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Abstract—We focus on the problem of offline user location
estimation using online information, particularly for the appli-
cation of TV segment advertising. Unlike previous works, the
proposed method does not assume GPS information, but works
with loosely structured information such as English location
description. We propose to use a neural language model to
capture the semantic similarity among the location descriptions.
The language model can help reduce the otherwise expensive
geolocating service lookups by internally resolving similar areas,
neighborhoods, etc. onto the same description. We also propose
a metric for comparing geodemographic histograms. This metric
considers the demographic gap between the online world and
the offline world. In the experiments section, we demonstrate
the recall and accuracy of our language-based, GPS-free user
location distribution estimation. In addition, we illustrate the
effectiveness of the proposed distribution estimation metric.

I. INTRODUCTION & RELATED WORKS

Geo-location is one of a few ties that bridge the online

world and the offline world. Twitter is among the most popular

social networks where users share things happening near them.

In general, a user has two options to specify geolocation on

Twitter:

• Type in the location information (not a drop down menu)

that associates with his/her user account. For example,

in Figure 1, Jack Dorsey specifies California and Jamie

Oliver specifies London & Essex. Because user can type

in anything, fictitious or nonsensical locations are quite

common. For example, Neverland or Hogwarts, we find

out, are among the most popular addresses.

• Attach GPS coordinates to the tweets a user sends out.

When the user sends a tweet from a smart phone, s/he

can choose to do this for each tweet. Roughly 1% Twitter

users (estimated in our dataset) will enable GPS on their

tweets. On the other hand, over 20% Twitter users will

enter a location description1.

If our goal is to estimate Twitter adoption by region

(i.e., Twitter demographics), the GPS-tagged tweets cannot be

directly aggregated statistically. The goal is really to assign

to primary location/region to each Twitter account instead of

each tweet. And their sparse availability makes it even more

difficult.

1http://www.businessinsider.com/twitter-user-statistics-2014-4

(a)

(b)

Fig. 1. Example of how Twitter users can specify geo locations at account
level. (a) Jack Dorsey simply entered California (b) Jamie Oliver entered two
locations.

Previously, researchers[1], [2] use GPS location data from

social networks (Twitter, Instagram) to predict user’s future

locations. In [2], the authors use friendship ties (i.e., follow-

ing/follower status in Twitter) to predict realtime geographical

affinity and reconstructs missing friendship ties from realtime

geographical affinity. The core assumption is that real time

location is a strong offline signal that correlates to online

friendship. This assumption itself is quite reasonable. The

easiest way to argue for it is the Friday nights scenario. On

Friday nights, friends would go to dinners and clubs together

and tweet about the gathering from the same location. Because

they are real world friends who hang out together, they are very

likely to follow each other on Twitter as an online extension

of their offline friendship. This idea from [2] is simple and

works well. The similar concept is taken to further refinement

in [1], where the authors propose the distinction between

hometown and travel. They argue that the real time location

prediction should be handled differently when it comes to

movements within one’s hometown region versus long distance
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travels. It is intuitive that the previously mentioned Friday
nights scenario is more applicable to hometown location

predictions but less so for long distance travel predictions.

If one travels long distance regularly (e.g., a binational), s/he

is very likely to have different social circles with basically

no overlap. Recognizing such cases, the model in [1] uses

dynamic Bayesian networks to allow flexibility.

Realtime location prediction from online social ties and

offline GPS information is an interesting problem, but not

the one we are solving in this study. One of the great

strengths of online social networks is their ability to modernize

existing laborious offline pipeline processes. The prominent

example of this aspect is Google’s work[3] on using search

queries to track influenza epidemics in both temporal and

spatial dimensions (the up to date results are published at

http://www.google.org/flutrends/). Using large volumes of user

search queries, Google is able to predict flu trends faster

and more accurately than United States Centers for Disease

Control and Prevention (CDC). There is no surprise that

Google performs better than CDC on that front. Spatial data

collection from an offline pipeline introduces stages of delays.

Typically, CDC has regional outposts throughout the country,

each of which is responsible for collecting flu data from the

local hospitals and reporting back to CDC. Having gathered

all regional data points, CDC finally performs analysis and

prediction on the flu trends. This pipeline process is slower

and probably less accurate than what Google performs with

its search logs.

Another laborious offline pipeline process (with great busi-

ness interests) is media audience measurement (MAM). MAM

measures the number of people in each geographical region’s

audience in relation to media consumers (e.g., radio listener-

ship, television viewership, newspaper/magazine readership).

