
Knowl Inf Syst (2017) 50:969–997
DOI 10.1007/s10115-016-0962-8

REGULAR PAPER

SILVERBACK+: scalable association mining via fast list
intersection for columnar social data

Yusheng Xie1,3 · Zhengzhang Chen2 · Diana Palsetia1 ·
Goce Trajcevski1 · Ankit Agrawal1 · Alok Choudhary1

Received: 22 December 2014 / Revised: 14 April 2016 / Accepted: 27 May 2016 /
Published online: 4 July 2016
© Springer-Verlag London 2016

Abstract We present Silverback+, a scalable probabilistic framework for accurate associ-
ation rule and frequent item-set mining of large-scale social behavioral data. Silverback+
tackles the problem of efficient storage utilization and management via: (1) probabilistic
columnar infrastructure and (2) using Bloom filters and sampling techniques. In addition,
probabilistic pruning techniques based on Apriori method are developed, for accelerating the
mining of frequent item-sets. The proposed target-driven techniques yield a significant reduc-
tion of the size of the frequent item-set candidates, as well as the required number of repetitive
membership checks through a novel list intersection algorithm. Extensive experimental eval-
uations demonstrate the benefits of this context-aware consideration and incorporation of
the infrastructure limitations when utilizing the corresponding research techniques. When
compared to the traditional Hadoop-based approach for improving scalability by straightfor-
wardly adding more hosts, Silverback+ exhibits a much better runtime performance, with
negligible loss of accuracy.

Keywords Association rule mining · Frequent item-set mining · Columnar probabilistic
databases · Social media · Bloom filter

1 Introduction and motivation

In order to increase the revenue via effective advertising, economic analysts have proposed
a range of techniques in the recent years, collectively named behavioral targeting [7]. In the
context of social websites, users’ behavioral data may be generated via forms of likes, posts,
retweets or comments [30,31]. However, regardless of the particular manner in which the

B Yusheng Xie
yxi389@eecs.northwestern.edu

1 Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
2 NEC Laboratories America, Princeton, NJ, USA
3 Baidu Research, Sunnyvale, CA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-016-0962-8&domain=pdf

970 Y. Xie et al.

data is generated, the foremost characterization of social behavior data is the large number of
users got involved. For example, throughout our earlier projects [32] we have estimated that
in March 2012 nearly 1 billion of public comments or post likes were generated by Facebook
users alone.

Researchers often rely on the data mining techniques (developed for more traditional data
sources and formats) to extract valuable knowledge from behavioral data. It is not surprising
that analyzing the public social web and extracting the most relevant items (i.e., frequent item-
sets) is a valuable application of association rule mining to large behavioral databases for a
particular commercial interest. Broadly speaking, an interest could mean a group of online
users, a brand or a product—e.g., the brand “Nikon” is a description of an interest in cameras.
Given a set of interests and a large behavioral database of transactions of user activities in
online social networks, one of the challenging tasks is to find a list of relevant interests that
share a similar demographic characteristics. In many regards, this operation is analogous
to finding frequent item-sets and association rules from a large number of transactions of
co-occurrences of the items [1].

When it comes to online behavioral settings, the scale of the data is one factor posing
unique challenges of a nature different from the contexts of the existing works on association
mining. We are challenged with a behavioral database containing over 10 billion transactions,
up to 30,000 distinct items and growing by over 30 million transactions every day. In this spirit,
there are two important and, in some sense, complementary observations which motivated
our work:

1. Adding more hardware could readily help in addressing the scalability problem—
however, what if a Big Data startup cannot afford this “brute force” avenue of attaining
sufficient computing power? Contrary to large enterprises such as Facebook or Twitter,
many of their smaller-in-scale partner startups have much fewer database engineers.
Those engineers are challenged with designing a system, which is expected to handle
inundating amount of data sent from their larger social network partners. Constraints,
both in terms of the budget limitations and considerations for energy-saving, dictate the
necessity for designing alternatives on commodity hardware, as opposed to the simplistic
“put it on more machines and scale”.

2. There is the ever-present trade-off between the amount of storage use and the qual-
ity/utility of the knowledge obtained. Various forms of data compression techniques,
both in the context of traditional files [24] as well as streaming, spatiotemporal and
sensor data [5,10,16] have been proposed in the research literature. We note, however,
that properly exploiting statistical techniques can shift the trade-off margin toward pro-
viding a significant increase in the utility of extracted knowledge from the large-scale
behavioral data, at the smaller-scale storage overheads. Probabilistic approaches, for as
long as they provide certain accuracy guarantees of the mining results, do seem like
viable avenues toward efficient storage schemes.

1.1 Problem description

The main challenge in our application scenarios is to parsimoniously and accurately compute
target-driven frequent item-sets and association rules for a given (large) database of users’
activity logs, for the purpose of providing a real-time on-demand response.

We use D to denote the list of users’ activities across public walls in the Facebook network
(or handles from Twitter). D consists of quadruples of the form (ui , wi , ti , ai) ∈ D(i =
0, 1, . . . , |D|), each quadrupl denoting an individual user activity. The interpretation is that
for i th transaction, user ui made activity of type ai on wall wi at timestamp ti . Each ui

123

SILVERBACK+: scalable association mining via fast list... 971

belongs to U , the set of all user IDs; each wi belongs to W , the set of all wall IDs. In practice,
|W | " |U | " |D|, thereby justifying the expectation that for some i #= j , ui = u j or
wi = w j .

Aggregating the wall IDs in transactions from D by user ID generates DU —which is a
database of behavioral transactions. There is a clear analogy between DU and the famous
supermarket example of frequent item-set mining. User IDs in DU are equivalent to transac-
tions of purchase; walls that a particular user has activities upon are equivalent to the items
purchased in a particular transaction. In this paper, we use wall and item interchangeably.

For a given (minimal) support level α, a frequent item-set F is a subset of W such that
there are at least α transactions in DU . Fk , a k-item-set, denotes a frequent item-set with
exactly k number of items. A target-driven rule is generally defined as an implication of the
form X ⇒ Y , where X, Y ⊂ W , X ∩ Y = ∅, X ∪ Y = Fk and Y is given as the target.

Given a live and rapidly growing D and a target Y , our goal is to efficiently discover rules
that imply Y . As an illustration, DU in our settings is equivalent to an 800-million-by-30,000
table that would have over 20 trillion cells in full representation.

Our main contributions can be summarized as follows:
• We present Silverback+—a probabilistic framework for accurate association rule and

frequent item-set mining at massive streaming scale, implemented on a commodity hard-
ware. The framework and algorithmic implementations have been successfully deployed
at large scale for commercial use and progressively improved to the current version since
May 2011.

• We present algorithms based on hierarchy of Bloom filters and sampling techniques which
yield fast probabilistic query processing with satisfactory penalties on the accuracy, using
column-based storage for managing large transactional databases.

• We propose an Apriori-based algorithm to probabilistically prune candidates without
support-counting for every candidate item-set.

• We present quantitative observations based on a large set of experiments that we con-
ducted, demonstrating that Silverback+ is significantly more efficient than a generic
MapReduce-based implementation.

A preliminary version of this work was presented in [32], and the current article, in addition
to the more comprehensive set of experiments, improves the earlier work by introducing
hierarchical (binary) tree of Bloom filters and corresponding algorithms for speeding up the
computation of the two frequent item-sets and association rules.

In the rest of this article, Sect. 2 presents the related literature and observations regarding
our proposed approach. Sections 3 and 4 address in greater detail the storage and infrastruc-
ture, along with the methodology and data structures and algorithms. In Sect. 5, we present
the experimental results, and in Sect. 6, we conclude the article and outline directions for
future work.

2 Related work

We now present an overview of the relevant literatures. After discussing three categories of
works related to association mining, we overview the applications of Bloom filters.

2.1 Association mining

Association mining focuses on efficient detection of correlations between items in a dataset.
Despite several recent advances in parallel association mining algorithms [22,33], the core

123

972 Y. Xie et al.

techniques are still similar in spirit to the popular Apriori algorithm [2]. Essentially, Apriori
identifies the frequent items by starting with a collection of small item-sets and proceeding to
larger item-sets only when all the subsets happen to be frequent. This incurs cost-overheads
due to scanning the entire database in every count step. Several techniques have been proposed
to improve issues of Apriori such as counting step, scanning and representing database,
generating and pruning candidates and ordering of items, some of which we discuss in detail
as follows.

2.1.1 Max-miner

Max-Miner [3] addresses the limitations of basic Apriori by allowing only maximal frequent
item-set (long patterns) to be mined. An item-set is maximal frequent if it has no superset
that is frequent. This reduces the search space by pruning not only on subset infrequency but
also on superset infrequency.

Max-Miner uses a set enumeration tree which imposes a particular order on the parent and
child nodes, but not its completeness. Each node in the set enumeration tree is considered
as a candidate group (g). A candidate group consists of 2-item-sets: first called head (h(g)),
which is the item-set enumerated by the node, and the second called tail (t (g)), which is an
ordered set and contains all items not in h(g). The ordering in the tail item-set indicates how
the subnodes are expanded. The counting of support of a candidate group requires computing
the support of item-sets h(g), h(g) ∪ t (g), h(g) ∪ {i},∀i ∈ t (g). Superset pruning occurs
when h(g) ∪ t (g) is frequent. This implies that item-set enumerated by subnode will also be
frequent but not maximal, and therefore, the subnode expansion can be halted. If h(g) ∪ {i}
is infrequent then any head of a subnode that contains item i is infrequent. Consequently,
subset pruning can be implemented by removing any such tail item from candidate group
before expanding its subnodes.

