et al. [28]: in this adversary scenario, the generator can be thought
of a group of counterfeiters who tries to produce fake currency,
while the discriminator is analogous to a team of police, trying to
detect the counterfeit currency from the real money. Competitions
in this adversary game would keep pushing both sides to the equi-
librium in which the counterfeits are indistinguishable. When the
generator is capable of producing realistic samples at the equilib-
rium, the latent variables z would be naturally taken as the “code”
of the data. In the context of proposed generative microstructural
design framework, the “code” will serve as the design variables to
create new microstructure designs.

An illustration of GAN is shown in Fig. 2. The latent variable
space is denoted as Z while the microstructure data space is repre-
sented by X. On the left hand side, to learn the generator distribu-
tion pg that approximates the data distribution, a prior distribution
of the latent variables is defined by Z � pz zð Þ. z is then propa-
gated through a deep neural network to create a differentiable
mapping Gðz; h Gð ÞÞ from the latent variable space Z to microstruc-
ture data space X. On the right-hand side, we also define a dis-
criminator network that takes x, either generated or real
microstructures, and produces a scalar label that indicates if x is
from real data. In other words, we train discriminator (D) to maxi-
mize the probability of assigning the correct label to both real
(label¼ 1) and generated samples (label¼ 0), while we train gen-
erator (G) to maximize the number of occurrences that the labels
are incorrectly assigned by D. Essentially, D and G play a two-
player minimax game, which can be expressed as the following
equation:

min
G

max
D

V D;Gð Þ ¼ EX�pdata xð Þ log D xð Þ½ �

þEz�pz zð Þ log 1� D G zð Þð Þð Þ½ �
(1)

2.2 Network Architecture. In this work, the architecture of
deep convolutional generative adversarial network in Ref. [36] is
adopted except that we use convolutional layers to replace the
fully connected layers in both generator and discriminator for the
sake of scalability (this will be introduced in Sec. 5). The genera-
tor and the discriminator have the same number of layers, and the
number of the convolutional filters are aligned symmetrically in
the generator and the discriminator. In the generator, the last
deconvolutional layer is associated with a tanh activation function
to produce images with bounded pixel values, while the other
deconvolutional layers are attached with batch normalization
operations [37] and rectified linear unit (ReLU) activations [38].
In the discriminator, the last convolutional layer has a sigmoid
activation function appended to produce probabilities between 0
and 1, while the other convolutional layers are all associated with
batch normalization operations [37] and leaky rectified linear unit
(Leak ReLU) activations [39].

Figure 2 is a simple demonstration of the proposed architecture
with five layers in both generator and discriminator. It should be
noted that arbitrary number of layers could be applied in the pro-
posed architecture, as long as the symmetry is kept.

2.3 Loss Function. While the optimality of GAN model is
Nash equilibrium theoretically, in practice, the global optimality
or sufficiently good local optimality is not guaranteed [40]. A
common example of failure is the model collapse, in which the
generator converges to a state that consistently produces identical
samples. Therefore, in order to produce morphologically and stat-
istically equivalent microstructures from the generator, we care-
fully design the loss function which can be generalized to
different applications (Sec. 2.3) and training parameters (Sec.
2.4). Specifically, the total loss consists of three major compo-
nents: (1) adversarial loss (aka. GAN loss) that combinatorially
evaluates the performance of generator and discriminator, (2)
Style transfer loss that imposes morphological constraints to the
generated microstructures, and (3) Model collapse loss that pre-
vents the training from collapsing.

2.3.1 Generative Adversarial Networks Adversarial Loss. The
GAN Adversarial Loss is essentially the optimization objective in
the vanilla version of GAN (Eq. (1)), expressed as

LGAN ¼ EX�pdata xð Þ log D xð Þ½ � þEz�pz zð Þ log 1� D G zð Þð Þð Þ½ � (2)

Note again that, in the min-max training, minGmaxDLGAN essen-
tially wants the generator G to minimize this loss and let D maxi-
mizes it. In practice, we follow [40] to alter the loss of
min log 1� Dð Þ

� �
to max log Dð Þ when optimizing G.