MAM is critical for offline advertising for two reason. First

MAM covers the biggest offline advertising channels: TV and

print. Second, advertisers rely on MAM information to make

ad inventory purchase decisions. For example, Porsche (lux-

ury, sports carmaker) often runs double-page advertisements

on medicine magazines to target affluent medical personnel;

Burger King (24 hour fast food chain ) likes to purchase ad

inventory from late night TV shows (presumably for attracting

hungry customers who stay up late and can’t find an open

restaurant at late hours). Both TV and print are planned,

high-reach, periodic media, so committing to purchase their

expensive ad inventory requires careful, cost-aware decision

making. Ad buyer uses MAM to make the decision of ad

buying. Without loss of generality, we focus on TV ad buying

using TV MAM.

TV MAM has existed long before Internet, so it is no

surprise that the existing offline legacy solution is blamed

for being slow and inaccurate in this day and age. The most

widely and currently used TV MAM in North America are

Nielsen ratings developed by the Nielsen company. Nielsen’s

TV ratings were developed in 1950s using methods originally

intended for radio ratings in 1930s. The technology uses

Set Meters, which are small physical devices. These devices

Fig. 2. Map of DMA topology in continental US

are mailed to individual households and installed there; they

communicate with Nielsen nightly through telephone line and

report back to Nielsen the household’s viewing habits (e.g.,

time series of channel switches). In the year 2013, there are

around 31,000 such devices (or equivalent)2 throughout the

US while it is estimated that US has over 115 million TV

households3.

The demographics interesting to TV ad buyers include

gender, age, income, race and region. Region, being the least

sensitive information, is often the most widely and reliably

collected demographics. In this study, we will focus on TV

region demographics (or simply geodemographics).

Geodemographics is a staple in national census. A census

would use different topologies ranging from granular to coarse

In United States, often used topologies (in the decreasing order

of granularity) are zip codes, cities, counties, and states. But

TV media market uses a special topology called designated

market area (DMA). DMA regions are initially defined based

on the reachability of the signals from major TV or radio

stations. As of 2013, there are 210 DMA regions. In terms

of topological granularity, DMA falls in between counties

and states. Figure 2 shows the DMA topology over state

boundaries on a US map (lower 48 states)4.

It is difficult to estimate the overall offline geodemographic

information from Twitter because of three reasons.

• First, the 1% Twitter users who enable geo tagging

are not proportionately distributed to the actual popular

demographics or the Twitter user demographics. To il-

lustrate this problem, suppose that New York City has

a population of 8 million and further suppose 2 million

of the New Yorkers have an active Twitter account. In

contrast, suppose Minneapolis has a population of 400

thousand, of whom 50 thousand have an active Twitter

2http://www.nielsen.com/us/en/insights/news/2012/celebrating-25-years-of-
the-nielsen-people-meter.html

3http://variety.com/2013/tv/news/nielsen-us-household-number-estimate-
increase-1200471668/

4Picture originally from Wikipedia http://en.wikipedia.org/wiki/Media
market
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account. Doing so we simply assume that New York City

has a higher population as well as a higher per capita

active Twitter account. We need a mechanism to adjust

for this gap between online and offline populations.

• Second, the disproportionate distributions introduce in-

consistent statistic confidence values in the estimated

demographics among different regions. For example, we

may observe 10 thousand Twitter users from New York in

our sample and only 30 Twitter users in a small city (e.g.,

Pullman, WA). Smaller sample sizes in less populous

regions will result in low confidence and high variance

in their Twitter demographic estimations.

• Third, tourist attractions usually have a lot of tweets

with GPS enabled, most of which are sent by their

visitors but not their residents. This situation also makes

the demographic estimation harder as it introduces more

variance to the already sparse GPS information.

II. PROBLEM FORMULATION

We assume several sets of Twitter users. Each set of Twitter

users correspond to a demographic we are interested in (e.g.,

it can be the group of Twitter users who are interested in

a TV show or an actor). The first part of the problem is to

reliably resolve the demographics from just profile information

without GPS into histogram distributions. The second part

is to establish meaningful metrics for cross-comparing the

demographics.