Although Max-Miner with superset frequency pruning reduces the search time, it still
needs many passes of the transactions to get all the long patterns—becoming inefficient
in terms of both memory and processor usage (i.e., storing item-sets in a set and iterating
through the item-sets in the set) when working with sets of candidate groups.

2.1.2 Divide and conquer approaches

FP-Growth [12] gains speed-up over Apriori by allowing frequent item-set discovery without
candidate item-set generation. It builds a compact data structure called the FP-tree which can
be constructed by allowing two passes over the dataset, and frequent item-sets are discovered
by traversing through the FP-tree.

In the first pass, the algorithm scans the data and finds support for each item, allowing
infrequent items to be discarded. The items are sorted in decreasing order of their support.
The latter allows common prefixes to be shared during the construction of FP-tree. In the
second pass, the FP-tree is constructed by reading each transaction. If nodes in the transaction
do not exist in the tree, then the nodes are created with the path. Counts on the nodes are
set to be 1. Transactions share common prefix item, and the frequent count of the node (i.e.,
prefix item) is incremented.

To extract the frequent item-sets, a bottom up approach is used (traversal from leaves to
the root), adopting a divide and conquer approach where each prefix path subtree is processed
recursively to extract the frequent item-sets and the solutions are then merged.

123

SILVERBACK+: scalable association mining via fast list... 973

Allowing fewer scans of the database comes at the expense of building the FP-tree—the
size of which may vary and may not fit in memory. Additionally, the support can only be
computed once the entire dataset is added to FP-tree.

Similar to FP-Growth, Eclat employs the divide and conquer strategy to decompose the
original search space [34]. It allows frequent item-set discovery via transaction list (tid-list)
intersections and is the first algorithm to use column-based, rather than row-based represen-
tation of the data. The support of an item-set is determined by intersecting the transaction
lists for two subsets, and the union of these two subsets constitutes an item-set.

The algorithm performs depth-first search on the search space. For each item, in the first
step it scans the database to build a list of transactions containing that item. In the next step, it
forms item-conditional database(if the item were to be removed) by intersecting tid-list of the
item with tid-lists of all other items. Subsequently, the first step is applied on item-conditional
database. The process is repeated for all other items as well.

Like FP-Growth, Eclat reduces the scans of the database at the expense of maintaining
several long transaction lists in memory, even for small item-sets.

2.1.3 Distributed and parallel approaches

Discovering patterns from a large transaction dataset can be computationally expensive, and
therefore, almost all existing large-scale association rule mining utilities are implemented on
the MapReduce framework. Such examples include Parallel Eclat [35], Parallel Max-miner
[8], Parallel FP-Growth [21] and Distributed Apriori [33].

Table 1 compares our proposed method with other popular existing methods in many
aspects including their scalability to more nodes (Silverback+’s core complexity analysis
is presented in Sect. 4.3.3). For the number of database scans required by different algorithms,
Apriori and Max-Miner would require O(k) scans where k is the number of longest frequent
pattern length. On the other hand, Eclat, FP-Growth and Silverback+ would only need a
constant time of database scans. For memory footprint, we try to provide some qualitative
comparison in Table 1. Generally speaking, Apriori and Max-Miner require an amount of
memory consistent with the database size (number of transaction) and the problem size
(minimal support, maximal pattern length). FP-Growth is known to consume a large amount
of memory due to the growth of its tree structure [21,23]. Eclat and Silverback+ can achieve
relatively low memory footprint by taking advantage of the columnar storage (see discussion
on Figure 22 of [34]). And Silverback+ further cuts its memory footprint thanks to the
compressibility of the Bloom filters.

2.2 Modern applications of Bloom filters

Capturing demographics between any two interests can generate high space complexity as it
requires membership operations. Bloom filter is a popular space-efficient probabilistic data
structure used to test membership of an element [4]. For example, Google’s Bigtable storage
system uses Bloom filters to speed up queries, by avoiding disk accesses for rows or columns
that do not exist [6]. Similar to Google’s Bigtable, Apache modeled the HBase, which is a
Hadoop database. HBase employs Bloom filters for two different use cases. One is to access
patterns with a lot of misses during reads. The other is to speed up reads by cutting down
internal lookups.

A nice property of Bloom filters is that the time needed to incorporate new items or to check
whether a given item is in the set, is fixed at O(k), where k is the number of hash functions,
and is independent of the items already present in that set. However, there is a caveat: It

123

974 Y. Xie et al.

Ta
bl

e
1

C
om

pa
ri

so
n

w
ith

po
pu

la
ra

ss
oc

ia
tio

n
m

in
in

g
al

go
ri

th
m

s

A
lg

or
ith

m
Tr

an
sa

ct
io

n
Fr

eq
.i

tm
s.

D
b.

M
em

or
y

C
lu

st
er

E
m

pi
ri

ca
l

Su
pp

or
t

L
in

es
of

A
cc

ur
ac

y
st

or
ag

e
re

pr
es

en
ta

tio
n

sc
an

s
fo

ot
pr

in
t

sc
al

ab
ili

ty
ef

fic
ie

nc
y

co
un

t
co

de

A
pr

io
ri

R
ow

-b
as

ed
R

ow
-b

as
ed

O
(k

)
L

ar
ge

G
oo

d
(Y

e
an

d
C

hi
an

g
[3

3]
)

B
en

ch
m

ar
k

Y
es

∼1
00

0
E

xa
ct

M
ax

-M
in

er
R

ow
-b

as
ed

R
ow

-b
as

ed
O

(k
)

L
ar

ge
Fa

ir
(C

hu
ng

an
d

L
uo

[8
])

∼5
×

Y
es

U
nk

no
w

n
E

xa
ct

E
cl

at
C

ol
um

na
r

Fl
ex

ib
le

C
on

st
.

Sm
al

l
Po

or
(Z

ak
ie

ta
l.

[3
5]

)
3×

–1
0×

Y
es

∼2
00

0
E

xa
ct

FP
-G

ro
w

th
R

ow
-b

as
ed

FP
-t

re
e

C
on

st
.

E
no

rm
ou

s
V

er
y

go
od

(L
ie

ta
l.

[2
1]

)
5×

–1
0×

Y
es

70
00

+
E

xa
ct

Si
lv

er
ba

ck
+

C
ol

um
na

r
Fl

ex
ib

le
C

on
st

.
Ti

ny
G

oo
d

>
15

×
C

on
st

.t
im

e
∼2

00
0

Pr
ob

ab
ili

st
ic

Fo
re

xa
ct

m
in

in
g,

E
cl

at
is

of
te

n
fa

vo
re

d
on

sm
al

l,
fit

-i
n-

m
em

or
y

pr
ob

le
m

s
an

d
pa

ra
lle

lF
P-

G
ro

w
th

is
so

m
et

im
es

fa
vo

re
d

fo
rs

ol
vi

ng
a

la
rg

e
pr

ob
le

m
in

a
di

st
ri

bu
te

d
se

tti
ng

.O
ur

pr
op

os
ed

Si
lv

er
ba

ck
+

ac
hi

ev
es

su
pe

ri
or

in
ef

fic
ie

nc
y,

sc
al

ab
ili

ty
an

d
m

em
or

y
fo

ot
pr

in
tb

y
ad

ap
tin

g
pr

ob
ab

ili
st

ic
da

ta
st

ru
ct

ur
es

123

SILVERBACK+: scalable association mining via fast list... 975

Fig. 1 Facebook user activity distribution (June 2008–January 2012, with vertical axis in log scale)

allows for false positives. For a given false positive probability p, the length of a Bloom filter
m is proportionate to the number of elements n being filtered: m = −n ln p/(ln 2)2.

A recent application of Bloom filters in association mining appears in [25]. The authors of
[25] propose a sophisticated and interesting proposal to use Bloom filters to preserve privacy
in association mining. The focus of [25] is primarily on the probabilistic and random nature of
keyed Bloom filters for preserving privacy and is not on their spatial efficiency and scalability
in a practical distributed environment (e.g., the authors of [25] test up to 515 K transactions
on real data and 1 M transactions on synthetic data on a shared memory platform).

3 Storage and infrastructure

Given the scale of behavioral database DU in our settings, the traditional row-based storage
[2,12,19] would be a poor choice for scalability. To improve performance and scalability,
we demand an efficient storage scheme. It is not our objective to invent a general-purpose
advanced distributed storage engine, adding to the already abundant list of such engines and
file systems. Instead, we focus on an application/data-driven ad hoc solution and, as it turned
out, a probabilistic column storage is very effective in tackling the massive data scale in our
intended application domains.

3.1 Column storage and scalability

The key motivation for our design is based on the following observations: (1) The full
representation of DU full requires over 20 trillion cells (740 M users by 32 K walls). This
is impractical even in distributed environment, aside from budgetary issues. (2) Of the 20
trillion cells, less than 0.1 % are populated. According to our estimates, an average user
accesses less than 14 of the 32 K walls.

