
Using Multi-Resolution Data to Accelerate Neural
Network Training in Scientific Applications

Kewei Wang∗, Sunwoo Lee‡, Jan Balewski†, Alex Sim†, Peter Nugent†,
Ankit Agrawal∗, Alok Choudhary∗, Kesheng Wu†, and Wei-keng Liao∗

∗ECE Department, Northwestern University
{kwf5687, ankitag, choudhar, wkliao}@ece.northwestern.edu

†Lawrence Berkeley National Laboratory
{balewski, asim, penugent, kwu}@lbl.gov

‡ University of Southern California
sunwool@usc.edu

Abstract—Neural networks are powerful solutions to many
scientific applications; however, they usually require long model
training time due to large training data sets or large model size.
Research has been focused on developing numerical optimization
algorithms and parallel processing to reduce the training time.
In this work, we propose a multi-resolution strategy that can
reduce the training time by training the model with the reduced-
resolution data samples at the beginning and later switching to
the original resolution data samples. This strategy is motivated
by the observation that coarser versions of many applications
can be solved faster than their denser counterparts, and the
solution to a coarser problem could be used to initialize the
solution to the denser problem. When applying the idea to
neural network training, coarse data can have a similar effect
on the learning curves at the early stage as the dense data
but requires less time. Once the curves no longer improve
significantly, our strategy switches to using the data in original
resolution. The key in this process is the ability to generate
multiple resolutions of a problem automatically, which could
usually be done with scientific applications with spatial and
temporal continuity. We use two real-world scientific applications,
CosmoFlow and DeepCAM, to evaluate the proposed mixed-
resolution training strategy. Our experiment results demonstrate
that the proposed training strategy effectively reduces the end-to-
end training time while achieving a comparable accuracy to that
of the training only with the original data. While maintaining
the same model accuracy, our multi-resolution training strategy
reduces the end-to-end training time up to 30% and 23% for
CosmoFlow and DeepCAM, respectively.

Index Terms—Deep Learning, Transfer Learning, Multi-
resolution Data

I. INTRODUCTION

Many scientific applications have successfully used deep

learning to solve their data analysis tasks [1]–[5]. One common

challenge in deep learning is to shorten the long training

time for the neural networks, which can be hours or days.

To have a reasonable training time, researchers have proposed

various techniques. For example, there are many approaches

for speeding up the training procedure by improving scalabil-

ity, such as large-batch training [6], [7], exploiting different

forms of parallelism [8], asynchronous training [9], reducing

communication during training [10], [11], and so on. Other

approaches focus on the statistical efficiency of optimization

algorithms to reduce the number of training iterations, such as

AdaGrad [12], Adam [13], AdamW [14] and variance-reduced

SGD [15], [16]. In this work, we approach the issue of long

training time from a different angle. We exploit a physics

principle to enable an effective transfer learning procedure to

provide an alternative strategy.

In this paper, we propose a multi-resolution training strategy

(MRT) that reduces both computation and communication

time when training the neural network model in parallel.

The strategy trains the model using reduced-resolution data

samples first and later switches to the original-resolution data.

Training the model with coarse-resolution data takes a shorter

time than the original data because each training sample size

is reduced, resulting in less computation cost. Once the loss

curve stops improving, we switch back to use the original

resolution data to continue the training. At the end when the

training converges, a comparable accuracy can be achieved

as if the model is trained entirely using the original data.

We take the continuity in scientific problems to generate

coarser versions of the input data and demonstrate that simple

strategies for reducing data resolution could work well. To

construct a model for training the coarse data, we present

a working choice of sub-network transfer which requires a

small adjustment on the model architectures. We also propose

a switching mechanism that triggers the switch based on the

changes of training loss in a given time window to decide

when to switch from the coarse to the dense data.

Our training strategy is motivated by multigrid strategies

in scientific computing [17], [18]. The data from scientific

problems often are the discretization of some physical quan-

tities, such as temperature and pressure from an atmospheric

application, DeepCAM [19], dark matter mass distribution in

CosmoFlow [3]. In these cases, the physical quantity could be

discretized at different resolutions; a coarse resolution would

lead to smaller arrays while a denser resolution leads to

larger arrays. Various multigrid strategies have been proposed

to take advantage of the multiple resolutions of the same

physics quantities [17], [18]. The main idea behind these

strategies is that a scientific problem could be solved with

404

2022 22nd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)

978-1-6654-9956-9/22/$31.00 ©2022 IEEE
DOI 10.1109/CCGrid54584.2022.00050

less computational effort at a coarse resolution, though the

solution might have more uncertainty. For iterative methods,

such coarse data can potentially be used at the beginning of

the iterations until the intermediate solution reaches a similar

value as the one when using the dense data only. The time to

reach such a point is expected to be smaller. The same idea

can be applied to neural network training if we can transfer

the model trained with coarse data at the beginning to train

with dense data.