III. RESOLVE DESCRIPTION TO LATITUDE, LONGITUDE

The ideal situation is to use the average GPS coordinates

embedded in user’s tweets to estimate this user’s residential

location. But less 1% Twitter users (estimated in our dataset)

will enable geo tagging on their tweets and the percentage is

even lower for the users who enough record geo tags for the

estimated location to be robust. For such reason, we decide to

develop a methodology that does not rely on embedded GPS

coordinates.

The location description string, on the other hand, is a far

more commonly adopted on Twitter user base. Over 80%

of the users in our dataset specify some non-empty string

in his/her location description. Given a string of location

description, the obvious solution for parsing it is to send every

string to a cloud resolving service such as the Google Maps

Geocoding API5 or the Microsoft Bing Maps Location Query

API6. However, there are two problems with this solution.

• Such services from Google or Microsoft has an imposing

business cost. Both services require business account

subscription for sustained use of these API calls. It takes

considerable cost and time (due to API throttling) to

process 10s of millions of location strings.

• Such services assume well formed and sensible location

string queries. They take the string input quite seriously,

which is not how many Twitter users have in mind when

5https://developers.google.com/maps/documentation/geocoding/
6http://msdn.microsoft.com/en-us/library/ff701714.aspx

Fig. 3. Example of failed Twitter location string look up.

they put in the location string. For example, some humor-

ous Twitter users enter “The Moon” as their locations.

And Figure 3 is what happens when we tell Bing to find

us where “The Moon” is on its map. The embarrassment

can neither be blamed on Twitter user’s attitude nor

Bing’s algorithm; it is simply due to different expectations

between the one who enters the text and the one who

parses it.

To address the above two weaknesses, we have designed

a combination of techniques. First, we ran an experiment to

see the histogram distribution of the most frequent locations

strings entered by Twitter users. Initially, we thought that the

location distribution would be somewhat power law like (i.e.,

several hundred top locations would cover the majority of

the user base), but this assumption turned out to be quite

inaccurate. We find out that the location distribution is actually

very long-tailed. The top 100 thousand most frequent locations

string cover about 10% of total users in our dataset.

A. Neural language models

To cope with the long tail of location strings, we resort

to the semantics embedded in the the location descriptions.

For example, the semantic difference between Boston and

Massachusetts is similar to the difference between Lowell and

Massachusetts. So by tracking the semantic differences, we

hope to approximate descriptions from the tail distribution

(e.g., Lowell, Massachusetts) with descriptions from the head

distribution (e.g., Boston, Massachusetts).

The key assumption in this approach is to train a reli-

able language model that accurately represents the semantics

(and syntaxes). The language model we use is a neural

language model[4], [5], [6] called “word2vec”. word2vec takes

a unlabeled text corpus, and produces a high dimensional

numeric vector for each word and each bigram. Those vector

representations can capture semantics quite well as long as the

vector dimension used is high (we use 200 in practice) and

the training corpus is sufficient (millions of words for tens of

thousands of vocabulary).

word2vec is essentially a single hidden layer neural net-

work. For each word, it is trained on the words around

it. The implementation has several tricks (e.g., hierarchical

softmax[4], negative sampling[5]) to make its performance

practical. In this paper, we use Google’s open source imple-

mentation7 of word2vec with only minor modifications.

7https://code.google.com/p/word2vec/
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IV. MAPPING LATITUDE, LONGITUDE TO DMA TOPOLOGY

Given a set of 〈latitude, longitude〉 coordinates, the goal is

to map each of them to one and exactly one of the 210 DMA

regions. Mathematically speaking, the problem is equivalent

to membership assignment on a first-order Voronoi diagram

of 210-compartments (each DMA region being one compart-

ment). There are quite a few fast algorithms for performing

this task[7]. In our experiment, we first build a k-d tree[8]

K that indexes the 〈latitude, longitude〉 centroids of the 210

DMA regions. Then for each pair p of 〈latitude, longitude〉
coordinates , we query K to find the nearest DMA region to

p under the Haversine distance approximation[9]:

distance(〈φ1, λ1〉 , 〈φ2, λ2〉) =

2r arcsin

(√
sin2

φ2 − φ1

2
+ cosφ1 cosφ2 sin

2 λ2 − λ1

2

)

(1)

where r is the average Earth radius, 〈φ1, λ1〉 , 〈φ2, λ2〉 are the

〈latitude, longitude〉 coordinates of a DMA region centroid and

the estimated coordinates from description string.

For each set of Twitter users, we can resolve the location

description from each of its users. This operation transforms

a set of Twitter users into a set of DMA region codes. In

other words, this set of Twitter users can be visualized as a

categorical histogram over all DMA regions. Figure 4 is an

example result of this process.