The sparsity of DU is not a coincidence, nor should it come as a surprise. In fact, the
global sparseness in a social graph and the power law decay in its node degree distribution
are examples of the asymptotic behaviors we observe. Figure 1 illustrates the distribution of

123

976 Y. Xie et al.

Fig. 2 Using columnar storage in place of traditional row-based storage for transactions (abbreviated as trnsc.
in figure), with probabilistic enhancement. Each transaction is visually grouped by a dashed rectangle but
is physically distributed among different columns (abbrv. as col 1, . . ., col n). Each col is compressed to a
Bloom Filter (abbrv. as bf 1, . . ., bf n), which is stored in cache and is easier to access than the uncompressed
columns. We use red (upper rectangle) to denote what is stored on large but slow hard disks and blue (lower
rectangle) for small but faster cache storage (e.g., RAM or SSD). The bidirectional vertical arrows between
disk and cache denote the insertion of columnar items to the Bloom filters (an algorithmic process that is further
explained in Fig. 3). Reservoir sampler on the right suggests that sampling would occur in the insertion process
if (and only if) some columns are prohibitively large for the cache. Best viewed in color (color figure online)

Facebook users and the number of walls (items) they access, demonstrating that the number
of users accessing x number of walls drastically decreases as x increases. Specifically, over
40 % of the users only access less than 5 of the 32,000 walls—with a note that the “spike” on
the right side is due to aggregating all users with more than 100 accessed walls into a single
category. Hence, majority of the transactions in DU are likely to contain only a small number
of items.

We use a sparse representation of the massive DU called “list of lists” (LIL) [26] (or
“Column Family” in Cassandra [18]). LIL typically stores a massive sparse matrix by using
a list to record the nonzero cells for each row. A column-based “list of columns” (LIC)
representation is implemented for representing DU . That is, the LIC representation of DU
contains a wall column for each wall ID, and each wall column only contains the active
user IDs of the 800 million users. The upper part of Fig. 2 illustrates how the traditional
row-based transactions of items can be stored as columnar database, where LIC is a popular
implementation.

One of the advantages in this columnar storage is data independence: the LIC represen-
tation of DU can be partitioned by columns which can be stored as physically different files
on different hosts. Inserts, deletes and updates to any wall will only affect its column and
therefore avoids database locks, which is especially helpful for live databases such as DU .

123

SILVERBACK+: scalable association mining via fast list... 977

3.2 Probabilistic enhancement

An important consequence of the sparsity ofDU is that in LIL representation, the lists/columns
for the walls will have drastically different lengths. For example, the wall list for Coca Cola
on Facebook contains over 30 million user IDs, whereas the small (albeit important) interests
such as ACM SIGMOD have less than 100 user IDs in their lists.

The main problem caused by the massive size differences is that the resource allocator
would face a combinatorial problem—each host has a capacity and each column has different
sizes. If all the columns were similar in size, the allocator could have easier situation to deal
with by treating all columns equally. Toward this, two approaches seem appealing:

1. One may opt to shard the longer columns (e.g., Coca Cola)—however, this introduces
extra complexity as it diminishes the strong inter-column independence, which is impor-
tant for us to scale easily. Extra locks would be required at column-level and shard-level
for different chunks of a sharded column. The situation becomes more complicated if
the column is so big that its shards reside on multiple hosts. Indeed, sharding function-
ality is available in existing products like MongoDB.1 But MongoDB 2.1 generically
implements readers–writer lock and allows one write queue per database, which is not
desirable in our case and may have unforeseeable impact at large scale.

2. The other approach—which we adopted as our philosophy—is to simply solve the locking
problem by “avoiding it”. Namely, similar to [14], we impose each column file to be
single-threaded, and therefore, no lock mechanism or extra complex management is
required. The trade-off here is the need to make sure each column file size can be handled
by a single thread with a reasonable delay. Sampling can alleviate the size difference
among columns and make large columns controllable by a single-thread, and reservoir
sampler [29] is used for exceedingly long columns. In practice, we sample 500,000 IDs
for columns with more than 500,000 IDs. A bonus of using reservoir sampler is the ability
to incrementally update the pool as new IDs are added to a given column and guarantee
that the pool is a uniform sample of the entire column at any given moment. For each
sampled column, an extra field is required to record the sampling rate.

Now the main problem is that the column files still cannot fit into the main memory
of a modest cluster, even after sampling—e.g., loading all column files of the described DU
requires roughly 300 GB after the sampling. The practical goal is to reduce the representation
of DU from 300 GB down to approximately 25 GB—without breaking data independence,
performance or scalability. With such constraints, our options are limited by “facts of life”
such as: (a) sampling-based techniques cannot be used since any sampling would have hap-
pened in the previous stage; (b) coding-based information compression is also undesirable
because of its impact on performance and updatability.

Given these observations, Bloom filter [4] with its probabilistic storage efficiency seems
like a plausible choice. Given its space efficiency for probabilistic testing of set membership,
our idea is to construct a Bloom filter for each column, as depicted in the bottom part in Fig. 2.
When the Bloom filters are built, they are meant to be cached in memory while the much
larger columns can reside on slower disks. In our experience, Bloom filters’ efficiency is about
5 to 7 bits per ID, where each ID is originally stored as a string of 10 to 20 ASCII characters,
depending on the chosen column. In addition to drastically reducing the storage size, Bloom
filter files can be incrementally updated as more IDs are added to the corresponding column
file, which means no rebuild is necessary for the filters.

1 http://www.mongodb.org.

123

http://www.mongodb.org

978 Y. Xie et al.

Although the Bloom filters created for different columns can use different number of
hash functions, different false positive rate or different number of set bits, we need to make
sure all Bloom filter arrays are of the same size. In practice, we enforce the Bloom filter
size to be 7,000,000 bits = 854.5 KBytes, which guarantees less than 0.1 % false positive
rate with 500,000 expected inserts. Doing the same for all 30,000 columns would yield
854.5 KBytes × 30,000 < 24.5 GBytes. That is, we expect at most 500,000 (the number
of max sample size) IDs to be added to any Bloom filter. Assuming that each ID sets seven
different bits in the filter, at most 50 % of the bits in the Bloom filter will be set which, in
turn, guarantees the bound on the false positive rate on the filters.

Together, the sampling limit and the size of the filter guarantee an acceptable or satis-
factory level of accuracy. While this equal-in-size requirement might seem unnecessary and
even superfluous, it is specifically imposed to enable bit operations between any two Bloom
filters, which is critical in our association mining algorithm. As our experiments have demon-
strated, both the sampling and Bloom filter have a very limited impact on the accuracy of the
results.

4 Algorithmic methodologies

The execution of popular algorithms such as Apriori [2] and FP-Growth [12], even their
distributed implementations [33], is row-based, transaction row being the main execution
unit. However, within the proposed storage scheme this assumption is no longer valid and
it is not straightforward to apply the existing algorithms to accommodate to our storage,
due to the fundamental differences in data scanning between row-wise storage and columnar
storage.

In our methodology, mining frequent 2-item-sets is treated separately from frequent
n-item-sets for n > 2 due to special characteristics in 2-item-sets that lead to a very fast
algorithm. First, based on the proposed columnar probabilistic storage scheme, we describe a
simple algorithm for finding frequent 2-item-sets that uses Apriori Principle (cf. Algorithm 1).
Then, we propose a faster alternative algorithm for mining 2-item-sets, since frequent 2-item-
sets are the prerequisite for all frequent n-item-sets for n > 2. This faster method, described
in Algorithms 2, 3 and 4, relies on a novel hierarchical tree structure of Bloom filters that
helps in minimizing membership checks against Bloom filters. Finally, in Algorithm 6, we
develop an algorithm for mining n-item-sets, n > 2, which is made efficient by using a
minHash-based probabilistic pruning technique, described in Algorithm 5.

4.1 Mining frequent 2-item-set with Apriori

We first demonstrate the column-oriented algorithm for finding frequent 2-item-sets {X =
{x}, Y = {y}}, where X and Y are both single item-sets with a given minimal support α. The
two item-set algorithm is often used in our practical usage, where the owner of a brand y is
interested in finding out other brands that are most frequently associated with y.

All the possible candidates for x are elements from W , the set of all items. Algorithm 1
starts by filtering out the unqualified candidates whose support is below α—a process can be
done very efficiently by scanning O (|W | − 1) numbers, since the algorithm simply queries
the length of each column file.

Let W ′ ⊆ W denote the subset of W , which contains all the walls whose column size is
above α. For each y ∈ W ′, the algorithm loads the user IDs from column y into a set Uy .
Since the actual user IDs are not explicitly stored with the Bloom filter and reside on a much

123

SILVERBACK+: scalable association mining via fast list... 979

Algorithm 1: Column-oriented algorithm for finding frequent 2-item-sets and associa-
tion rules

Input: α, minimal support, W , set of all items, DU , the database of transactions
Output: O , set of all frequent 2-item-sets

1 W ′ ← {x |x ∈ W, length of x column ≥ α}; O ← {}
2 for each y ∈ W ′ do
3 Uy ← IDs from y column
4 for each x ∈ W ′ and x 1 y do
5 support x,y ← 0
6 b f ← x column’s Bloom filter
7 for each u ∈ Uy do
8 if u in b f then
9 support x,y+ = 1

10 if support x,y ≥ α then
11 append {x, y} to O
12 return O

slower disk, reading user IDs from disk only happens once per wall to avoid cost (note that
Uy at each iteration is small enough to fit in memory). In other words, the algorithm scans
the whole database from the disk only once. Then for each wall’s Bloom filter representation
bx , where x ∈ W ′, the algorithm tests whether u is a member of bx for ∀ u ∈ Uy . By testing
Uy against bx , the algorithm effectively finds (with false positives introduced by the use of
Bloom filter) y∩x , the intersection between y column and x column. At this stage, confidence
and support filtering is applied and all qualified y columns are put into the output set O . The
x 1 y constraint says that x must come after y in atomic order, which guarantees that {x, y}
and {y, x} are not calculated twice.

