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Abstract—Massive bipartite graphs are ubiquitous in real
world and have important applications in social networks,
biological mechanisms, etc. Consider one billion plus people
on Facebook making trillions of connections with millions of
organizations. Such big social bipartite graphs are often very
skewed and unbalanced, on which traditional indexing algorithms
do not perform optimally. In this paper, we propose Arowana, a
data-driven algorithm for indexing large unbalanced bipartite
graphs. Arowana achieves a high-performance efficiency by
building an index tree that incorporates the semantic affinity
among unbalanced graphs. Arowana uses probabilistic data
structures to minimize space overhead and optimize search.
In the experiments, we show that Arowana exhibits significant
performance improvements and reduces space overhead over
traditional indexing techniques.

I. INTRODUCTION

Search is at the heart of acquiring knowledge. Efficient
indexing of large amount of documents has become just
as critical as storing the documents. The cost of document
indexing can be roughly split into two aspects: spatial and
temporal. For spatial cost, one is typically concerned with
the spatial requirement in the building process and the index
size once the building process finishes. In regard to temporal
cost, typical measurements include the initial building cost,
incremental insert cost, deletion cost, and access cost.

Among the different types of searchable documents, text
documents hold a very special place. Not only is text the
conventional and the basic form of interaction between hu-
man and computer, it is also widely used to represent other
searchable information such as large graphs and networks.
On the other hand, most social graphs use document-based
(e.g. JSON) API to allow apps or clients to interact with their
underlying graphs. This convention in API heavily changes the
way we access the graphical information. Consider Facebook
as an example. Facebook hosts public pages for a large number
of brands and pubic figures. Through its Graph API, Facebook
provides authenticated apps with log-like stream of user-
brand association as shown in Table I. Each line in Table I
is basically a statement of association relationships between
users and brands. A natural graphical representation of this
kind of association is the so-called heterogenous bipartite
graph [1]. A bipartite graph G is defined as G = (U ∪W,E)
where U = {ui|1 ≤ i ≤ |U |}, W = {wj |1 ≤ j ≤ |W |},
and E ∈ U ×W . G is called a heterogenous bipartite graph
when its vertices from U and W model physically distinct
categories [2] [3] [1]. For example, heterogenous bipartite
graph [4] can also model videos and users on Youtube. In

our running example of Facebook graph, U represents the
user vertices; W represents the brand vertices; E represents
connections between users and brands; and T denotes the input
log text.

A special class of bipartite graphs, unbalanced hetero-
geneous bipartite graphs (UHBGs), is emerging from web-
scale data. For example, Facebook may have over 1 billion
active users, but less than 1 million official public pages
are registered on Facebook. An unbalanced bipartite structure
poses challenges to existing generic indexing schemes as well
as opens possibilities for new specific indexing algorithms.
How to build an efficient index from T to support operations
such as search and boolean queries is the topic of this paper.

TABLE I
STORING SOCIAL GRAPH AS LOG ENTRIES.

Timestamp Data
1305123654 /walmart/[u1,u2,u3,u7,u9]
1306123657 /coke/[u0,u2,u4,u7,u8]
1306823552 /kohls/[u1,u3,u6,u8]
1307233628 /coke/[u5,u6,u7,u8,u9]

From the receiver’s stance (e.g., a startup getting stream T
from Facebook), accessing graphical knowledge in (U∪W,E)
from T is awkward. For example, one cannot find out all the
userIDs associated with walmart without scanning all lines
in T . One can neither quickly find out all brands that u3 has
connection with.

A special class of bipartite graphs, unbalanced heteroge-
neous bipartite graphs (UHBGs)[5], is emerging from web-
scale data. For example, Facebook may have over 1 billion
active users, but less than 1 million official public pages
are registered on Facebook. An unbalanced bipartite structure
poses challenge to existing generic indexing schemes as well
as opens possibilities for new specific indexing algorithms. In-
vestigating Facebook user’s interest distribution among public
figures and brands would entail building a huge UHBG, where
U contains tens of thousands wall nodes and W contains
hundreds of millions of user nodes.