Algorithm 1 describes the conversion of each user set into a

histogram distribution. First(line 1), it trains a neural language

model based on location text corpus d using word2vec imple-

mentation8. So l holds a list of the 500d vectors that represent

the words appear in d. Since l and dr are both spatial data

points (items in l are 500 dimensional vectors in hyperspace

and items in dr are 2 dimensional points on surface), we index

both l and dr in k-d trees(line 2 & 3). To build a histogram

for each set Ti, we need to iterate over all its users in Ti

and parse their location description string. We first look up

the strings among the frequent locations in ls. If the current

user’s location description string is not in ls, we try to look

up this string in the language model hyperspace and find its

nearest location synonym (based on inter-vector L2 distance)

that exists in ls (as seen in the while loop starting line 13). We

try the top 3 nearest synonyms, if none of them matches any

entry in ls, we skip to the next user. Once the algorithm gets

a location 〈latitude, longitude〉 from ls, we query its nearest

neighbor in dkd, the k-d tree indexing all DMA regions’

centroids, and increase the count in the histogram accordingly

(line 21 & 22). When searching for nearest neighbors in

dkd, we can use the Haversine formula to determine precise

distances. And it will work with conventional k-d tree search

algorithm because the Havesine distance is, like Lp distances,

monotonic in any dimension. In practice, when we perform

the algorithm concerning only the lower 48 states in the US,

8https://code.google.com/p/word2vec/

Algorithm 1: Resolve algorithm

Input: T1, T2, . . . , TI , Twitter interest sets; each set is a

set of user,

d, generated document for training the language model,

dr, DMA region codes with 〈latitude, longitude〉 of each

region’s centroid,

ls, a dictionary where location strings as key and

〈latitude, longitude〉 as value, only the most frequently

used description strings are sent to remote geolocating

service for resolving 〈latitude, longitude〉.
Output: h, list of all I DMA region-level histograms for

T1, T2, . . . , TI

1 l← word2vec(d,dim=500)

2 lkd← new kdtree(l)
3 dkd← new kdtree(dr)

4 h← new list〈histogram〉()
5 for i ∈ {1, . . . , I} do
6 h[i]←new histogram()

7 for u ∈ Ti do
8 s← u.locationDescString

9 if s ∈ ls.keys() then
10 g ← ls[s]
11 else
12 i← 0
13 while i < 3 and

t← lkd.ithNNsearch(s, i,metric=L2-norm) do
14 i← i+ 1
15 if t ∈ ls.keys() then
16 g ← ls[t]
17 break

18 end
19 end
20 end
21 if g is not null then
22 dc← dkd.NNsearch(g,metric=Haversine)

23 increase h[i][dc] count

24 end
25 end
26 end
27 return h

we find that L2 distance works quite well as an approximation

of the Haversine distance and is much easier to implement.

V. QUANTITATIVE COMPARISON OF DEMOGRAPHICS

Our efforts so far have lead to categorical histograms over

DMA regions. Histograms shown in Figure 4 can only be

visually consumed unless we develop systematic metrics for

quantitatively comparing these histograms.

Map comparison on categorical histogram level is an im-

portant topic in Geographic Information System (GIS) and

has a long history of investigation that can be dated before the

silicon age[10]. However, our problem stands out due to a few

unique challenges and requires a novel measuring solution.
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(a)

(b)

Fig. 4. Histogram distributions of a set of Twitter users over DMA regions.
Deeper color means higher value. (a) Raw counts of Twitter users in each
DMA region (b) Counts normalized by each region’s population.

• We have a large number of sets of Twitter users. Twitter

itself is an interest network. It is conceivable to have 1

million (or more) sets (usually with overlapping member-

ships) to represent the diversified user interests on Twitter.

To answer practical queries like “top N interest sets that

have the most/least similar demographics with a given

set”, fast pairwise comparison of the histograms of those

Twitter user sets becomes a requirement. Preferably even

better, the proposed metric should be able to incorporate

with k-d tree[8] scheme. This would enable relatively

fast top-N look-ups without precomputing all pairs of

histogram similarities.

• many existing map comparison metrics[10], [11] are

binary metrics. It means that the metric will tell you

whether the two map distributions are identical or not.

We need a continuous measure instead of a binary one.