Algorithm 1, based on Apriori Principle, is intuitive to understand. However, it incurs
a large number of membership checks in Bloom filters (which, being very fast with non-
cryptographic hash calculation, is still the main cost of running Algorithm 1). In the following
section, we propose an alternative algorithm, based on hierarchical binary tree of Bloom
filters, to reduce such membership checks.

4.2 Mining frequent 2-item-set with hierarchical binary tree of Bloom filters

Frequent 2-item-sets are probably the most widely used and are the foundations for further
calculation involving n-item-sets for n > 2. As a result, it is more desirable to expedite 2-item-
set mining without introducing additional false negative results. In this section, we propose
an alternative, faster algorithm that builds a hierarchical data structure on the Bloom filters
and use this structure to speed up the mining of frequent 2-item-sets without introducing false
negatives or any additional false positives. In addition, this algorithm can be easily extended
for the general purpose of list intersection operations.

We use dictionary Z to denote all Bloom filters including the leaf ones from Algorithm 1.
The number of items in Z is at most 2|W | − 1 and equality only holds when items in Z is 2n

for some integer n. We use the dictionary notation, Z [key] = value, where “key” identifies
the Bloom filter stored as “value”. The filters, as shown in Algorithm 2, are organized into a
binary tree. To store the information of how the binary tree is constructed (how the nodes are
linked), we use a list H . Each item in H is a (leftchild,rightchild,parent) tuple. In addition,
Algorithm 2 assumes that H must be sorted in the descending order of their distances to the
root of the tree.

123

980 Y. Xie et al.

Algorithm 2: Build hierarchical binary tree H and the Bloom filters Z
Input: W , list of all items, M list of metrics corresponding to items in W .
Output: H , tuple-represented binary tree, Z , dictionary of Bloom filters for all nodes in H

1 Z ←empty dictionary
2 H ← linkage(M)
3 for tuple (leftchild,rightchild,parent) ∈ H do
4 for child ∈ [leftchild,rightchild] do
5 if child ∈ W then
6 Z[child] ← child column’s Bloom filter
7 else
8 leftgrandchild ← H.findByParent[child].getLeftChild
9 rightgrandchild ← H.findByParent[child].getRightChild

10 for grandchild ∈ [le f tgrandchild, rightgrandchild] do
11 if grandchild ∈ W then
12 Z [grandchild] ← grandchild column’s Bloom filter
13 Z [child] ← Z [le f tgrandchild] bitOR Z [rightgrandchild]
14 return Z

In Algorithm 2, the two data structures, Z and H , are built. In short, Algorithm 2 constructs
a binary tree of Bloom filters, where every parent node is the logical or result of its two
children filters. We use Z to denote this structure. And the leaf filters in the constructed tree
correspond to items in W , so they are directly computed from the original database. The
linkage() function in line 2 of Algorithm 2 is a pairwise hierarchical clustering algorithm that
produces H . We use the metric information stored in M to compute a binary hierarchical
cluster. Readers can assume that the i th item in M corresponds to the i th item in W . The items
in M can be multi-dimensional. For example, M = {(support(i), support(i)2)|i ∈ W } is a
simple choice of a two-dimensional M . The choice of M will have an impact on the practical
performance of the resulting H , a claim we will empirically evaluate below in experiments.
Figure 3 depicts a mini-example of the hierarchy coming out of Algorithm 2. More details
about how to implement the linkage() function can be found in [13], which is based the
MATLAB package and SciPy project.

The linkage output H is basically a binary tree (not necessarily a complete binary tree),
whose leaf nodes correspond to the each row in M . Each non-leaf node in H is a merge
point with a calculated distance based on its left subbranch and right subbranch. As a result,
by choosing a target intra-cluster distance, getting a clustering on the items in M is simply
making a cut below the non-leaf nodes whose left/right subbranches are above the target
distance. By choosing varying target distances, one gets a hierarchical cluster.

Algorithm 3 illustrates how the basic frequent item-set mining algorithm (Algorithm 1)
can benefit from consulting information in the linkage output H . By performing membership
lookups from the top nodes to leaf nodes in H , the algorithm can avoid a lot of redundant
checks in the subbranches by eliminating negative memberships from nodes closer to the
root. Also we notice that this construction does not introduce any additional false positivity
to the final results other than the false positivity built into the leaf-level filters.

Algorithm 4, used as a subroutine in Algorithm 3, is a core component that determines the
temporal performance of the overall algorithm. It encodes the branching and pruning decision
at each node in the binary tree structure Z built from Algorithm 2. The version described in
Algorithm 4 would eagerly attempt to advance to subbranches at the minimal condition: When
the number of positive Bloom filter tests is greater than α, the minimal supports threshold.
The motivation for this aggressive advancing(therefore, conservative pruning) strategy is
to minimize the impact from overly OR-ed Bloom filters at higher levels of the tree. Even

123

SILVERBACK+: scalable association mining via fast list... 981

Fig. 3 Each tree node contains Bloom filter structure based on local lexicon. A bit is marked red and underlined
if it is set during subtree merge. Best viewed in color (color figure online)

presented with a completely filled Bloom filter, Algorithm 4 can terminate and advance to its
subbranches in O(α). In addition to prospect , the binary branching decision, Algorithm 4
also returns F , a set of IDs that have failed the Bloom filter test. The purpose of maintaining
F is to exclude all elements in F from future Bloom tests in all subbranches under that node.
The implication is that any ID will be only tested for negative at most once in the entire tree
and therefore can vastly reduce repetitive membership checks. The fast_prune algorithm,
as shown in Algorithm 4, trades off possibly greater speed-up for much better worst-case
performance. It is entirely reasonable and possibly profitable to change to a less conservative
pruning strategy. Simple heuristics such as “if count ≥ α and count ≥ |F |” can apply to
line 7 of Algorithm 4. This heuristic effect is to consider the “quality” of the current Bloom
filter. If the filter is close to being full, count will quickly grow larger than |F | and drive the
algorithm to stop pruning and advance to subbranches. This logic is profitable because when
a Bloom filter gives a higher percentage of positives, the filter is likely to be over populated.
On the other hand, if the filter is sparse, |F | will grow slowly and this condition in line 8 will
not be met until a lot of IDs are pruned out.

123

982 Y. Xie et al.

Algorithm 3: Improved column-oriented algorithm (from Algorithm 1) for finding two
frequent item-sets and association rules

Input: α, minimal support, W , set of all items, Z , dictionary-represented binary tree of Bloom
filters,H , tuple-represented binary tree.

Output: O , set of all frequent 2-item-sets
1 W ′ ← {x |x ∈ W, length of x column ≥ α}; O ← {}
2 for each y ∈ W ′ do
3 Uy ← IDs from y column
4 S ← empty stack;N ← empty dictionary
5 S.push(H.root)
6 while S not empty do
7 n ← S.pop
8 Uy−n = {x ∈ Uy |x /∈ N [n]}
9 b f ← n column’s Bloom filter

10 if n ∈ W ′ then
11 support ← 0
12 for each u ∈ Uy do
13 if u in b f then
14 support+ = 1
15 if support ≥ α then
16 append {y, n} to O
17 else
18 prospect, F ← fast_prune(Uy−n , b f)
19 if not prospect then
20 continue
21 le f tchild ← H. f ind By Parent[n].get Le f tChild
22 rightchild ← H. f ind By Parent[n].get RightChild
23 S.push(le f tchild, rightchild)
24 N [le f tchild] ← F ∪ N [n]
25 N [rightchild] ← F ∪ N [n]
26 return O

Algorithm 4: Fast_prune algorithm
Input: Uy , list of user IDs from y column, b f a given Bloom filter,α, minimal support.
Output: prospect , a Boolean decision, F , a subset of Uy that failed the Bloom filter test with b f .

1 F ←empty set; count ← 0
2 for u ∈ Uy do
3 if u∈ b f then
4 count+ = 1
5 else
6 F.add(u)
7 if count ≥ α then
8 break
9 prospect ← (count ≥ α)

10 return prospect,F

4.3 Two issues with mining frequent n-item-sets (n > 2)

Two particular operations in the Apriori algorithm significantly slow down its execution time
when mining n-item-sets (n > 2). The first is the multiple scans of transactions. The other
operation that significantly contributed to the temporal cost of traditional Apriori is candi-
date pruning, which requires counting support for each candidate generated. To overcome

123

SILVERBACK+: scalable association mining via fast list... 983

those two drawbacks, various pruning and optimization techniques have been proposed, as
discussed in the related work section.

4.3.1 Minimizing scans of transactions

Apriori algorithm classifies candidate item-sets and explores their candidacy by the cardi-
nality of the item-set, where at each cardinality level, the algorithm scans DU (the entire
database of transactions) for counting the supports of the candidate sets at that cardinality
level. The problem then becomes obvious: The entire execution of the algorithm scans the
database multiple times, which is not desirable.