A. Major Contributions

We propose AROWANA, a novel bipartite indexing algo-
rithm, whose design is driven by characteristics of web scale
social graphs and their applications. AROWANA achieves a
high-performance efficiency by building its index tree that
incorporates the semantic affinity among unbalanced graphs.
In AROWANA, we propose a probabilistic data structure to



minimize space overhead and optimize search. The unique
building process of an AROWANA index requires a novel
community detection algorithm. Further, we analytically show
asymptotic bounds for various query costs when using the
AROWANA index. The application of Bloom filters is novel
as well. Previous studies [6] [7] use Bloom filters to organize
sensor-network data. But we have not seen others giving the
exact or similar structures like AROWANA, or designating
its purpose to bipartite indexing. In experiments, we show
AROWANA’s superior scalability and competence in building
and retrieving queries over B-Trees and Lucene. We also find
out that AROWANA’s competitiveness is conditional on the
large graph size and the semantic meaning of the social graph.

AROWANA has been developed and commercially deployed
at a digital marketing firm since December 2011. AROWANA
powered search engines serve millions internal queries per day.

II. PROBLEM STATEMENT

Suppose the input log text T contains n lines like in Table 1.
Let ΣW = {walmart,coke, . . .} and ΣU = {u1,u2, . . .}
denote the brand alphabet and the user alphabet, respectively.
The two alphabets simply correspond to the heterogeneous
vertex sets in a bipartite graph G. The goal is to construct a
spatio-temporal parsimonious index I on T such that bipartite
membership queries, which are fast on G but very slow on T ,
can be efficiently answered using I .

Since one can always construct the bipartite graph G from
T , the proposed index I must have spatio-temporal perfor-
mance advantage over G for it to pay off. More specifically, I
should efficiently support the three basic bipartite membership
queries: (1) Select1(w): retrieve all unique userIDs, who
access the brand w; (2) Select2(u): retrieve all unique brands,
to which userID u is connected; (3) Connect(u,w): return 1
if there exists a line in T such that the line contains both
userID u and brand w; return -1 otherwise.

Theoretically, B-Trees and key-value stores can efficiently
answer the above desiderata. But their drawbacks in spatial
overhead among existing indexers are very severe in practice
(even in distributed settings) and they often use more resources
than really necessary. Our experiments, with real datasets
and practical hardware, show that the theoretical bounds for
existing index-accessing performance are washed away due to
(the lack of) caching and thrashing. Table II summarizes the
pros/cons and applicabilities of various indexing schemes.

III. RELATED WORK

Various traditional indexing schemes including B-Tree in-
dex and Bitmap index can be applied to index the bipartite
memberships. But all of them have pros/cons summarized in
Table II.

A. B-Tree Index at Massive Scale

The advantage with B-Tree dictionary is clear. Any Select1
operation based on brand is guaranteed to be efficient.
In addition, this solution supports dynamic alphabet, which
means that it is not necessary for the indexer to have the

knowledge of all possible items in the alphabet Σ. Its support
for dynamic alphabet is the primary reason for its popularity
in most existing database systems [9]. However, B-Tree dic-
tionary index has a drawback in spatial efficiency, especially
at large scale deployment, which eventually hurts its overall
performance. Two independent indices need to be built and
maintained to support Select1 and Select2 queries. A tree
IW indexes all brand,row_p pairs and can only answer
all Select1 queries. A separate tree IU has to be built for all
userID,row_p pairs to support Select2 queries. IW and
IU will eventually compete for the same memory space. It is
a known issue that B-Tree cannot scale logarithmically with
data-size in practice once the data grows larger than the main
memory 1, even on a distributed platform.

B. Bitmap Index For Massive Cardinality

A Bitmap index conceptually keeps a binary list lt for each
unique value t in the dataset. And entries in lt are set to be
1 if and only if the entries in the original data hold value
t. Necessary to keep a separate list for each unique value in
data, Bitmap indices are thought [10] to be profitable for only
dataset with small cardinality such as Boolean values. But
Bitmap index lists would look very sparse once the data set
becomes large and high in cardinality. Numerous efforts have
been committed to the area of compressing Bitmap index [8]
and improving its performance on high cardinality sets [11].
However, Bitmap has another drawback. Other than its inade-
quacy with high cardinality sets, Bitmap cannot efficiently deal
with rapidly growing or frequently updated databases [12]. It
is still notoriously hard for Bitmap index to efficiently handle
a large, growing, frequently updated database nearly as well
as B-Tree [8].