2.3.2 Style Transfer Loss. This loss essentially imposes mor-
phology constraints to the generated samples. The style transfer
loss, namely Gram-matrix loss, is originated from a work by Gaty
et al. [41] for the purpose of texture synthesis. In the field of mate-
rial science, Cang et al. [31] included the style transfer loss into
the total loss function as a penalty term when training a Varia-
tional Auto-Encoder network [29]. In our early work, Li et al. [23]
take the style transfer loss as an optimization objective and uses
its gradients with respect to each entry in the microstructure image
to reconstruct statistically equivalent microstructures. They also
discover an interesting intrinsic relationship between the layers
included in the calculation of style transfer loss and the recon-
structed microstructure: higher level convolutional layers could be
dropped to reduce the computational cost while preserving the
reconstruction accuracy. Recognizing this intrinsic relationship, in
this work, we only retain the first four lowest convolutional layersFig. 2 The architecture of the proposed GAN
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in the VGG-16 model [42] and compute their Gram-matrix as the
style representations. The style transfer loss [41] can be expressed
as

Lstyle ¼
X

l

X
i;j

1

4N2
l M2

l

Gl
ij � Al

ij

� �2

l ¼ 1; 2; 3; 4ð Þ (3)

which measures the distance between style representations of gen-
erated images and real images. In Eq. (3), Nl and Ml are number
of feature maps and size of each feature map (i.e., height�width)
of the lth convolutional layer. Gl and Al are the Gram-matrix of
generated images and real images, respectively. The formula of
Gram-matrix is

Gl
ij ¼

X
k

Fl
ikFl

jk (4)

which calculates the inner product between the ith and jth vector-
ized feature maps of the lth convolutional layer.

2.3.3 Model Collapse Loss. Model collapse is a common
problem of training a GAN model where the generated samples
are clustered in only one or few modes of pdata(x). Thus, model
collapse loss [43]

Lcollapse ¼
1

n n� 1ð Þ
X

i

X
j 6¼i

ST
i Sj

jjSijjjjSjjj

 !2

(5)

is introduced to prevent the training from getting into collapse
mode. In this equation, n denotes the number of samples in a batch
and S represents a batch of sample representations from outputs of
the first four convolutional layers of VGG-16 model [42]. In other
words, S is the concatenated vectorized feature maps of the first
four convolutional layers of VGG-16 model [42].

2.3.4 The Total Loss. The total loss is a weighted combination
of the three aforementioned losses

L G;Dð Þ ¼ LGAN þ aLstyle þ bLcollapse (6)

a and b are the moderating weights that prevent the style transfer
loss and model collapse loss from diminishing to zero or over-
whelming the GAN adversarial loss. The composition of loss

functions and the information flow in the proposed neural network
architecture is depicted in Fig. 3.

2.4 Numerical Validation of Latent Variables. We apply
the proposed deep adversarial learning approach to determine the
latent variables for a dataset of material microstructures.

2.4.1 Training Data. To train the proposed GAN model, a
dataset of material microstructure images that covers a variety of
microstructural dispersions is required. In addition, it is also
required that all the training microstructure images share the same
size. In this work, to validate the proposed approach, 5000 syn-
thetic microstructure images of size 128� 128 are created using
GRF method [20]. In order to reasonably cover the vast space of
compositional and dispersive patterns that correspond to different
processing conditions for the same material system, three parame-
ters (mean, standard deviation, and volume fraction) are carefully
controlled in the GRF model to produce microstructures with dif-
ferent dispersive status but sharing similar underlying characteris-
tics of morphology. Figure 4 row 1 demonstrates some examples
of the training microstructures. 5000 of these samples are used for
training the GAN model. While 5000 seems to be an unrealistic
number in material data gathering, we note that multiple images
can be cropped from one microstructure image in practice. For
example, for 1000� 1000 sized microstructure images, thousands
of 128� 128 samples can be cropped with partial overlapping of
the samples.

2.4.2 Network Architecture Specifications and Training
Parameters. One advantage of the proposed methodology is the
flexibility in assigning the dimension of latent variables. The gen-
erator network is essentially a mapping between latent variables
and microstructure images, so the neural network architecture
depends on both the dimensionality of latent variables prespeci-
fied and the size of microstructure images. Typically, lower
dimensionality is desired for latent variables from the microstruc-
tural design perspective, because smaller number of design varia-
bles helps to reduce the computational cost in microstructure
optimization. However, smaller dimensionality of latent variables
will increase the depth of neural network or increase the stride
parameter in the convolutional layers, which makes the training of
GAN more difficult. Therefore, a trade-off between the latent
variables’ dimensionality and the training difficulty needs to be
considered. After several experiments, it is discovered that the
five-layer architecture with stride 2� 2 as illustrated in Fig. 2 is
practically easy to stabilize and converge while providing suffi-
ciently low dimensionality for the latent variables. The 2� 2
stride configuration essentially results in a scaling factor of 2 on
each dimension in each layer, thus five stacked layers would scal-
ing down the microstructures by a factor of 32 (i.e., 25) on each
dimension. For the aforementioned dataset, the 128� 128 images
are converted to a 4� 4 latent variable tensor, which is flattened
to a 16-dimensional latent variable vector z.