Existing popular solutions[10], [11] for map histogram

comparison are mostly based on statistical measures of inter-

rater, categorically-valued agreement (e.g., Cohen’s kappa

coefficient)[12]. However, when we compare two Twitter in-

terest sets here, the user locations that generate the geographic

histograms are not the same users in both sets. As a result,

kappa statistic (or similar statistics) cannot apply to compare

the histograms in our case.

What other options do we have then? Jensen-Shannon

divergence (JSD) is a popular statistical method of measuring

the similarity between two probability distributions. JSD is

based on the better known Kullback-Leibler (K-L) divergence.

Unlike K-L divergence, JSD is symmetrically defined and

always returns a positive, finitely bounded value. Without loss

of generality, consider two discreet probability mass functions

P and Q. And let M = P+Q
2 . The Jensen-Shannon divergence

of P and Q can be defined as:

JSD(P,Q) = JSD(Q,P ) =∑
i

ln

(
P (i)

M(i)

)
P (i) +

∑
i

ln

(
Q(i)

M(i)

)
Q(i).

(2)

The Jensen-Shannon Similarity (JSS) is simply 1-JSD. Both

JSS and JDD are between 0 and 1. Since the definition of JSS

on two distributions is a drop-in replacement for, say, more

standard Lp grid distances. It is straightforward to embed JSS

as the metric in a k-d tree or a LSH that indexes the histograms

of the Twitter interest sets.

A. Correcting Twitter bias

The demographics on social network does not represent the

actual demographics. For example, 20-24 is the most populous

age group among American Facebook users. In fact, there are

more Americans in either age group 45-49 or 50-54 than 20-

249. It is not surprising for Facebook to have a skewed user

demographics biased toward younger population because of

its link to the Internet. Other social networks have different

kinds of biases towards a particular demographic. Pinterest

and Tumblr have noticeably more female users1011.

Twitter, like many other social networks, has biases in

geodemographics. In the US, people on the east/west coast

tend to be more involved on Twitter than people from the

inland. We have to consider this geographical bias in formu-

lating our comparison metrics for the demographics because

it might lead to inaccurate comparison results, which we shall

illustrate below with a toy example( which is fully illustrated

in Figure 5). Suppose we have three interest groups of users on

Twitter: users interested in the TV show Silicon Valley (SV)12,

those interested in the TV show Mad Men (MM)13, and those

interested in the news media Wall Street Journal (WSJ). And

suppose WSJ is interested in selling more subscriptions by

targeting to the people interested in those two TV shows.

Geodemographics is an integral part in deciding whether to

target MM or SV. For the sake of simplicity, assume there

are only two bins in our geodemographic distributions: (west

coast, east coast). Now suppose east coast is more densely

populated than the west coast at the distribution: (0.45, 0.55).
Since Twitter was born in San Francisco, the general Twitter

population is, say, biased towards the west: (0.6, 0.4). SV is

9http://en.wikipedia.org/wiki/Demographics of the United States
10http://techcrunch.com/2014/07/24/women-use-pinterest-but-they-dont-

run-it/
11http://www.emarketer.com/Article/Whos-Using-Tumblr/1008608
12http://www.hbo.com/silicon-valley
13http://www.amctv.com/shows/mad-men
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Fig. 5. Toy example of the skewed distributions on Twitter. The calculation
shows that WSJ is closer to Silicon Valley than it is to Mad Men, based on
on-Twitter distributions. Using real population, WSJ is closer to Mad Men
than it is to Silicon Valley, based on on-Twitter distributions. JSS(., .) in this
figure symbolizes 1− JSD divergence. So higher means more similar.

a show about startups in California, so it also gets a west-

biased distribution among its Twitter fans: (0.65, 0.35). MM

is a show about a fictitious New York advertising agency so it

has a east-biased distribution: (0.45, 0.55), but it is a relatively

small bias towards the east because Twitter, as we assume, is

biased towards the west. Finally WSJ, based in New York, has

a distribution (0.55, 0.45). WSJ is intentionally assumed to be

west-biased to reflect what a biased Twitter distribution can

do to an otherwise east-biased interest. The problem occurs

when we try to calculate the JSS (i.e., 1- JSD) based on the

on-Twitter distributions. The calculation shows that WSJ is

closer to Silicon Valley than it is to Mad Men (0.889 vs.

0.913). But once we adjust the WSJ distribution based on

actual population, the calculation shows that WSJ is closer to

Mad Men instead (0.983 vs. 0.786). We adjust WSJ but not for

the TV show because WSJ is targeting the TV shows’ Twitter

audience not their actual viewership.