C. Neighbor Query on Compressed Graphs

Neighbor query friendly social network compression tech-
niques recently have been proposed in [13]. That work de-
scribes algorithms for compressing social graphs and accessing
the compressed graphs. Although not stated explicitly, It uses
standard B-tree/hash index for vertices and edges. Our work
focuses on indexing and be of additional value to the technique
proposed in [13].

IV. AROWANA ALGORITHM

Given the drawbacks in existing technologies, it is desir-
able to design an algorithm to (1) achieve a good indexing
compression ratio because smaller memory footprint translates
into practical performance; and (2) allow dynamic alphabet for
it to be practical for web-scale applications. The AROWANA
tree data structure is illustrated in Figure 1 and is explained
in context with the implementation of Select1, Select2, and
Connect queries in following subsections.

1http://www.slideshare.net/daumdna/mongodb-scaling-write-performance



TABLE II
COMPARISON OF DIFFERENT INDEXING TECHNIQUES.

Property Theoretical Bound B-Tree Bitmap AROWANA
Select1 O(|ΣU |) O(lg(|ΣW |) + |ΣU |) O(|ΣU |) O(lg(|ΣW |) + |ΣU |)
Select2 O(|ΣW |) O(|ΣW |) O(|ΣW |) O(|ΣW |)
Connect O(1) Θ(lg(|ΣW | × |ΣU |)) O(lg (|ΣU |+ |ΣW |)) O(lg(|ΣW |)

Index size lg
((|ΣU |×|ΣW |

|T |

))
O(|T |) |T | lg (|ΣU |+ |ΣW |) bits Θ

(
|ΣW | lg

(( |ΣU |
nl̃/|ΣW |

)))
Build time Θ(|T |) Θ(|T |) Variable [8] O(T + |ΣW |)

Dynamic lexicon N/A Yes Expensive Yes
Index locality N/A Value-based Hash-based Semantic affinity

A. Implementing Select1 Queries

Among the three basic bipartite membership queries, select1
query is the easiest one to implement. To support Select1 on
the input log text T , we only need to provide prefix matching
up to the second “/” delimiter because following the second
delimiter is a retrievable list of userIDs. Each line in T
would be reduced to one indexable word, the brand. In
other words, indexing T like a sequence of strings, given
consideration to the aforementioned two characteristics, would
not be like indexing a sequence of single words from a large
alphabet. If AROWANA were to directly apply technique like
Wavelet trees (or any other fancy indexing algorithm for this
matter), the index tree would be 1 in depth and would be
basically a hash table, which is fast but provides hardly any
compression.

AROWANA handles Select1 queries similar to regular B-
Tree index. One difference is that a B-Tree index needs to
expand each line in T for each userID and then index
(as shown later in Algorithm 2). Expanding each line in T
is not needed for Select1 query and it costs more space,
but this procedure is required if using B-Tree because later
when handling Select2 queries, a separate index is needed
to be built on the userID column. Another difference of
AROWANA from B-Tree is the internal nodes in the tree.
Unlike regular B-Tree, which automatically generates internal
tree nodes, AROWANA explicitly introduces artificial parent
nodes to each brand from ΣW . Using artificial parent nodes,
we can organize the brands from ΣW into hierarchies of
clusters/subtrees.

Suppose there are K different levels of artificial nodes and
K ∼ Θ (lg(|ΣW |)). For 1 ≤ k ≤ K, let ΣPk

be the set of
all artificial nodes of level k. ΣP1 , . . . ,ΣPK

are progressively
smaller in cardinality and ΣPK

is basically a singleton set with
the root node. Further, notation-wise it is convenient to express
ΣW simply as ΣP0

. Once the artificial nodes are conceived and
put to K levels, we can simply link the elements from ΣW to
parent nodes in ΣP1 , link the nodes in ΣP1 to their parents in
ΣP2

and so on. How the tree structure is formed (i.e. which
child nodes should be linked to which parent nodes?) has no
bearing in Select1 queries because each brand in Select1
is queried independently. However, forming the optimal tree
structure has critical impact to the Select2 queries, which will
be explored later.
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Fig. 1. Each tree node contains Bloom filter structure based on local lexicon.
A bit is marked red if it is set during subtree merge. (Best viewed in color)

B. Implementing Connect Queries

Connect membership queries can also be easily supported in
the proposed AROWANA tree. Bloom filter is a popular space-
efficient probabilistic data structure used to test membership
of an element [14]. One straightforward option here is to build
one Bloom filter for the set {〈brand,userID〉pairs in T}.
However, it is hard to estimate the anticipated inserts to a
centralized Bloom filter, which is critical for the filter to retain
acceptable false positive rates. Therefore, AROWANA main-
tains a separate Bloom filter BFw for each distinct brand
w that has been observed so far. Note that doing so does not
require any knowledge on ΣW . Maintaining separate Bloom
filters have additional advantages such as parallel updating.