We evaluate the multi-resolution training strategy using two

real-world scientific applications, CosmoFlow and DeepCAM,

from the MLPerf HPC v0.7 training benchmark suite [20],

[21]. Both applications have large multi-channel datasets and

suffer from expensive computational time during the training.

Our experiments were carried out on two supercomputers,

Summit at Oak Ridge National Laboratory (ORNL) and Cori

at National Energy Research Scientific Computing (NERSC).

The goal of the multi-resolution strategy is to reduce the end-

to-end model training time while keeping the same validation

accuracy as the model trained with the original data. We empir-

ically verify that our training strategy can effectively transfer

knowledge from the low-resolution data through network-

based transfer learning. The transferred knowledge from the

pre-trained model successfully boosts the training efficiency

of the original model. Compared to training on the original

model, we observe an end-to-end training time improvement

of up to 30% and 23% for CosmoFlow and DeepCAM

without losing accuracy. In addition, we present the scaling

performance results of running the training in parallel on 32

to 128 GPUs, with the timing breakdown of I/O, training,

and inter-process communication. We also study the impact

of different switching points from coarse to dense data on

the total training time. Our experimental results demonstrate

that the proposed strategy can successfully reduce end-to-end

training time without losing model accuracy.

II. BACKGROUND AND RELATED WORK

A. Continuity in Scientific Applications

In many scientific applications, the data are usually physical

quantities discretized in the space or time domain. Thus, there

is inherent continuity among the data elements. Consequently,

it is possible to generate a coarser version of the datasets by

simply sampling fewer numbers of data elements or by taking

averages of neighbor elements. In this work, we consider a

few representative coarsening schemes.

In scientific computing, there are many other strategies to

make use of this continuity. For example, Suisalu et al. [18]

solve cosmology problems using multigrid methods. A similar

multigrid method is also used to solve climate modeling

problems [17]. Note that the multigrid procedures have a

strong mathematical foundation. These previous works show

effective use-cases of multigrid methods. We adopt this core

idea to large-scale deep learning to accelerate neural network

training.

B. Transfer Learning

Transfer learning techniques have shown to be effective in

many deep learning applications [22]–[24]. Transfer learning

techniques are usually designed to get useful knowledge trans-

ferred across different domains. When using neural networks

for transfer learning, they are first pre-trained in the source

domain, and then either a part of the model or the whole model

is re-trained on the destination domain datasets. For example,

ImageNet is usually used in computer vision tasks to pre-

train the model before further fine-tuning for the downstream

tasks [25], [26]. When the target dataset is small, fine-tuning

the whole model might cause overfitting [27]. Thus, the few

input side layers can be frozen while the rest are fine-tuned.

Various works have studied which and how many layers should

be frozen during fine-tuning [27], [28]. In this paper, we

borrow the neural network-based transfer learning approaches

to transfer knowledge from the low-resolution task to the

original task for the purpose of speeding up overall training.

C. Synchronous SGD with Data Parallelism

Many machine learning applications use stochastic gradient

descent or its variants to solve domain-specific optimization

problems. Mini-batch SGD iteratively utilizes a random subset

of training data points to compute the gradients for adjusting

model parameters. To reduce the training time, researchers

have proposed many parallel training algorithms. Synchronous

SGD representing the synchronous-parallel version of mini-

batch SGD is the most conventional algorithm. With data

parallelism, each mini-batch is evenly distributed to workers.

Each worker processes the assigned data to compute the gra-

dients independently. Then, the gradients are averaged across

all the workers using inter-process communication. We use

synchronous SGD with data parallelism that provides the op-

timal statistical efficiency compared to other communication-

efficient algorithms that can potentially harm the accuracy.