Minimizing the iterations of scanning the database is critical in improving the overall
efficiency of association mining algorithms, especially for large databases. FP-Growth [12]
offers improvements partially due to the fact that it only scans the database of transactions
twice in building the FP-tree structure. However, the size of the FP-tree structure can be large
and reading frequent patterns from the FP-tree requires traversing through the tree which,
in turn, still incurs multiple loads. Benefiting from its columnar storage, Eclat [34] reads
activities/transactions column by column and only the necessary columns and intersections
of columns are retrieved into memory when checking the candidacy of each candidate.
Similar to Eclat, our proposition only retrieves the necessary column files each time and
further minimizes the I/O by replacing intersections of columns by AND-masked Bloom
filters.

4.3.2 Probabilistic candidates pruning

Traditionally, avoiding the exponential growth of candidate item-sets (2|W | possible candi-
dates) by the Apriori Principle and other algorithmic improvements [3] is based on pruning
the unqualified candidate item-sets. Apriori Principle becomes especially effective when

Algorithm 5: Apriori-gen algorithm for generating and probabilistically pruning can-
didates

Input: Fk−1, frequent (k − 1) item-sets; α, minimal support; H1(c), . . . , H f (c), sorted lists that holds
the Bloom hash indices for ∀c ∈ Fk−1; Sc for ∀c ∈ Fk−1, support counts for all frequent
(k − 1) item-sets

Output: Ck , set of candidates for frequent k item-sets after pruning
1 Ck ← {}
2 for c1, c2 ∈ Fk−1 × Fk−1 do
3 if c1 and c2 satisfy Equation 1 then
4 for i ∈ {1, . . . , f } do
5 SI G(hi (c1)) ← first m indices in Hi (c1)
6 SI G(hi (c2)) ← first m indices in Hi (c2)
7 SI G(hi (c1 ∪ c2)) ← m smallest elements in SI G(hi (c1)) ∪ SI G(hi (c2));
8 Calculate ̂Ji (c1, c2) based on Equation 5

9 ̂Jhybrid (c1, c2) ← ∑ f
i=1

̂Ji (c1,c2)
f

10 if ̂Jhybrid (c1, c2) · (Sc1 + Sc2) ≥ α then
11 c ← c1 ∪ c2
12 order elements in c
13 append c to Ck
14 return Ck

123

984 Y. Xie et al.

DU is sparse and contains large number of items and transactions, which exactly suits our
practical usage.

The Apriori-gen function in Algorithm 5 uses Fk−1 × Fk−1 method [27] to generate, Ck ,
the set of candidates for frequent k-item-sets. Apriori-gen function then uses a new, minHash-
based [9] pruning technique to drastically reduce the candidates in Ck and to bring Ck as
close to Fk as possible. Minimizing the cost of reducing Ck to Fk is key in achieving much
higher performance than previous Apriori-based techniques.

Fk−1 × Fk−1 method was first systematically described in [27]. The method basically
merges a pair of frequent (k − 1)-item-sets, Fk−1, only if their first k − 2 items are identical.
Suppose c1 = {m1, . . . , mk−1} and c2 = {n1, . . . , nk−1} be a pair in Fk−1. c1 and c2 are
merged if:

mi = ni (for i = 1, . . . , k − 2), and mk−1 #= nk−1. (1)

The Fk−1 × Fk−1 method generates O
(
|Fk−1|2

)
number of candidates in Ck . The merging

operation does not guarantee that the merged k-item-sets in Ck are all frequent. Determining
Fk from the usually much larger Ck becomes a major cost in Apriori execution.

Can one efficiently determine if c ∈ Fk for any c ∈ Ck? This is the question people
have been trying to directly address. However, based on the Fk−1 × Fk−1 method, one can
alternatively ask: Can one efficiently determine if c ∈ Fk for any c such that c = c1 ∪ c2
and c1, c2 ∈ Fk−1? Dealing with c directly basically throws away the known information
about c1 and c2. The important question then becomes how can c1 and c2 help determine the
candidacy of c.

The key clue lies in S(c), the support set of c. S(c) = S(c1) ∩ S(c2). From previous
research, pruning based on the cardinality of S(c) is very expensive. Instead, we propose to
consider the Jaccard similarity coefficient [28] in the Apriori-gen function:

J (c1, c2) = |S(c1) ∩ S(c2)|
|S(c1) ∪ S(c2)|

. (2)

Measuring J (c1, c2) is just as costly, so Apriori-gen uses minHash algorithm to propose a
novel estimator for J (c1, c2).

minHash scheme is a way to estimate J (c1, c2) without counting all the elements. The
basic idea in minHash is to apply a hash function h, which maps IDs to integers, to the elements
in c1 and c2. Then hmin(c1/2) denotes the minimal hash value among h(i),∀i ∈ c1/2. Then
we claim:

Pr (hmin(c1) = hmin(c2)) = J (c1, c2) . (3)

The above claim is easy to confirm because hmin(c1) = hmin(c2) happens if and only if
hmin(c1 ∩ c2) = hmin(c1 ∪ c2). The indicator function, 1{hmin(c1)=hmin(c2)}, is indeed an
unbiased estimator of J (c1, c2). However, one hash function is not nearly enough for con-
structing a useful estimator for J (c1, c2) with reasonable variance. The original plan is to
choose k independent hash functions, h1, . . . , hk , and construct an indicator random variable,
1{hi,min(c1)=hi,min(c2)}, for each. Then we can define the unbiased estimator of J (c1, c2) as

̂J (c1, c2) =
k∑

i=1

1{hi,min(c1)=hi,min(c2)}
k

. (4)

Before the above estimator can be implemented, it is critical to realize its computational
overhead in practice. Often k = 50 or more is chosen and the k hash functions need to be
applied to each ID in the support of each candidate. At this stage, typical applications of
minHash often use the single-hash variant to reduce computation. Given a hash function h

123

SILVERBACK+: scalable association mining via fast list... 985

and a fixed integer k, the signature of c, SI G(h(c)), is defined as the subset of k elements of
c that have the smallest values after hashing by h, provided that |c| ≥ k. Then the unbiased,
single-hash variant of Eq. 4 is

̂Js.h. (c1, c2) = |SI G(h(c1 ∪ c2)) ∩ SI G(h(c1)) ∩ SI G(h(c2))|
|SI G(h(c1 ∪ c2))|

, (5)

where SI G(h(c1 ∪ c2)) is the smallest k indices in SI G(h(c1)) ∪ SI G(h(c2)) and can be
resolved in O(k).

In general, the single-hash variant is the best minHash can offer in terms of minimizing
computational cost. However, one still needs to hash all elements in c1 and c2 before he/she
can find the signatures, which would make Eq. 5 basically as costly as Eq. 2. The key step
that makes minHash estimation particularly efficient in our case is to link it with the Bloom
filters assumed in our framework. Testing a member u in a Bloom filter essentially requires
finding several independent hash values that map u to different indices in a bit array. Since
the Bloom filter indices are comparable integers, the idea here is to avoid extra hashing
in minHash calculation by re-utilizing these integer hash indices. Since all user IDs in the
support sets of all frequent item-sets will be tested by the same Bloom hash functions, it
guarantees the availability of these hash indices.

Suppose the Bloom filter test sets f number of bits (i.e., it runs the ID through h1, . . . , h f
for each ID, whose membership is to be tested). The direct attempt of utilizing the Bloom
filter indices in minHash is simply by replacing k in Eq. 4 with f :

̂J (c1, c2) =
f∑

i=1

1{hi,min(c1)=hi,min(c2)}
f

. (6)

A potential problem with this scheme is that, to achieve reasonable accuracy in Bloom filter
and minHash, the expectations on f and k are very different. Indeed, we find f = 7 is
sufficiently good for the Bloom filter while k is usually over 20 in order for minHash to give
reliable estimates.

To overcome the empirical difference between f and k, we design a f -hash hybrid
approach that uses the f already calculated Bloom hash indices. Choose k to be a fixed
integer such that k > f , k = f · m, and m is also an integer. Let hi , for i = 1, . . . , f , denote
the i th Bloom hash function. Then the i th signature of c, SI G(hi (c)) is the subset of m
elements of c that have the smallest values after hashing by hi , provided that |c| ≥ m. Apply-
ing the signatures to Eq. 5, we obtain f independent estimators, ̂J1 (c1, c2), . . . , ̂J f (c1, c2).
Finally, the hybrid estimator ̂Jhybrid (c1, c2) is derived as

̂Jhybrid (c1, c2) =
f∑

i=1

̂Ji (c1, c2)

f
. (7)

In fact, Eq. 6 is a special case of the hybrid estimator. When k = f and m = 1, Eq. 7 becomes
equivalent to Eq. 6.

Further, we have

J (c1, c2) · (|S(c1)| + |S(c2)|) = |S(c1) ∩ S(c2)| · (|S(c1)| + |S(c2)|)
|S(c1) ∪ S(c2)|

≥ |S(c1) ∩ S(c2)|. (8)

Since |S(c1) ∩ S(c2)| = |S(c)|, it follows that J (c1, c2) · (|S(c1)| + |S(c2)|) ≥ α, if
|S(c)| ≥ α, where α is the min support. Replacing J (c1, c2) with ̂J (c1, c2) gives us the

123

986 Y. Xie et al.

rule Apriori-gen uses to reduce Ck closer to Fk . Observe that Apriori-gen applies the rule
in reverse logical order, which introduces false positives. This is why Apriori-gen can only
reduce Ck to some superset of Fk , but not exactly Fk .