Algorithm 1: Reduce Select2 query to Connect queries.
Input: u, any word in ΣU , ΣW , alphabet of brands
Output: ΣW (u) all brands that u is active on
ΣW (u)← {}
for every w ∈ ΣW do

append w to ΣW (u) if Connect(u,w)
end
return ΣW (u)

The collection of all BFw for ∀w ∈ ΣW is sufficient to answer
the Connect query efficiently. For Connect(u,w), the algorithm
simply tests if u in BFw.

In an AROWANA tree shown in Figure 1, each artificial
parent node also has its own Bloom filter. The Bloom filter
of a parent node is the merge of all from its children’s. The
merge operation can be as simple as OR operation on the
filters (as illustrated in Figure 1). However, simply merging all
children’s filters by OR will potentially destroy the accuracy
of the parent’s Bloom filter, which, as a prerequisite of the
OR operations, has the same capacity as any of its children’s.
A simple solution is to employ scalable Bloom filters [14]
that can accommodate dynamically increasing capacity of the
filter without rehashing the inserted items when expanding
the filter. In practice, we recommend using Bit.ly’s2 scalable
Bloom filters at the top two levels and fixed-size, fast imple-
mentation 3 at lower levels. Even with scalable Bloom filters,
the false positive rates at top level nodes are designed to be
significantly higher than lower level ones. Reinforcing uniform
false positive rates at all nodes would cause the AROWANA tree
to grow too large in size and outweigh the advantage.

C. Implementing Select2 Queries

So far, the AROWANA index can handle Select1 and Connect
membership queries efficiently with minimal cost very close
to theoretical lower bound. We still need to show that the
AROWANA index handles Select2 queries effectively, which
turns out to be nontrivial.

The AROWANA tree shown in Figure 1 seems to support
only look ups on brand (i.e., Select1, Connect queries).
Instead of building another index for Select2 (as in B-Tree
or Bitmap), AROWANA can computationally answer Select2
queries just as efficient through optimized searching tech-
niques. The trick is to reduce Select2 queries to a sequence
of Connect queries, as illustrated in Algorithm 1.

Algorithm 1 reduces all Select2 queries in the form of
Connect queries, which are already efficiently processed by
AROWANA. The naive reduction in Algorithm 1 gives a
Θ (|ΣW |) temporal overhead. A more efficient way to translate
a Select2 query to Connect queries is to use an AROWANA tree
to organize all BFw for ∀w ∈ ΣW . As illustrated in Figure 1,
the five BF s (B, K, C, W , and T ) are leaves in the tree. They
are adopted by BKC and WT , two artificial parent nodes

2https://github.com/bitly/dablooms
3https://github.com/axiak/pybloomfiltermmap

from ΣP1
. An artificial parent node in Figure 1 is more than a

symbol because it holds a structure that represents merged
Bloom filters from all its children. Define the associated
userID set of any node p, Ap, in a AROWANA tree to
be the set of all userIDs such that Connect(p,userID)
returns positive. Clearly, an artificial parent node can answer a
Connect query as to whether the given userID is connected
to any of its children. In general, using AROWANA tree can
reduce a Select2 query into less number of Connect queries
than Algorithm 1. For example, consider the query Select2(u3)
in Figure 1. Algorithm 1 would translate it into five Connect
queries: Connect(u3,B|K|C|W |T ). However, the particular
tree in Figure 1 reduces Select2(u3) into only four Connect
queries:

1) Select2(u3) reduces to two artificial parent Connect
queries, Connect(u3,BKC|WT ). When the two Con-
nect queries are tested, only Connect(u3,WT ) returns
positive, the search can discard the BKC branch and
focus only on the WT branch.

2) Connect(u3,WT ) is expanded to two leaf-level Connect
queries Connect(u3,W |T ). Both queries return positive.