Almost every scientific questions beckons “how” and

“why”. The Toy example in Figure 5 illustrates the “how”.But

why is it important for us to adjust Twitter’s bias? The

comparison between Figure 4 and Figure 6 illustrate how

dramatic the bias can be. In the un-adjusted version (Figure 4),

metropolitan areas like Seattle, Dallas are not well represented

due to the bias. We believe this adjustment is critical in our

methodology and makes it more robust.

(a)

(b)

Fig. 6. Histogram distributions same as in Figure 4, adjusted for the Twitter
demographic bias. (a) Raw counts of Twitter users in each DMA region (b)
Counts normalized by each region’s population.

VI. EXPERIMENTS

Our experiments need to evaluate two different claims we

have made.

• First, a set of experiments should illustrate how accu-

rately our proposed system estimates users’ geographical

distribution given an interest on Twitter.

• Second, another set of experiments should demonstrate

how reasonable and effective our demographic compari-

son metric is.

A. The Data

To best evaluate our propositions, we use real Twitter data in

our experiments. Table I summarizes the characteristics in our

dataset. From August to November 2013, we download tweets

related to 241 particular TV programs that are broadcasting (or

have broadcasted) in the US. We identify those tweets through

“#hashtags” related to each TV program. A TV program

could have multiple #hashtags. For example, the AMC series

Breaking Bad relates itself to two #hashtags: #BreakingBad

and #GoodByeBreakingBad. We manually collect over 300

#hashtags.

When we apply our tagging system to this dataset of 7.3 mil-

lion Twitter users, we find out that only 883 thousand (about

12%) users are tagged as US-based by our system. These US-

based accounts are heavily concentrated in metropolitan areas
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TABLE I
SUMMARY DESCRIPTION OF OUR DATASET; THE LAST FOUR ENTRIES ARE

ESTIMATED STATISTICS.

Collection start time 2013 August 1st
Collection end time 2013 November 31st
Tweets origins All around the world
Tweets collected Over 100 million
Unique twitter users 7,346,392
Users w/ GPS tracking < 1%
Interest sets involved 241
Interest origins American TV programs,

CPG14 brands, service providers

Users w/ US location string 883,715
Users in New York area 82,985
Users in Los Angeles area 71,688
Users in Dallas area 19,682

(New York area has over 9% of all US-based accounts in our

sample while Los Angeles ares has over 8% of that share).

B. Tagging recall & accuracy

Tagging 12% of all users from the dataset is considerably

better than what one can do with GPS information, which is

less than 1% in our data. Our algorithm can provide a much

larger geo-tagged sample than simply using GPS information,

but this advantage is conditional on the accuracy of the

algorithmic tagging.

It is difficult to measure the accuracy of the algorithmic

tagging in a straightforward way. Previously released Twitter

datasets[13] do not tag the tweets geographically. And it is

impractical for us to manually tag all the twitter users or even

a convincingly large sample of them.

Since our recall is already significantly better than using

only GPS information, we focus on designing an evaluation

for accuracy. The idea is to use a sampling process to select

the users for manually resolving its location. We want to inde-

pendently sample each bin from the histogram whose accuracy

is to be evaluated. Within each histogram bin, we select users

for verification like how active learning sample selection[14].

The upcoming selections depend on the description string of

the previously selected users in that bin and whether our

system tags them correctly into this bin. We stop the selection

process when the calculated running accuracy achieves certain

statistical convergence. Table II summarizes a few accuracy

tests. Some of the most populous areas in the US are used. In

each row of Table II, we list the canonical location description,

the DMA region it should be assigned to, the number of

users tagged by our algorithm, the number of tagged users we

have judged by human, the number of misclassified locations

(deemed by human judges), and the popular location strings on

which the algorithm makes mistake. In general the accuracy

is consistent and robust.

What we find to be interesting is in the mistakes the algo-

rithm has made. There are two major sources of mistakes. First

is ambiguity. For example, Los Angeles, CA vs. Los Angeles,

Chile and Dallas, TX vs. Dallas, PA. Another major source

is users’ humorous intention. We find it interesting that many

users specify “future New Yorker” in their location description.

“Metropolitan Detention Center(MDC) Los Angeles” is also

a popular location according to the users on Twitter. MDC is

a Federal prison in downtown Los Angeles.