In addition to the dimensionality of z, a bounded latent variable
space is defined by setting each entry of z to be independent and
uniformly distributed between �1 and 1. For generator network,
four (deconvolutional)-batch normalization-ReLU layers are
appended to z sequentially, which is then followed by a (deconvo-
lutional)-tanh layer to produce 128� 128� 1 sized microstructure
images. In contrast, the discriminator network is composed by
four sequentially connected convolution-batch normalization-
leaky ReLU layers. A convolutional-sigmoid layer is appended to
the end of the discriminator network to produce a scalar valued
between 0 and 1 to represent the probability of classifying if the
image given to the discriminator is from real microstructure data-
set (instead of artificially generated ones). A detailed specification
of the dimensionality in each layer is illustrated in Table 1. Note
that to achieve the specified dimensionality, in both deconvolu-
tional and convolutional layers, the filter size is set as 4� 4 and

Fig. 3 The composition of loss function and information flow
in the proposed architecture
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strides are all 2� 2 (The only exception is that we use 8� 8 filter
with stride 1� 1 between discriminator layers 4 and 5).

The a and b parameters discussed in Sec. 2.3 are set as 0.03 and
0.03 for optimal balance between the three components of losses,
respectively. Adam optimizer [44] is applied in training by setting
the learning rate as 0.0005, b1 value as 0.5 and b2 value as 0.99.
In the alternating training of the generator G and the discriminator
D, it is found that it is optimal to set the ratio of network optimiza-
tion for discriminator and generator to 3:1 (i.e., update discrimina-
tor three times and then update generator once) to achieve
stability and convergence.

Some other significant training parameters include: number of
epochs �15,000; batch size �30 and the a parameter in leaky
ReLU� 0.2.

2.4.3 Validation of the Latent Variables. The validity of the
latent variables and the amount of information loss are evaluated
by comparing the original microstructure set and a set of micro-
structures produced by randomly sampling latent variables z and
propagating through the generator network. Specifically, we com-
pare the two-point correlation functions [17,18] and lineal-path
correlation functions [45] of the 5000 original microstructures and
5000 generated ones produced by the generative model trained in
GAN. Figure 4 shows that the generator in GAN is capable of pro-
ducing visually similar microstructures as the original image data
used for training. Figure 5 shows the two-point and lineal-path
correlation functions of original microstructures and microstruc-
tures generated by the proposed generator. Figures 5(a) and 5(b)
show that the mean correlation functions of the 5000 training sam-
ples matches those of the 5000 generated ones. In addition, the
two-point correlation functions’ envelop of the generated samples
overlaps with all possible regions that the original data covers and
its slightly broadened envelop suggests that the proposed model
might be capable of extrapolating the range of microstructures (by
exploring more possibilities of the microstructures) while retain-
ing the morphological characteristics of the collected samples.

3 Microstructure Design Evaluation

In the context of microstructural materials design, design evalua-
tion is the process of evaluating the material properties of interest for
a generated microstructure controlled by the design variables. In the
proposed methodology, it includes two steps: (1) Latent variables
(design variables) to microstructures: the GAN generator learned in
the deep adversarial learning is used to propagate the values of latent
variables to obtain microstructure images. (2) Microstructure to

Fig. 4 Examples of original (training) microstructures and microstructures produced by the
generator

Table 1 The dimensionality of each layer in the proposed net-
work architecture. (bs. is the abbreviation of batch size)

Layer Dimension

Random tensor z bs.� 4� 4� 1
Generator layer 1 bs.� 8� 8� 128
Generator layer 2 bs.� 16� 16� 64
Generator layer 3 bs.� 32� 32� 32
Generator layer 4 bs.� 64� 64� 16
Image X bs.� 128� 128� 1
Discriminator layer 1 bs.� 64� 64� 16
Discriminator layer 2 bs.� 32� 32� 32
Discriminator layer 3 bs.� 16� 16� 64
Discriminator layer 4 bs.� 8� 8� 128
Discriminator layer 5 bs.� 1� 1� 1

Fig. 5 Comparison of correlation functions of original microstructures and microstructures generated by the proposed genera-
tor: (a) two-point correlation function and (b) lineal-path correlation function
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material property: For a generated microstructure, physics-based
simulation is used to obtain the corresponding material property or
structure performance. For the case study in this work, the rigorous
coupled wave analysis [15] is used to simulate the optical absorption
performance of the given microstructure.