3) Return {W,T} as a result for Select2(u3).
There are cases where the AROWANA tree fails to reduce

Select2 efficiently although always correctly. Consider the
Select2(u1) query in Figure 2. The execution of Select2(u1)
follows the same routine as Select2(u3). But the AROWANA
tree reduces Select2(u1) into seven Connect queries, which is
two more than Algorithm 1 in this case.

How to algorithmically organize the AROWANA tree so that
the overall average cost of Select2 queries is minimized? Is
there a upper bound on the cost of Select2 queries on a given
AROWANA tree? Both questions are critical to the validity and
feasibility of our proposed idea and we will discuss them in
the following sections.

D. Select2 Performance Analysis

This section provides analytical treatment of how the struc-
ture of a AROWANA tree can affect typical Select2 query
performance. First, we consider a uniform AROWANA tree: the
children nodes are adopted by their parent nodes in a uniformly
random fashion. Assume that the tree has a fertility rate of m:
each non-leaf parent has on average m children. The tree has
an average height of K = logm(|ΣW |). Further suppose that
a userID u would have connections with nu out of |ΣW |
brands.

Proposition 1: Select2(u) has a bounded cost of K ·nu ·m
in a uniform AROWANA tree with fertility rate m.

Proof: Since 1 ≤ nu ≤ |ΣW | for ∀u, ∃k ∈ N and 0 ≤
k ≤ K such that |ΣPk

| ≤ nu ≤ |ΣPk+1
|. Clearly, k is unique

since {|ΣPj | | 0 ≤ j ≤ K} is a strictly descending finite
sequence of integers. By Dirichlet principle, we can set Ci(u),
the upper bound of the number of Connect queries executed
to ΣPi

at the i-th level of the AROWANA tree:

Ci(u) =

{
m · nu, if 0 ≤ i ≤ k
m · |ΣPi

|, if k + 1 ≤ i ≤ K.



Then, C(u), the total number of Connect queries that
Select2(u), is bounded by

∑K
i=0 Ci(u). The result follows.

C(u) in Proposition 1 is basically a linear bound. It turns out,
as shown in Proposition 2, we can greatly improve C(u) to
logarithmic if the AROWANA tree is non-uniform.

Proposition 2: Suppose that at the i-th level on a non-
uniform AROWANA tree for 1 ≤ i ≤ K, the child nodes of
the same parent p are tp (“the affinity likelihood”) times more
likely to have the same membership of any userID than any
child node whose parent is not p. Further suppose that tp is
proportional to the cardinality in p. Then, the total number of
Connect queries that a Select2 query would reduce into, in
the non-uniform AROWANA tree, is asymptotically bounded
by the logarithmic growth of nu.

Proof: Exact combinatorial analysis of an upper bound in
a non-uniform AROWANA tree would be tedious and probably
unnecessary. Instead, we consider a relaxed version where
|ΣPi
| for 1 ≤ i ≤ K is assumed to be infinite and each parent

node at the i-th level has infinite capacity. This assumption
relaxes the upper-bound but greatly simplifies the analysis.

The infinite cardinality and infinite capacity assumption
immediate translates each level in the non-uniform AROWANA
tree into a separate Chinese Restaurant Process (CRP) [15].
CRP models a Chinese restaurant with an infinite number
of circular tables, each with infinite capacity. Customer 1
chooses a random table. Customer n+1 chooses uniformly at
random to sit at one already occupied table, or an unoccupied
table. Each round table corresponds to a AROWANA parent
node and each customer corresponds to a Connect query.
For the i-th level AROWANA tree, 1 ≤ i ≤ K, construct
a CRP model with parameter α and θ and let |Pi| denote
the number of currently occupied tables/parents. The model
dictates that customer n+ 1 sits at an unoccupied table/parent
with probability θ+|Pi|α

n+θ , or at an occupied table/parent p with
cardinality |p| with probability |p|−αn+θ . The affinity likelihood
tp can be expressed using α and θ as |p|−αθ+|Pi|α . Now let Xi be
the random variable denoting the number of Connect queries
that Select2(u) reduces into. Finding out the E[Xi|nu], is then
expressed [16] as

E[Xi|nu] =
Γ(θ + nu + α)Γ(θ + 1)

αΓ(θ + nu)Γ(θ + α)
− θ

α
,

where Γ(·) is the Gamma function on real numbers, 0 ≤ α ≤
1, and θ > 0. At α = 0, we have

E[Xi|nu, α = 0] =

nu∑
k=1

θ

θ + k − 1
= 1 + θ

nu∑
j=1

1

θ + j

< 1 + θ

nu∑
j=1

1

j
= 1 + θ(lnnu + γ + o(

1

2nu
)),

where γ is the Euler-Mascheroni constant. The above inequal-
ities show that E[Xi|nu, α = 0] is asymptotically bounded by
logarithmic growth.