C. Effective or not: JSS-based comparison

Given that our tagging algorithm does a reasonably good job

approximating the true underlying geographic user distribution

for each Twitter interest, we should evaluate the effectiveness

of the proposed JSS-based comparison metric.

Defining a metric is a subjective matter. For example, the

H-index[15] in academic citation is proposed to capture both

productivity and impact in a single metric. But it is impossible

to say if an index assigned to a particular author is wrong.

Instead, what we are most interested in is whether a metric

is likely and appropriate. We take the original idea from

locality sensitive hashing and adapt it to our domain: for

two Twitter interests to have high affinity (“affinity” defined

below), having similar location distributions is likely to be

necessary; on the other hand, if two interests have dissimilar

location distributions, it is likely to be sufficient to dismiss

their affinity. Based on this logic, we perform two kinds of

checks:

• We extract Twitter interest pairs with the highest affinity

score, and check whether those pairs indeed have similar

location distributions (i.e., JSS between the histograms).

• We extract the Twitter interest pairs that have dissim-

ilar location distributions (i.e., low JSS between the

histograms), and check whether indeed they have low

affinity.

affinity between a Twitter interest pair (A,B) can be loosely

defined as the likelihood for a user to be interested in A
given that s/he is interested in B or vice versa. Detailed

definitions, variations, and its relation to frequent item set

mining can be found in this recent work[16]. Expecting

positive evidences supporting the two described checks, we

summarize our findings in Figure 7. The blue crosses in Figure

7 correspond to the first of the two checks mentioned above:

high affinity score indeed promises high JSS. The red circles

in Figure 7 correspond to the second check: low JSS indeed

results in low affinity score. This result is by no means hard

proof but we think it is strong evidence that the proposed JSS

is a meaningful, well-defined metric to use when comparing

location distribution histogram.

VII. ACKNOWLEDGMENTS

This work is supported in part by the following grants:

NSF awards CCF-0833131, CNS-0830927, IIS-0905205,

CCF-0938000, CCF-1029166, ACI-1144061, IIS-1343639,

and CCF-1409601; DOE awards DE-FG02-08ER25848,

DE-SC0001283, DE-SC0005309, DESC0005340, and

DESC0007456; AFOSR award FA9550-12-1-0458.

VIII. CONCLUSION AND FUTURE WORK

In this work, we describe on the problem of offline user lo-

cation estimation using online information. We are particularly

interested in applications of TV segment advertising. Unlike
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TABLE II
TAGGING ACCURACY AT POPULAR LOCATIONS AND THEIR FREQUENTLY MADE MISTAKES.

Location DMA region Tagged Judged Misclassified Frequently made mistakes
New York, NY NEW YORK 82985 100 12 new york not nyc. upstate New York.

future New Yorker
Los Angeles, CA LOS ANGELES 71688 100 8 mdc los angeles. los angeles chile

Chicago, IL CHICAGO 27388 50 4 somewhere close to chicago
Boston, MA BOSTON (MANCHESTER) 26074 50 7 wishin i lived in boston. boston strong
Kansas, MO KANSAS CITY 23657 50 1 Arkansas City KS
Dallas, TX DALLAS-FT. WORTH 19682 50 1 Dallas PA

Buffalo, NY BUFFALO 4601 30 1 buffalo wings
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Fig. 7. By contrasting with affinity scores, we illustrate the usefulness of
the proposed adjusted Jensen-Shannon Similarity (1-JSD) between location
distribution histograms. Both affinity score and JSS are normalized between
0 and 100.

previous works, we propose a geo-tagging method that does

not require GPS information from users. The tagger works

with loosely structured information such as English location

description. To digest large amount of unlabeled text-based

location description, we propose a neural language model to

capture the semantic similarity among the location descrip-

tions. The language model can help reduce the otherwise

expensive geolocating service lookups by internally resolving

similar areas, neighborhoods, etc. onto the same description.

To make the location distribution histogram estimations more

robust, we illustrate a simple, effective way to adjust for the

bias introduced by Twitter demographics. We also propose

a metric for comparing geodemographic histograms (Jensen-

Shannon Similarity). In the experiments section, we demon-

strate the recall and accuracy of our language-based, GPS-free

user location distribution estimation. In addition, we illustrate

the effectiveness of the proposed distribution estimation metric

by performing two heuristic checks. In the future, we plan to

expand the application beyond the US to a global scale since

Twitter and other social network services are global services.
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