4 Microstructure Design Synthesis

Each entry of the latent variables vector z identified by GAN is
independent and bounded in [�1 1]. They serve as the microstruc-
ture design variables in design synthesis, which is accomplished
through simulation-based optimization. Since the structure–
property or structure–performance evaluation is often computa-
tionally expensive, a Bayesian optimization approach is applied to
search for the optimal microstructure with desired material behav-
ior through sequential adaptive sampling. The design optimization
problem is formulated as

z ¼ argmin
z
�f G zð Þð Þ

s:t: zi 2 �1; 1½ �

where G(�) is the generator mapping in GAN, and f(�) is the physi-
cal simulation. After obtaining the optimal value of z, the optimal
microstructure can be generated rapidly by generator G(z).

In the remaining part of this section, we illustrate the use of
response surface-based Bayesian optimization through a micro-
structural materials design case study. The 2D metamaterial struc-
tures being explored have similar morphological characteristics as
the ones used in Sec. 2 (Fig. 4 row 1), but a smaller size of
96� 96 pixels. The design objective is to obtain the microstruc-
ture that maximizes the optical absorption simulated by rigorous
coupled wave analysis, a desirable performance in applications
such as solar cell design. The learned model in Sec. 2 is applied in
this case study, and the dimensionality scaling factor is still� 32
in each dimension. In other words, the 96� 96 microstructure
images would be represented by 3� 3 dimensional tensor (i.e.,
nine-dimensional vector).

4.1 Exploration of Design Variable Space Using Design of
Experiments. To create the response surface model between the
design variables and the objective material property, a set of
design of experiments are sampled. In this work, Latin hyper-cube
sampling (LHS) [46] is applied to sample 250 points in the nine-
dimensional space. Then the material optical performance for
these designs, denoted as y, is obtained by following the design
evaluation process described in Sec. 3. The dataset of 250 samples
(z, y) are used to create the initial response surface model for
Bayesian optimization.

4.2 Gaussian Process Metamodeling and GP-Hedge
Bayesian Optimization. After the initial sampling using LHS,
metamodel-based Bayesian optimization is conducted to itera-
tively explore the potentially optimal design point. Compared to
stochastic optimization approaches such as genetic algorithm and
simulated annealing, Bayesian optimization is a much more effi-
cient global optimization technique as it encourages both explora-
tion and exploitation in the optimization search process. In each
optimization iteration, we fit a metamodel (aka. surrogate model
or response surface model) using Gaussian process metamodeling
[47] to statistically approximate the relationship between design
variables and the design performance. The dataset (z, y) is
expanded by one more sampling point in each iteration using the
GP-Hedge criteria [48]. Figure 6 illustrates how Gaussian process
metamodeling and the GP-Hedge optimization strategy are inte-
grated in this work.

Gaussian process model [47], also known as Kriging model, is
a statistical model that interpolates the observations and supplies
uncertainty for the metamodel prediction at each estimation point.

In essence, Gaussian process models the data points {X, y} and
the estimations fX0; y0g using

y

y0

� �
� N 0;

Cov X;Xð Þ Cov X;X0ð Þ
Cov X0;Xð Þ Cov X0;X0ð Þ

� �� 	
(7)

where Cov(A, B) represents the covariance matrix between A and
B, defined by Cov A;Bð Þ ¼ E ABTð Þ �E Að ÞE Bð ÞT. Conditioning
on the data D¼ {X, y}, the posterior P y0jX;X0; y

� �
yields a Gaus-

sian distribution in which,

l ¼ Cov X;X0ð ÞCov X;X0ð Þ�1
y

R ¼ Cov X0;X0ð Þ � Cov X;X0ð ÞCov X;Xð Þ�1
Cov X0;Xð Þ

(8)

Gaussian process metamodeling essentially gives a surrogate
model that quantifies the statistical mean estimations and uncer-
tainties at the unexplored design points. By using the mean esti-
mations and the uncertainties, a smaller set of design points that
could potentially improve the performance can be identified. In
this case, expensive design evaluations only need to be conducted
on these candidate design points, thereby eliminating redundant
design evaluations. As a consequence, the overall computational
cost of the design process is reduced tremendously.