E. Exploiting Semantic Affinity

We notice that any AROWANA tree already guarantees
asymptotically the temporal lower bound (O(|ΣW |)) for Se-
lect2 queries (see Table II), even in the worst case where
the entire AROWANA tree is searched. Since it is impossible
to improve Select2 queries asymptotically, One can seek
advantage in the data characteristics of the particular bipartite
graph in focus. The plan, as fully explained in the following
section, is to exploit the semantic affinity between userIDs
and brands and to maximize the spatial locality of Select2
queries.

To take the proven advantage of non-uniform structure
in an AROWANA tree, we are interested in finding some
semantic affinity-based hierarchical clusters on the set ΣW
in order to build a non-uniform AROWANA tree. Since each
brand in ΣW is a social identity, clustering them is different
from clustering numbers or vectors or numbers and requires
considerations of inter-brand affinity. The Jaccard coefficient
matrix is a good option to capture such affinity. Let J
be a |ΣW | × |ΣW | matrix where Jp,q = J(Ap,Aq), the
Jaccard coefficient between set Ap and set Aq . Aq denotes
the userIDs associated with brand q. Once matrix J is
obtained, a fast community detection algorithm like Clauset-
Newman-Moore (CNM) [17] is applied to generate the entire
hierarchy of communities/clusters.

However, generating the matrix J exactly would be very
expensive because solving for the Jaccard coefficient at each
cell involves set operations. To avoid heavy overhead to the
overall indexing process, we use reservoir sampling [18] and
minHash (the single hash variant) [19] to estimate J . Given
a hash function h(·) and a fixed integer k, the signature of a
set A, SIG(h(A)), is defined as the subset of k elements of
A that have the smallest values after hashing by h, provided
that |c| ≥ k. Then an unbiased estimator of J (Ap,Aq) is

̂J (Ap,Aq) =
|SIG(h(Ap∪Aq))∩SIG(h(Ap))∩SIG(h(Aq))|

|SIG(h(Ap∪Aq))| , (1)

where SIG(h(Ap ∪ Aq)) is the smallest k indices in the
union SIG(h(Ap)) ∪ SIG(h(Aq)) and can be resolved in
O(k). Figure 2(a) shows how accurately the Jaccard coefficient
matrices are estimated. Figure 2(b) shows part of a non-
uniform AROWANA tree structure.

Despite claimed scalability and efficiency relative to other
even more sophisticated modeling, models in [20] and [21] are
very expensive to learn in both temporal and spatial senses.
In fact, incorporating one of those modeling techniques for
a web-scale heterogeneous bipartite graph would be already
more expensive than building a membership B-Tree index on
the graph.

F. Deletes and Updates

Deletes and updates to the data have for long troubled
high performance indices. Even in proven systems like Sphinx
or Lucene, frequent updates and deletes can be easily more
expensive than rebuilding the index file entirely 4.

4http://lucene.apache.org



(a) (b)

Fig. 2. (a) Jaccard coefficient estimation error matrix (due to minHash
estimation) for k = 50; (b) Connections in a non-uniform AROWANA.
Motorsport subtree shown.

Given such difficulties, AROWANA takes minimalistic im-
plementation of deletes and updates. While it is theoretically
possible to have Bloom filters to support removals [14], we
simply maintain extra necessary Bloom filters BFMi for
“deleted items” such that whenever an item is marked as
removed in BFi, it is added to BFMi. Similarly, we can
have filters for “re-added”, “re-added-then-deleted” items, etc.