4.3.3 Mining n-item-set with Silverback+

The general association mining algorithm with the proposed pruning technique is presented in
Algorithm 6. Schematically, it is similar to the original Apriori, but Silverback+ effectively
addresses the two issues brought up earlier in this section.

The iterations of transaction scans are minimized. The columnar database enables the
algorithm to only load the necessary x column at each iteration. Further, by sorting the item-
sets in each candidate set Ck and sorting the items in each item-sets, we can make sure each
column is loaded only once from the disk and will stay in memory for iterations of all item-set
candidates, to which this column belongs.

Probabilistic candidate pruning is key in our proposed algorithm. Indeed, we already show
how it can prune off the unworthy candidates. But we are equally interested in its impact to
the complexity of the algorithm. In Algorithm 6, the only temporal performance impact is
line 24, where the hash indices—which come for free when testing memberships with Bloom
filter—are inserted in H1(c), . . . , H f (c), each of which is a priority queue of length ≤ m.
The temporal cost for each ID in the test of each candidate without insertions to priority

Algorithm 6: Silverback+—columnar probabilistic algorithm for finding general fre-
quent item-sets.

Input: α, minimal support, W , set of all walls, DU , the database of transactions
Output: O , set of all frequent item-sets

1 O ← {}
2 F1 ← {x |x ∈ W, and supportx ≥ α}
3 F2 ← Algorithm1(α, W, DU)
4 O ← O ∪ F1 ∪ F2; k ← 2
5 for each c ∈ F2 do
6 Sc ← support counts from Algorithm1’s byproduct
7 H1(c), . . . , H f (c) ← obtained from Algorithm1
8 while Fk #= ∅ do
9 k + = 1

10 Ck ← Apriori-gen(Fk−1, α,
11 {H1(c), . . . , H f (c), supportc,
12 for ∀c ∈ Fk−1})
13 order elements in Ck
14 for each c ∈ Ck do
15 H1(c), . . . , H f (c) ← empty ascending priority queues each with capped capacity m
16 supportc ← 0; b f ← vector of 1s
17 y ←first item in c; Uy ← IDs from y column
18 for each x ∈ c\y do
19 b f ← AND-mask(b f, x column Bloom filter)
20 for each u ∈ Uy do
21 h1, . . . , h f ← u’s indices in b f , respectively
22 if h1, . . . , h f all set in b f then
23 supportc+ = 1
24 append h1, . . . , h f to H1(c), . . . , H f (c), respectively
25 if supportc ≥ α then
26 append c to Fk ; append c to O
27 return O

123

SILVERBACK+: scalable association mining via fast list... 987

queues would be O(f). The insertions introduce an additional complexity O(f log m). In
the Apriori-gen function, for each candidate, lines 5 and 6 cost is O(f m) and line 7 cost
O(f m log m) due to sorting. To claim that the temporal cost (and the spatial cost, which is
bounded by temporal) is basically constant, we need to show that both f and m are small
integers and the cost does not increase as the transactions or unique items increase.

The number of Bloom hash functions f is said to be 7 in previous section and it only
grows logarithmically with respect to the total transactions. So f = 10 would be sufficient
for some 1 trillion transactions. m, on the other hand, is determined by f and the minHash
error rate. minHash introduces error ε ∼ O(1√

m· f
) to its Jaccard estimation Ĵ , which is

between 0 and 1. Suppose that ε < 0.06 is satisfactory and f = 7, then m = 40 is sufficient.
Further, if f increases to 10, m = 28 would be sufficient for achieving the same ε.

Silverback+ is scalable and can be deployed on a cluster. The column files and Bloom
filter files are distributed across the slave servers of the cluster. An index file is stored on the
master server to keep track of the slave, on which a particular column file or Bloom filter
is stored. A nice property of Silverback+ is that only the user IDs from one column are
necessary to be loaded in memory at any given moment of the execution of Silverback+.
This implies that the uncompressed, large column files are never moved from slave to slave
over the network. Only the compressed strings of Bloom filters are loaded from other slaves
when necessary. This property minimizes general intra-cluster I/O traffic and makes our
algorithm scalable.

5 Experimental results

We now present the experiments that evaluate the proposed methodologies.

5.1 Dataset

Our data is collected from two widely used social media platforms: Facebook and Twitter.
Both Facebook and Twitter are sites for individuals, groups or businesses to post content such
as messages, promotions or campaigns. The user comments/tweets and user information from
specific interests are publicly available and collected using Facebook API and Twitter API. In
the experiments, the data collected over 2012 is used. Table 2 shows the size of the databases
we are maintaining using the proposed infrastructure and the amount of data used in the
experiments.

5.2 Errors from sampling and Bloom filter

As discussed earlier, a Bloom filter allows for false positives. In this section we discuss how
different capacity sizes and false positive probabilities affect the target-driven rule calculation.

Table 2 Datasets summary statistics

Statistic Facebook Twitter

Unique items/interests (used in experiments) 32 K + 22,576 11 K + 4291

Total user activities (used in experiments) 10 B + 226 M 900 M + 24.2 M

Unique users/transactions (used in experiments) 740 M + 27.4 M 120 M + 3.7 M

123

988 Y. Xie et al.

Table 3 Samples of detailed dataset statistics

Interest TM CM C1 C2 C3 C4 C5 C6 C7

EASPORTS 242,399 1647 33,197 1647 10,085 6611 1708 2136 1714

Techcrunch 202,812 12,295 32,579 12,295 17,105 15,647 12,950 13,147 12,496

iTunesMusic 189,568 7265 24,171 7265 10,625 9698 7513 7640 7640

Google 149,877 12,022 21,352 12,022 13,797 13,621 12,605 12,636 12,636

Facebook 120,724 8904 14,212 8904 9746 9859 9356 9365 9365

With the introduction of the probabilistic data structure, the computation of Supp{X ∪ Y }
(i.e., the common users that have shown interests in both interests X and Y) is affected which,
in turn, affects the order the relevant precise interests.

Table 3 shows the precise interests generated for target interest amazon for the period of
July–December of 2012. For each interest we provide Total Mentions (TM), which is the
number of users who expressed interest, Common Mentions (CM), which is actual number
of common users who expressed interest for both interests (true positives), and different
configurations of Bloom filters. Configurations C1, C2 and C3 have false probability 0.10,
0.002 and 0.02, respectively, and a filter capacity of 100,000. Configurations C4, C5 and C6
have false probability 0.10, 0.002 and 0.02, respectively, and a filter capacity of 200,000.
Configuration C7 is the only configuration where the Bloom filter is built using sample (S)
size equal to the capacity size (200,000) if the TM is over the capacity size and its false
probability is 0.02. In configuration C7, the common mentions for the Bloom filter is then
estimated proportionately based on the total mentions. Note the that total number of mentions
for amazon is 184,117.

Due to the probabilistic nature of the data structure, we use predictive analysis approach
where we evaluate the effective measure of our system by formulating a confusion matrix,
i.e., a table with two rows and two columns that reports the number of false positives, false
negatives, true positives and true negatives. The common mentions given by Bloom filter
comprise of true positives and false negatives. Table 4 provides the number of false positive
(fp), which deduced using common mentions from Bloom filter and true common mentions.
The number of false negatives is always zero due to the nature of Bloom filter. Therefore, the
true negatives (not shown in table) are easily deduced. The accuracy, precision and F-measure
are also provided in Table 4.

As expected, for a given capacity, as the false positive probability decreases, the accuracy
((tp + tn)/(tp + tn + f p + f n)) and precision (tp/(tp + f p)) both increase. The recall
(tp/(tp + f n)) is always 1.0, i.e., all relevant users were retrieved because our system with
Bloom filter does not permit false negatives. The precision for our system is always less than
1.0 as not every result retrieved by the Bloom filter is relevant. As the capacity is increased,
the accuracy and precision further improve. Note that when the total mentions is greater than
the capacity, the Bloom filter has higher inaccuracy for a fixed false probability. For example
for EASPORTS , the accuracy is 15 % lower for capacity of size 100 versus 200 K for the
false probability of 0.10. This is due to the property that adding elements to the Bloom filter
never fails. However, the false positive rate increases steadily as elements are added until all
bits in the filter are set to 1. To counter this effect, we sample the data to be added to Bloom
filter. Sampling can have an impact on the false positive rate of Bloom filters depending on
the sampling quality. For example, the number of false positives for EASPORTS, for Bloom
filter configurations C5 and C7, is 61 and 67, respectively. But the false positives drop for
techcrunch when sampling is used.