In each iteration of the Bayesian optimization, the Gaussian
process metamodel is applied to determine the next sampling
point. Typical criteria (aka. acquisition functions) to locate the
next sampling point include expected improvement [49], probabil-
ity of improvement [50], and lower confidence bound [51]. These
criteria are different in how the trade-off is made between explo-
ration (picking samples at locations with large uncertainty) and
exploitation (choosing samples at locations close to the optimum
based on the mean prediction). In this work, we apply the GP-
Hedge mechanism to probabilistically choose one of the above
three acquisition functions at every optimization iteration. The
general procedure of GP-Hedge Bayesian optimization is illus-
trated in Algorithm 1.

Algorithm 1 GP-Hedge Bayesian optimization

1: Select parameter g 2 Rþ

2: Set the gains for acquisition function i, gi
0 ¼ 0 for i¼ 1, 2,…, N

3: t¼ 0
4: while stopping criteria is not met do

5: t¼ tþ 1
6: Each acquisition function propose a point xi

t
7: Set xt ¼ xi

t with softmax probability

pi
t ¼ exp ggi

t�1

� �
=
PK
l¼1

exp ggl
t�1

� �
8: Obtain the objective function value yt¼ f(xt)
9: Augment data D1:t ¼ D1:t�1; xt; ytð Þ


 �
10: Receive rewards ri

t ¼ l xi
t

� �
from the updated GP

11: Update gains gi
t ¼ gi

t�1 þ ri
t

12: end while

This GP-Hedge Bayesian optimization process is applied to our
design case study beginning with the metamodel created using the
250 initial LHS samples, followed by 120 iterations of optimiza-
tion. Throughout the optimization process, the values of the latent
(design) variables are constrained between [�1,1] to retain the
morphological characteristics learned from the sample images.

Figure 7 shows the optimization history with microstructure
design solution indicated at a few iterations. A few observations
can be made: (1) design performance is improved significantly at
the very beginning of the Bayesian optimization, while the
improvement becomes less as the number of iterations increases.
(2) Design performance is not necessarily improved in the new
iteration. This is reasonable because the new sampling point is
chosen for both exploration and exploitation using the criterion
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that combines both the mean estimation and the uncertainty in the
metamodel.

Figure 8 illustrates the comparison between the optical per-
formance of three datasets: (a) 30 randomly sampled microstruc-
tures from training set, (b) 30 microstructures generated by
randomly sampling latent variables z and propagating through the
trained generator, and (c) the optimized microstructure. It should
be noted that in order to make a fair comparison, we randomly
sampled 30 microstructures from training set in each trial for data-
set (a), and repeated this trial ten times. It is observed that the
results of randomly sampled microstructures have the lowest

optical performance and the largest variance. It is found that the
mean optical performance of the microstructures produced by the
GAN generator (0.6827) is 4.8% (0.6827/0.6509� 1) greater than
that of the randomly sampled microstructures (0.6509), while the
optimized microstructure’s performance (0.7630) exceeds the
mean performance of randomly sampled microstructures by
17.2% (0.7630/0.6509� 1). It should be noted that the theoretical
upper bound of the evaluated optical absorption property is 1.0, so
the design solution provided by the proposed approach is reason-
ably good. These results verify the effectiveness of the proposed
design optimization framework.

5 Scalability and Transferability

In the previous sections, we have discussed the process of
applying the proposed deep adversarial learning model for identi-
fying latent variables of microstructures and conducting micro-
structural materials design. With the proposed methodology, the
dimensionality of latent (design) variables can be prescribed and
the information loss is negligible even for complex microstruc-
tural geometries. In addition to these advantages, in this section a
few additional useful features of the proposed deep adversarial
learning model are elaborated.

5.1 Scalability of the Generator. Benefited from the exclu-
sion of fully connected layers in the network architecture, the scal-
ability of the generator provides the proposed GAN model the
flexibility of taking arbitrary sized inputs (latent variables) and
outputs (microstructures). This is a signature of the proposed
model because confining the input dimensionality could lead to a
low-dimensional microstructural design space, and varying the
output size can consequentially produce different sized micro-
structures to serve different analytical purposes (e.g., analysis in
statistical volume elements versus representative volume
elements).