V. EXPERIMENTS

A. Baseline Methods

In our experiments, the baseline method BTree is imple-
mented in MySQL 5.3 MyISAM engine. A partitioned version,
BTreePar, is also used in comparisons. Algorithm 2 illustrates
the indexing steps of this baseline approach. Algorithm 2
creates two indices: IW is used for Select1 queries and IUW
is used for Select2 and Connect queries. BTreePar is similar
to BTree except that its data file and index file is broken into
1,024 partitions by timestamp and brand. Three additional
algorithms inspected experimentally are Arwn, ArwnU and
Lucene. Arwn implements the AROWANA tree and the tree
is optimized by inter-brand semantic affinity. ArwnU imple-
ments the uniform AROWANA tree. Lucene indexes the same
table t in Algorithm 2 as tokenized text using ElasticSearch 5

with 4 shards of Lucene indices. We include Lucene in the
test because it is an intuitive option to index source file T ,
which is plain text stream.

B. Datasets

A key motivation in AROWANA is its use of semantic
affinity, which is probably best illustrated using social data. In
the experiments, Twitter and Facebook graphs collected during
2012 are used. Table III shows the size of the databases we are
maintaining using the proposed infrastructure and the amount
of data used in the experiments. Figure V-A visualizes the
(very skewed) degree distribution in our dataset.

5http://www.elasticsearch.org

Algorithm 2: BTree index for bipartite memberships.
Input: T , as in Table 1, t, a row-wise storage
Output: t containing all membership relations
w ← initial wall node
for every line l ∈ T do

w ← extract brand from line l
ls← extract the list of userIDs from line l
insert 〈w, u〉 into table t for ∀u ∈ ls

end
build index IW on 〈brand〉 for Select1 queries
build IUW on 〈userID,brand〉 for Select2 , Connect

Fig. 3. Facebook user activity distribution (2008 June to 2012 January,
vertical axis is in log scale).

TABLE III
DATASETS SUMMARY STATISTICS.

Name Source Users Brands Connections
T Twitter 52M 1,270 100M
F1 Facebook 81M 2,898 250M
F2 Facebook 201M 6,553 601M
F3 Facebook 377M 13,740 1.40B

C. Indexing Performance

We compare AROWANA with the baseline methods in the
task of performing the three basic kinds of membership queries
at different scales. Figure 4 shows the performance com-
parisons for Select1, Select2, and Connect queries. Among
the five compared indexers, there is no clear all-condition
winner because each type of query exhibit different temporal
characteristics at different data sizes.

Select1 queries are relatively simple to characterize.
BTree’s retrieving time increases almost linearly as the data
size grows and its growth is followed by Lucene. The other
three indexers’ retrieving times only grow marginally even the
data size increases by over 10 times. The results, however,
do not indicate that the Select1 queries scale better than the
theoretical logarithmic bound. A Select1 query is more likely
to hit a “small” brand with few number of records on larger
datasets (F2, F3 in Table III). Only 1,000 random Select1
queries are are tested because an average Select1 query would
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Fig. 4. Comparison of query time on (a) Select1, (b) Select2, and (c) Connect,
and (d) Space requirement for indices and data.

retrieve about 1,000 records due to unbalanced graphs.
Select2 performance characteristics shown in Figure 4(b)

are quite different from Select1. 1 million random Select2
queries are used. The increasing cost in AROWANA indices is
much closer to theoretical prediction (see Table II) than BTree,
BTreePar, and Lucene. Arwn consistently costs about half
of ArwnU, which is expected from a semantically optimized
AROWANA tree. Eventually, with the largest dataset (F3),
Arwn outperforms BTreePar.

Connect queries perform a lot like Select 1 queries. BTree’s
retrieving time increases almost linearly as the data size
grows. BTreePar and Lucene grow closer to logarithmically.
On the other hand, AROWANA indices (Arwn and ArwnU)
show similar increase in retrieving time. AROWANA indices
eventually do not overtake BTreePar in query latency, for
which a key reason is that Connect can be answered using
index files only without touching the data source at all. Once
BTree index can reside in memory, it is guaranteed to perform
well on Connect queries.

D. Practical Impact From Bloom Filters

The use of Bloom filters adds uncertainty to the data
structure. Since each leaf node in the AROWANA tree is
independently built, it is easy to control the false positive
rate for each leaf node independently. Table IV, through F-
measure, shows the accuracy of Select2 and Connect queries
on AROWANA trees with different Bloom Filter configurations.
Configurations C1, C2, and C3 have false probability 0.10,
0.002, and 0.02, respectively and a filter capacity of 100,000.
Configurations C4, C5, and C6 have false probability 0.10,
0.002, and 0.02, respectively and a filter capacity of 200,000.