123

SILVERBACK+: scalable association mining via fast list... 989

Table 4 Bloom filter accuracy results

Interest C1 C2 C3 C4 C5 C6 C7

False positives

EASPORTS 31,550 1402 8438 4964 61 489 67

Techcrunch 20,284 1085 4810 3352 655 852 201

iTunesMusic 16,906 568 3360 2433 248 375 375

Google 9330 648 1775 1599 583 614 614

Facebook 5308 469 842 955 452 461 461

Accuracy

EASPORTS 0.829 0.992 0.954 0.973 1.000 0.997 1.000

Techcrunch 0.890 0.994 0.974 0.982 0.996 0.995 0.999

iTunesMusic 0.908 0.997 0.982 0.987 0.999 0.998 0.998

Google 0.949 0.996 0.990 0.991 0.997 0.997 0.997

Facebook 0.971 0.997 0.995 0.995 0.998 0.997 0.997

Precision

EASPORTS 0.050 0.540 0.163 0.249 0.964 0.771 0.961

Techcrunch 0.377 0.919 0.719 0.786 0.949 0.935 0.984

iTunesMusic 0.301 0.927 0.684 0.749 0.967 0.951 0.951

Google 0.563 0.949 0.871 0.883 0.954 0.951 0.951

Facebook 0.627 0.950 0.914 0.903 0.952 0.951 0.951

F-measure

EASPORTS 0.095 0.701 0.281 0.401 0.982 0.569 0.980

Techcrunch 0.548 0.958 0.836 0.893 0.974 0.932 0.992

iTunesMusic 0.462 0.962 0.812 0.881 0.983 0.929 0.975

Google 0.720 0.974 0.931 0.952 0.976 0.964 0.975

Facebook 0.770 0.974 0.955 0.964 0.975 0.970 0.975

Table 5 Kendall τ rank
correlation table

Measure 200 K, 0.02 200 K, 0.002

Kendall τ -statistic 0.98251 0.98455

Two-sided p value <0.00001 <0.00001

S, Kendall score 3847 3855

Var (S) 79,624.33 79,624.34

S/τ , denominator 3915.5 3915.5

Due to probability of false positives, the interests order arranged in decreasing order of
the common mentions count can be different. We use the Kendall rank correlation coefficient
or short for Kendall’s tau (τ) coefficient [15] to evaluate our results. Measuring the rank
difference instead of absolute error that our probabilistic algorithm is due to practical interests
in a rank-oriented output. It is more often the case that our customers would ask queries
such as the top X number of frequent items associated with my brand. A similar rank-
oriented objective is proposed and receives good feedback in the literatures of recommender
systems (detailed in section 4.1 of [20]). τ is defined as the ratio of the difference between

123

990 Y. Xie et al.

Table 6 Effect of using
hierarchical algorithm to speed
up the mining of frequent
2-item-sets

Setup Alternative Baseline Speedup

(100, 10, 100 K, .1) 27.6 142 5.14

(100, 10, 100 K, .01) 54.1 136 2.52

(1 K, 10, 1 M, .01) 599 923 1.541

(1 K, 50, 10 M, .01) 1371 3038 2.216

(10 K, 50, 100 M, 10−4) 753 4169 5.536

(10 K, 100, 200 M, 10−5) 1756 6955 3.691

(100 K, 1 K, 1 B, 10−6) 778 38,080 48.95

(200 K, 2 K, 2 B, 10−6) 2654 193,035 72.74

Table 7 Parameters for results shown in Fig. 4

Linking metric Unique items Total transactions User sparsity Pruning strategy

Random or 2D support 128 or 256 20 M or 40 M 10−3 or 10−6 Aggressive or conservative

concordant and discordant pairs to the total number of pair combinations. The coefficient
range is −1 ≤ τ ≤ 1, where 1 implies perfect agreement between rankings. Table 5 provides
the Kendall statistics for two Bloom filter configurations. Both configurations approximately
have τ value of 0.98, implying that our rankings are very close in agreement compared to
original rank. Also since the two-sided p value is less than 0.00001, this implies that the
two orderings are related and the τ values are obtained with almost 100 % certainty. Further
discussions about Kendall statistics are presented in our previous work [32].

5.3 Comparing two 2-item-set mining algorithms

In Table 6, we show the speedup of 2-item-set mining by using the hierarchical algorithm (see
Algorithm 2) from Apriori-based algorithm (see Algorithm 1). The baseline time is obtained
by running Apriori-based algorithm and alternative time is obtained by using the hierarchical
algorithm. We have done so by reporting several different setups, which are presented in the
first column of Table 6 as a formatted tuple: (number of items in W , largest column size in
W , total transactions, average column similarity in W). Table 7 and Fig. 4 give more insights
into how the benefits of the hierarchical algorithm with respect to different parameters and
data sizes. Table 7 lists out the parameters and the different values that each parameter can
take. “Link metric” means the metric M used in the linkage() function from Algorithm 2.
“2D support” refers to M = {(support(i), support(i)2)|i ∈ W } and “Random” simply means
M = {random number|i ∈ W }. “Unique items” and “Total transactions” describe the size of
transaction datasets. “User sparsity” describes how likely for the items to appear in a same
user’s transaction. A lower sparsity level usually indicates smaller transaction size. Finally,
“Pruning strategy” refers to the test condition in Algorithm 4. “Conservative” implements the
condition shown in line 7 of Algorithm 4 and “Aggressive” implements the heuristic strategy
mentioned earlier: “if count ≥ α and count ≥ |F |”.

Figure 4 shows various performance figures. The triple tuples on x-axis encode the
(“Unique items”,“Total transactions” in millions, “User sparsity” in log10) configuration.
Five series are shown in Fig. 4: “linear base” is the baseline Apriori-based algorithm with

123

SILVERBACK+: scalable association mining via fast list... 991

Fig. 4 Effect of using hierarchical binary tree of Bloom filters. For ease of reading, the order of the legends
is sorted to match the stacking order of the lines (best viewed in color) (color figure online)

ideal projected scalability; “R+C” is the hierarchical algorithm using random link metric
and conservative pruning strategy; “2D+A” is the hierarchical algorithm using 2D support
link metric and aggressive pruning strategy; etc. Results from Fig. 4 suggest that using “2D
support” as the linkage metric and the “Aggressive” pruning strategy can further improve the
performance of our proposed hierarchical 2-item-set mining algorithm.

5.4 Scalability in n-item-set mining (n > 2) algorithms

In addition to evaluating the accuracy of our probabilistic algorithms, we still need to demon-
strate their efficiency and scalability. After all, good efficiency and scalability are expected
trade-offs by sacrificing accuracy.

In Fig. 5, we report the runtimes for different combinations of computing nodes, and
minimum support threshold values, for four different algorithms. In the legend of Fig. 5,
HA denotes the naive implementation of Apriori in the MapReduce framework [22]. CS,
CSBF and Silverback+ denote our proposed algorithm with progressively more features.
CS denotes a diminished version, where only the columnar storage is used but not the Bloom
filter enhancement or the minHash pruning technique; CSBF is like CS but implements
the Bloom filter enhancement for each column file; and finally, Silverback+ is the fully
blown version that incorporates all techniques presented in our paper including the minHash
pruning technique. In addition, a dashed line of ideal scalability is included for each of the
four methods compared in Fig. 5.

123

992 Y. Xie et al.

Fig. 5 Scalability comparison of four methods (HA, CS, CSBF and Silverback+). Each method is color
coded separately (best viewed in color) and is accompanied by a dashed line of the same color which extrap-
olates the runtime if the runtime were to decrease linearly with respect to the number of nodes (color figure
online)

In both support levels (0.05 and 1 %), HA seems to have the most reliable speedup as the
number of computation nodes increases. The CS method significantly deviates from the ideal
speedup as we increase up to 32 nodes. We suspect its lack of scalability is due to the increase

123

SILVERBACK+: scalable association mining via fast list... 993

of I/O traffic, since the IDs in each column are not compressed like CSBF or Silverback+
and would pose significant load on the I/O. Both CSBF and Silverback+ exhibit superior
scalability over CS, especially in the low support setup.

HA, the Hadoop solution, seems to have better scalability than all other algorithms,
although its absolute runtime is not the lowest. Will HA be the fastest eventually if the
number of nodes keeps on increasing? We think the relatively superior scalability in HA
is mainly due to two aspects. First, HA, unlike the other three methods, is implemented
on a Hadoop cluster with slightly better computational capability per node but much better
inter-node connections (32 Gbit/s InfiniBand). The budget cluster, on which CS, CSBF and
Silverback+ are implemented, simply uses corporation-domain IP addresses as node iden-
tifiers. Second, Silverback+ still has room to improve its scalability to more nodes as this
algorithm is only proposed in this paper while Hadoop Apriori is much more mature.

The ranks of performance for the four methods are consistent under both support levels.
The two probabilistic approaches, CSBF and Silverback+, perform consistently faster
than the exact ones, HA and CS, which is predicted as we expect sacrificing accuracy would
significantly boost the temporal performance. CS performs consistently worst, which suggests
that proposing a columnar storage by itself does not quite solve any problem.

Investigating the relative changes in the inter-method gaps under different support levels
reveals more on the impact of minHash pruning and Bloom filter enhancement. First, the
difference made by using Bloom filters, as illustrated by CS and CSBF, increases when min
support level drops. Second, the use of minHash pruning technique also amplifies its impact
as the support level decreases.

6 Conclusions

We presented the Silverback+ framework—an end-to-end solution for association mining
from large-scale social behavioral databases under constraints of modest hardware. We pro-
posed accurate probabilistic algorithms for mining frequent item-sets, specifically catering
to the columnar storage that we adopted, which is enhanced by Bloom filters and reser-
voir sampling techniques to enable storage efficiency. For basic frequent 2-item-set mining,
we proposed a novel algorithm based on a hierarchical binary tree of Bloom filters, which
performs considerably better than Apriori-based solutions. For frequent n-item-set (n > 2)
mining, we introduced an Apriori-based algorithm that prunes candidate item-sets without
counting every candidate’s support. As our experiments showed, Silverback+ outperforms
Hadoop Apriori on a more powerful cluster in terms of a runtime, with a probabilistic approach
yielding a satisfactory accuracy. Overall, we show that leveraging multiple existing solutions,
combing them judiciously, and adding innovative core details can significantly outperform
the “go-to” option.