Specifically, the scalability is useful in two ways: (a) Flexibility
in setting the dimensionality of latent variables. In the proposed
network architecture, adding each additional convolutional layer
increases the scaling factor between the generated image and the
latent variables by a factor of 4 (� 2 on each dimension). There-
fore, in the aforementioned design case in Sec. 4, when the 9216-
dimensional (96� 96) microstructure is to be converted into 9-
dimensional (3� 3) latent variables, five network layers are
stacked (i.e., 96/3¼ 32¼ 25). In theory, stacking more neural net-
work layers in the proposed model can enlarge the scaling factor,
and the accuracy would be retained as long as the training is well
handled. However, adding more layers inevitably increase the dif-
ficulty of training the GAN. In other words, while low dimension-
ality of the latent variables often leads to less microstructure
design optimization cost because of less design variables, it
increases the GAN training cost because of higher model com-
plexity. Hence, a key consideration in choosing the number of
latent variables is the trade-off between the optimization cost and
the GAN training cost. When the computational resource for
design optimization is limited (e.g., physics-based simulations are
extremely expensive), it would be better to keep a lower dimen-
sionality of the latent variables though more training time for
GANs is needed. In contrast, if the design optimization is not lim-
ited by the computational resource, a reasonably higher dimen-
sionality of the latent variables is acceptable so that the burden on
training GANs can be reduced. (b) Generating arbitrary sized
microstructures. While the deep learning network is trained by
setting the dimension of z as bs.� 4� 4� 1, one may modify the
dimensionality of latent variables z to control the size of the gen-
erated images without retraining the model. Figure 9 illustrates
the generated images with different sizes using different dimen-
sional settings of z. It demonstrates that the proposed generator is
capable of generating arbitrary sized microstructures for the mate-
rial system of interest. An alternative way of controlling the size
of microstructure is to include/remove convolutional layers. For

Fig. 7 The microstructure optimization history and microstruc-
ture designs indicated at selected iterations

Fig. 8 The comparison of the optical absorption property
between (1) 30 randomly generated microstructures, (2) 30
microstructures generated by the trained generator, and (3)
optimal design

Fig. 6 The integration of Gaussian process metamodeling and
GP-Hedge Bayesian optimization
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instance, 256� 256 images could be generated by adding one
more layer in both generator and discriminator before training and
keep the size of z as bs.� 4� 4� 1 However, the deeper the neu-
ral network is, the harder the training process would be. More-
over, retraining is required if model’s architecture is changed.
Hence, changing the dimensionality of z is often preferred for this
reason.

5.2 Transferability of the Discriminator. In addition to the
aforementioned microstructural materials design contributions of
the proposed approach, we also discover an additional utility of
the discriminator in improving structure-property predictions via
transfer learning. While the generative capability is usually
emphasized [28,52], the utilization of discriminator is more or
less ignored. However, totally discarding the discriminator is
wasteful as there is always significant “knowledge” about the data
(in the context of this work, microstructures) learned by the dis-
criminator. In this work, we propose to leverage the knowledge
learned from the discriminator into the development of machine
learning-based structure–property predictions via transfer learn-
ing. In training deep networks, stochastic gradient descent-based
algorithms are the typical choices. Since stochastic gradient
descent converges to local minimum, its optimized value is very
sensitive to the initialization of the network. With transfer learn-
ing, instead of randomly selecting a starting point for the weights
of the structure–property predictive network, the weights are ini-
tialized using ones obtained in the GAN discriminator trained on
the microstructure dateset in Sec. 2, by analogy to Ref. [53].

In the context of this work, the discriminator is essentially a
binary classifier trained together with the generator to distinguish

generated microstructure from real ones. Our objective is to utilize
the trained weights in this classifier and transfer them into a
structure-property regression model. It should be noted that, in
training and testing this regression model, we use additional 250
samples (microstructures and their corresponding properties)
exclusive from the 5000 samples used for training the GAN, and
we randomly split them into 200/50 sets for training/testing. There
are three primary steps in building the regression model:

(1) Transferring partial architecture and weights: We borrow
the first four convolutional layers of the trained discrimina-
tor (their architecture and the corresponding weights) as the
basic building blocks.