D. CosmoFlow

CosmoFlow is a project that develops a deep learning tool

for analyzing cosmology data. It is included in the MLPerf

HPC Training benchmark [20], an industry-standard perfor-

mance benchmark for evaluating Machine Learning perfor-

mance on large-scale HPC systems. Mathuriya et al. proposed

adopting a 3D convolutional neural network to estimate the

initial condition of the universe based on the 3D simulations

of the distribution of matter [3], [21]. This application incor-

porates large multi-dimensional data samples containing 3D

cubes of size 1283 with four redshift channels. The large size

of the CosmoFlow dataset makes it computationally expensive

to train over many iterations.

E. DeepCAM

The Community Atmospheric Model is a global atmosphere

model for simulating long-term climate trends in the earth’s

atmosphere [19]. One way to validate such a simulation is to

extract critical atmospheric events such as atmospheric rivers

and tropical cyclones. DeepCAM is a test benchmark for

405

using deep learning to identify such events from a CAM5

simulation dataset [19]. The data samples in the test dataset

are defined as 2D meshes of the earth’s surface, and labels

are provided for each mesh point when an event of interest

is present. This test problem is also included in the MLPerf

HPC Training benchmark. The dataset of DeepCAM contains

meshes of size 768 x 1152 with 16 variables at each mesh

point. With such massive data volume and a large encoder-

decoder segmentation architecture, the application DeepCAM

is computationally challenging.

III. MULTI-RESOLUTION TRAINING

The proposed multi-resolution training strategy (MRT)

draws inspiration from the multigrid solution strategies; that is,

solving the coarser version of a problem could help in solving

the denser version of the same problem. In addition, there

is an observation that when neural networks are trained on

images, the first layer features resemble each other regardless

of the exact dataset [29]. For features transferred from different

tasks, it is shown that learned features are better than random

initialization, even for distant tasks [27]. Thus, we expect that

the transferred weights from the model trained on a lower

resolution dataset of the same task can be beneficial to the

training on the dense dataset.

Given a scientific dataset with large data samples, training a

neural network can be time-consuming. The training time can

be largely reduced by reducing the size of training samples by

reducing their data resolution. However, if we train the neural

network with low-resolution data only, the generalization

performance will be affected, causing higher validation loss

and lower accuracy. To efficiently utilize the low-resolution

data to train the neural network while not hurting the model’s

generalization performance, we propose adopting a two-stage

training procedure.

Training procedure – Given a deep learning model M, i.e.,

a function M(xi, yi, w) : R
n → R

m mapping n-dimensional

input samples X to m-dimensional labels Y with parameters

(weights) w, we use the original dataset with samples X and

labels Y as the dense dataset. Firstly, we preprocess the input

samples X into coarse samples Xc and labels Y into Yc as the

coarse dataset. Then, in the first training stage, we construct

the coarse model Mc based on M and train the neural network

with the coarse dataset, Xc and Yc, for Tc iterations. After

having the coarse model Mc pre-trained with the coarse set

Xc, we pass the weights of partial layers from Mc to initialize

the original model M, the dense model. The rest layers in the

dense model are initialized with random weights. Then, in the

second training stage, we employ the dense dataset X and Y
to fine-tune the dense model M for T iterations.

A. Creating Coarse Training Dataset

Given a set of training samples, we reduce their resolutions

uniformly to create a new dataset. We refer to this dataset as

the coarse dataset Xc and the original dataset as the dense

dataset X for the rest of the paper. Various techniques for

data reduction have been proposed, such as dimensionality

(a) CosmoFlow (b) DeepCAM

Fig. 1. Schematic of convolutional neural network used in CosmoFlow and
DeepCAM. The layer that is different between the dense and the coarse model
is marked in yellow. The input sample sizes and the output sizes of the last
convolutional layer of the dense and the coarse model are shown on the left
and right columns, respectively.

reduction and numerosity reduction. Considering to transfer

the partial network model pre-trained with the coarse dataset

to continue to train with the dense model, we keep the same

number of dimensions of the data samples and adopt a simple

strategy to reduce the data resolution. For each data dimension,

we keep the number of channels unchanged if they represent

different figures and reduce the size of other dimensions based

on their scientific features. For example, a training sample xi

from the CosmoFlow dataset is a 4D array, where the first three

dimensions denote the 3D matter distribution, and the last one

consists of 4 channels representing 4 different redshifts. In this

example, we reduce the data resolution along the first three

dimensions of each sample by averaging every 23 neighbors

of a data point. The resulting coarse sample is referred to

as xci. As for the DeepCAM dataset, climate variables are

stored on 1152 x 768 spatial grids in the data sample xi. There

are 16 pixel-wise variables for each spatial grid containing

wind speed, temperature, pressure, precipitation, etc. Thus, for

each climate variable, we calculate the average values of each

adjacent 2 x 2 spatial grid to create a coarse sample xci. Note

that the size of labels can be related or unrelated to the size

of data samples. In this case, we keep the same labels Y for

the coarse dataset as the dense dataset.