The Silverback+ framework has been successfully deployed and maintained at 4C, a
social media mining startup, since May 2011. Our ongoing efforts are focusing on further
improvements of our system performance and scalability—specifically, we are developing
more efficient inter-nodal communication solutions, which is critical to scale to hundreds
of nodes. From a broader perspective, we are investigating the applicability of our ideas of
approximate association mining in different contexts [11,17].

Acknowledgements This work is supported in part by the following Grants: NSF awards CCF-1029166,
IIS-1343639, CCF-1409601, CNS-0910952 and III 1213038; DOE awards DE-SC0007456, DE-SC0014330;
ONR Grant N00014-14-1-0215.

123

994 Y. Xie et al.

References

1. Agrawal R, Imieliński T, Swami A (1993) Mining association rules between sets of items in large data-
bases. In: SIGMOD’93. ACM, pp 207–216

2. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large databases. In: Proceed-
ings of the VLDB Endow, VLDB’94, pp 487–499

3. Bayardo RJ Jr (1998) Efficiently mining long patterns from databases. In: SIGMOD’98. ACM, New York,
NY, USA, pp 85–93

4. Bloom BH (1970) Space/time trade-offs in hash coding with allowable errors, vol 13. ACM, New York,
pp 422–426

5. Cao H, Wolfson O, Trajcevski G (2006) Spatio-temporal data reduction with deterministic error bounds.
VLDB J 15(3):211–228

6. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE
(2006) Bigtable: a distributed storage system for structured data. In: OSDI’06. USENIX Association,
pp 15–15

7. Chen J, Stallaer J (2014) An economic analysis of online advertising using behavioral targeting. MIS
Quarterly 38(2):429–449

8. Chung S, Luo C (2003) Parallel mining of maximal frequent itemsets from databases. In: ICTAI’03,
pp 134–139

9. Cohen E, Datar M, Fujiwara S, Gionis A, Indyk P, Motwani R, Ullman JD, Yang C (2001) Finding
interesting associations without support pruning, vol 13. IEEE, pp 64–78

10. Cormode G, Garofalakis MN (2008) Approximate continuous querying over distributed streams. ACM
Trans Database Syst 33(2):1–39

11. Grupcev V, Yuan Y, Tu Y-C, Huang J, Chen S, Pandit S, Weng M (2013) Approximate algorithms
for computing spatial distance histograms with accuracy guarantees. IEEE Trans Knowl Data Eng
25(9):1982–1996

12. Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In: SIGMOD’00.
ACM, pp 1–12

13. Hofmann T, Buhmann J (1997) Pairwise data clustering by deterministic annealing, vol 19. IEEE, pp
1–14

14. Kallman R, Kimura H, Natkins J, Pavlo A, Rasin A, Zdonik S, Jones EPC, Madden S, Stonebraker M,
Zhang Y, Hugg J, Abadi DJ (2008) H-store: a high-performance, distributed main memory transaction
processing system, vol 1, VLDB Endowment, pp 1496–1499

15. Kendall M (1938) A new measure of rank correlation, vol 30. Biometrika Trust, pp 81–93
16. Kimura N, Latifi S (2005) A survey on data compression in wireless sensor networks. In: ITCC (2),

pp 8–13
17. Kumar A, Grupcev V, Yuan Y, Huang J, Tu YC, Shen G (2014) Computing spatial distance histograms

for large scientific data sets on-the-fly, vol 26. IEEE, pp 2410–2424
18. Lakshman A, Malik P (2010) Cassandra: a decentralized structured storage system, vol 44. ACM, New

York, pp 35–40
19. Lan B, Ooi BC, Tan K-L (2002) Efficient indexing structures for mining frequent patterns. In: ICDE’02,

pp 453–462
20. Lee J, Bengio S, Kim S, Lebanon G, Singer Y (2014) Local collaborative ranking. In: Proceedings of the

23rd international conference on World Wide Web. In: WWW’14. ACM, New York, NY, USA, pp 85–96
21. Li H, Wang Y, Zhang D, Zhang M, Chang E (2008) Pfp: parallel fp-growth for query recommendation.

In: RecSys’08, pp 107–114
22. Lin M-Y, Lee P-Y, Hsueh S-C (2012) Apriori-based frequent itemset mining algorithms on mapreduce.

In: ICUIMC’12
23. Ozkural E, Aykanat C (2004) A space optimization for FP-growth. In: FIMI
24. Pu IM (2006) Fundamental data compression. Elsevier, Amsterdam
25. Qiu L, Li Y, Wu X (2007) Preserving privacy in association rule mining with Bloom filters. J Intell Inf

Syst 29(3):253–278
26. Sparse matrices (2014) http://docs.scipy.org/doc/scipy/reference/sparse.html
27. Tan P-N, Steinbach M, Kumar V (2005) Introduction to data mining, 1st edn. Addison Wesley, Reading
28. Turrisi R, Jaccard J (2003) Interaction effects in multiple regression, vol 72. Sage, London
29. Vitter JS (1985) Random sampling with a reservoir, vol 11. ACM, New York, pp 37–57
30. Xie Y, Chen Z, Zhang K, Patwary M, Cheng Y, Liu H, Agrawal A, Choudhary A (2013) Graphical

modeling of macro behavioral targeting in social networks. In: SDM, pp 740–748
31. Xie Y, Cheng Y, Honbo D, Zhang K, Agrawal A, Choudhary AN, Gao Y, Gou J (2012) Probabilistic

macro behavioral targeting. In: DUBMMSM, pp 7–10

123

http://docs.scipy.org/doc/scipy/reference/sparse.html

SILVERBACK+: scalable association mining via fast list... 995

32. Xie Y, Palsetia D, Trajcevski G, Agrawal A, Choudhary AN (2014) Silverback: scalable association
mining for temporal data in columnar probabilistic databases. In: ICDE, pp 1072–1083

33. Ye Y, Chiang C-C (2006) A parallel apriori algorithm for frequent itemsets mining. In: SERA’06. IEEE,
pp 87–94

34. Zaki MJ (2000) Scalable algorithms for association mining, vol 12. IEEE Educational Activities Depart-
ment, Piscataway, pp 372–390

35. Zaki MJ, Parthasarathy S, Li W (1997) A localized algorithm for parallel association mining. In: SPAA’97,
pp 321–330

Yusheng Xie received B.S. (Summa Cum Laude) in Computer Engi-
neering and Applied Mathematics from Northwestern University,
Evanston, IL, in 2011. He obtained his PhD degree in Computer Engi-
neering at Northwestern University in 2015. He is now with Baidu
Research in Sunnyvale, California.

Zhengzhang Chen received his PhD in Computer Science from North
Carolina State University, Raleigh, NC, in 2012. Dr. Chen was a
Research Assistant Professor at Northwestern University from 2012 to
2014. He is now with NEC Laboratories America.

123

996 Y. Xie et al.

Diana Palsetia is a data scientist at 4C in Chicago, Illinois. She
received her bachelor’s degree in Computer Engineering from Michi-
gan Technological University, her master’s degree in Electrical Engi-
neering from University of Wisconsin–Madison, and her PhD from
Northwestern University.

Goce Trajcevski is currently an Assistant Chair with the Department
of Electrical Engineering and Computer Science, Northwestern Univer-
sity, Evanston, IL. His research has been funded by BEA, Northrop
Grumman Corp., National Science Foundation and Office of Naval
Research. He received Best Paper Awards at CoopIS 2000 and MDM
2010, and Best Short-paper Award in MSWiM 2013.

Ankit Agrawal is a Research Associate Professor in the Department
of Electrical Engineering and Computer Science at Northwestern Uni-
versity. He got his PhD from Iowa State University in 2009 and B.Tech
from Indian Institute of Technology (IIT) Roorkee in 2006. He is serv-
ing as a PI/Co-PI on funded research grants from NSF, DOE, AFOSR,
NIST and DARPA.

123

SILVERBACK+: scalable association mining via fast list... 997

Alok Choudhary received PhD in electrical and Computer Engineer-
ing from the University of Illinois, Urbana-Champaign, in 1989. Since
2000, he has been a Professor at Northwestern University, Evanston,
IL. Prof. Choudhary is a fellow of IEEE, ACM and AAAS. Follow
@alokchoudhary01 on Twitter.

123

	SILVERBACK+: scalable association mining via fast list intersection for columnar social data
	Abstract
	1 Introduction and motivation
	1.1 Problem description

	2 Related work
	2.1 Association mining
	2.1.1 Max-miner
	2.1.2 Divide and conquer approaches
	2.1.3 Distributed and parallel approaches

	2.2 Modern applications of Bloom filters

	3 Storage and infrastructure
	3.1 Column storage and scalability
	3.2 Probabilistic enhancement

	4 Algorithmic methodologies
	4.1 Mining frequent 2-item-set with Apriori
	4.2 Mining frequent 2-item-set with hierarchical binary tree of Bloom filters
	4.3 Two issues with mining frequent n-item-sets (n>2)
	4.3.1 Minimizing scans of transactions
	4.3.2 Probabilistic candidates pruning
	4.3.3 Mining n-item-set with Silverback+

	5 Experimental results
	5.1 Dataset
	5.2 Errors from sampling and Bloom filter
	5.3 Comparing two 2-item-set mining algorithms
	5.4 Scalability in n-item-set mining (n>2) algorithms

	6 Conclusions
	Acknowledgements
	References