(2) Appending full-connected layers at the end: The output of
the 4th convolutional layer is flattened and two fully con-
nected layers of 2048 and 1024 neurons with ReLU activa-
tion are appended. Dropout normalization (p¼ 0.5) is
applied after each fully connected layer. A fully connected
layer of 1 neuron is added at the end to produce the scalar
output of the regressor. The weights of all these additional
layers are initialized randomly.

(3) Fine-tuning weights using Adam: Adam optimizer is
applied to fine-tune the weights in some of the layers. As it
is well recognized that the early convolutional layers (Con-
volutional layers 1–3 of the discriminator) usually contains
general Gabor-like filters, we freeze these layers’ weights
from Adam optimization. The other layers are subject to
the Adam optimization (learning rate¼ 0.0005, b1¼ 0.5,
b2¼ 0.99) for 4000 epochs with batch size of 50.

To demonstrate the advantage of applying this transfer learning
strategy for building the structure–property model, we also

Fig. 9 An illustration of microstructures of different sizes generated by the scalable generator: (a) 64 3 64, (b) 96 3 96, (c)
128 3 128, (d) 192 3 192, (e) 256 3 356, and (f) 512 3 512
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conduct another training process with exactly the same network
architecture but initializing all weights randomly (instead of using
pretrained weights) as a control group. This control group is
named “training from scratch” in the remainder of this section.
We compute the mean-squared-errors and the mean-absolute-
errors (MAE) on the 50 reserved testing data with 30 repetitive tri-
als. Since both error metrics measure the same fundamental error
phenomena, we only show the result of MAE comparison in
Fig. 10. From the results, it is found that, compared to training
from scratch, transfer learning strategy can facilitate the develop-
ment of structure-property predictive model by improving its
accuracy and stability. This finding is consistent with our intuition
that prior knowledge learned by the discriminator network could
help in building a more accurate predictive model.

6 Conclusion and Future Work

In this work, we proposed a deep adversarial learning method-
ology for microstructural material design. In the proposed meth-
odology, the dimensionality of latent variables for microstructures
is prescribed first. Then a GAN consisting of a generator and a
discriminator is trained on a dataset of microstructures being stud-
ied. The latent variables are then taken as design variables in a
Bayesian optimization framework to obtain the microstructure
with desired material property. Gaussian Process metamodeling is
used at each optimization iteration to update the relationship
between the design variables and the microstructure performance,
and GP-Hedge criterion is used for proposing the next candidate
sampling point. The proposed methodology features several con-
tributions: First, the proposed methodology provides an end-to-
end solution for microstructural materials design, which reduces
information loss and preserves more microstructural characteris-
tics. Second, this work is to extend the use of GAN to be a part of
the design loop. The GP-Hedge Bayesian optimization incorpo-
rates Gaussian Process metamodeling to reduce the number of
design evaluations and thus decreases the computational cost
while improving the design performance. Third, a customized loss
function with the proper moderating parameters is presented for
generating new microstructural design with similar characteristics.
Finally, the deep learning network architecture and the training
parameters obtained in this work could be re-used as a starting
point for other applications of deep learning in materials science
(e.g., transfer learning).

While this work demonstrates the benefits of the proposed
methodology, a few technical details can be further examined in
future work. First, this work could make a boarder impact on other
material microstructures such as ones with very sharp features
(e.g., pointy edges), crystalline structures, or grain boundary
maps, multiphase or continuous phase microstructures. Next, the

processing or manufacturing constraints are not considered in the
design optimization. In order to take the processing conditions as
design variables, the processing-structure-property linkage needs
to be established. Similar to our earlier work [11,15,54], we will
study the relationship between latent variables and such process-
ing or manufacturing parameters, including appropriate con-
straints in the optimization process. Attempts would be also made
to associate physical meanings to the learned latent variables so
that materials scientists could explicitly control some characteris-
tics of the optimized microstructure. In addition, the choice of
dimensionality of latent variables can be guided through detailed
numerical studies to better understand the impact of low dimen-
sionality on network training. Special attention needs to be paid
toward the network theory and practice for stabilizing the training
process. Other potential directions for improving network model-
ing include but are not limited to utilizing Wasserstein GAN [40]
for solving model collapse problem, introducing ResNet structure
[55] for higher learning capability, or investigating visual atten-
tion mechanism [56] for better interpretation of the model.
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