E. Index Building Performance Comparison

In addition to query performance, we also measure the
spatio-temporal cost to build the index files using differ-

TABLE IV
F-MEASURES ABOUT QUERIES ON AROWANA TREE.

subgraph C1 C2 C3 C4 C5 C6
techcrunch 0.548 0.958 0.836 0.893 0.974 0.932
iTunesMusic 0.462 0.962 0.812 0.881 0.983 0.929
google 0.720 0.974 0.931 0.952 0.976 0.964
facebook 0.770 0.974 0.955 0.964 0.975 0.970
intel 0.772 0.980 0.959 0.970 0.981 0.975
netflix 0.772 0.941 0.926 0.934 0.941 0.937
Xbox 0.762 0.972 0.955 0.963 0.972 0.968
eBay 0.948 0.980 0.979 0.980 0.980 0.980
Microsoft 0.941 0.981 0.980 0.980 0.981 0.981
bing 0.915 0.983 0.980 0.982 0.983 0.982
AppStore 0.912 0.974 0.972 0.973 0.974 0.974
iheartradio 0.927 0.980 0.979 0.979 0.980 0.980
amazonmp3 0.969 0.984 0.984 0.984 0.984 0.984
PlayStation 0.950 0.984 0.984 0.984 0.984 0.984
Sprint 0.916 0.967 0.966 0.966 0.967 0.967
XboxSupport 0.731 0.847 0.842 0.844 0.847 0.845
VerizonWireless 0.967 0.978 0.978 0.978 0.978 0.978
nokia 0.970 0.981 0.981 0.981 0.981 0.981

Fig. 5. Index building time for increasingly large data source T and
increasingly more threads.

ent algorithms. Figure 4(d) shows the spatial cost for the
AROWANA index, AROWANA uniform index, MySQL B-Tree
index, MySQL B-Tree index with partition. It is clear from
Figure 4(d) that both AROWANA indices take considerable
less space than traditional B-Tree indexing. Figure 4(d) also
shows “Tdb”, the data size at each stage, which confirms
that B-Tree index can grow as fast as (or even faster) than
the data being indexed. AROWANA and AROWANA uniform
indices are growing sub-linearly, which is in accordance with
our theoretical analysis from Table II.

AROWANA index seems to have even greater temporal
advantage in the index building. Figure 5 shows the building
times for different indexers, number of threads, and data sizes.
The unpartitioned B-Tree shows by far the slowest time, which
is largely caused by its buffer pool not being big enough
for the data/index and is a known issue with systems like
MySQL[22]. Like it is demonstrated by [22], the indexing
time drops considerably when the data/index is partitioned into
1,024 parts. By partitioning the table on a timestamp key, the
database only loads the necessary shard into a buffer (which
is much more likely to be able to fit in main memory) at a
time and results in a much quicker building time. However,



AROWANA and AROWANA uniform indices still take less time
to build than the partitioned B-Tree by comfortable margins.
AROWANA’s main advantage is that its small file sizes, as
shown in Figure 4(d), can fit in system’s memory. Furthermore,
building an index, unlike querying one, involves physically
writing the entire index file to disk. In other words, AROWANA
can index much faster partly because it writes hundreds of
GigaBytes less data to disk than B-Trees in our experiments.

Figure 5 also shows that AROWANA uniform builds
marginally faster than AROWANA. The reason is that in order
to optimize the AROWANA tree structure by grouping affine
brands closer, AROWANA needs to compute inter-brand
semantic affinities and modify the trees.
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VII. CONCLUSION AND FUTURE WORK

We have introduced AROWANA, a data-driven algorithm
for indexing large unbalanced bipartite graphs. AROWANA
achieves a high-performance efficiency by building an index
tree that incorporates the semantic affinity among unbalanced
graphs. AROWANA uses probabilistic data structures to mini-
mize space overhead and optimize search. In experiments, we
have shown AROWANA’s superior scalability and competence
in building and retrieving queries over B-Trees and Lucene. In
the future, we plan to test AROWANA index on different types
of large, dynamic datasets beyond social graphs in order to
fully understand its strengths.
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