B. Model Architecture for Multi-Resolution Training

We adjust the original model in order to train with coarse

data. In the rest of the paper, we refer to the original model

to be trained with the original resolution data as the dense

model, M, and the adjusted model to be trained with reduced-

resolution data as coarse mode, Mc. With the smaller input

406

size, the output size of the last convolutional layer also

becomes smaller. Recent work on transfer learning suggests

parameters in the neural network usually converge from the

input side to the output side layers [30]. Thus, when construct-

ing the coarse model Mc based on the dense model M, we

keep the structures of the input side layers the same and only

adjust the output side layers. As typical convolutional neural

networks are composed of alternate convolution layers and

pooling layers with or without several fully connected layers

at the end [31], we accordingly categorize them into two types:

with or without fully connected layers. For models consisting

of convolution layers at the input side and fully connected

layers at the output side, we only adjust the size of the weights

of the first fully connected layer without adding extra layers.

For example, for the model architecture of the CosmoFlow

in Figure 1 (a), as shown on the right side, using the coarse

sample xci causes the output size of the last convolutional

layer to be smaller than the one in the dense model, which is

shown on the left side. Thus, we keep the size of weights in

the convolutional layers and the output side fully connected

layers marked in orange unchanged and only adjust the size

of weights of the fully connected layer marked in yellow for

the coarse model Mc.

For fully convolutional networks, the output size of the

last layer reduces as the input sample size becomes smaller.

Thus, we add an extra upsampling layer at the output side

to adjust outputs to match the size of the labels Y . For

example, DeepCAM implements a convolutional encoder-

decoder segmentation model, which is shown in [19]. From

the simplified structure shown in figure 1 (b), we can see that

with a coarse sample as the input, the size of the output of

the decoder is proportionally reduced. Thus, we add an extra

upsampling layer at the output side in the coarse model to fill

the new grids with values from the nearest neighbors. Without

making changes to the labels, we use the same loss function

for both the coarse and the dense model.

C. Switching Mechanism

Using the transfer learning techniques, we pass the weights

of convolution layers from the pre-trained coarse model Mc

to initialize the corresponding layers in the dense model M.

The weights of the rest of the layers are randomly initialized.

For example, in the CosmoFlow case, the weights of all

convolution layers are transferred from the coarse model to the

dense model, while the weights of all fully connected layers

are randomly initialized. In our implementation, after training

the coarse model on GPUs, we first load the coarse model onto

the CPUs. Then, the transferred weights are copied from the

coarse model to the dense model. Finally, the dense model is

offloaded onto the GPUs to be further trained with the dense

dataset.

In transfer learning, people sometimes fine-tune all param-

eters in the model or freeze some top (output side) layers. In

our multi-resolution training, because the pre-trained coarse

model was trained using data Xc containing less information

compared to the original set X , freezing layers may affect the

generalization performance. Thus, we fine-tune all the weights

in the dense model M using the dense set X without freezing

any layers.

In multi-resolution training, finding a proper switching point

is important. We need to decide how many epochs to train on

the coarse model Mc before switching to the dense model

M. Without sufficient training, transferred weights may have

little effect on the dense model. However, training in the first

stage for too long can add much extra cost to the overall

training time. Thus, we propose a switching mechanism to

decide when to switch from training on the coarse model to

the dense one. Specifically, we look for the turning point of

the training loss curve by measuring the reduction of minimum

loss in consecutive epochs. When the reduction in the recent

T epochs is smaller than the current threshold ε, we stop

the training on the coarse set Xc and switch the model. The

threshold ε is set based on the peak magnitude of the loss

function, which can be tuned to adapt to different tasks and

datasets.

D. Parallelization

Under settings described earlier, we adopt synchronous

SGD with data parallelism in our training. For each iteration,

one mini-batch is evenly assigned to all processes to compute

the gradients locally. Once the data has been processed, all

the workers use inter-process communication to average the

gradients, done by all-reduce communications. Then, all the

workers use the synchronized gradients to update their local

models. Thus, the communication cost is proportional to the

size of the model and the number of GPUs.

It is common to shuffle the training samples per epoch.

We restrict the inter-process shuffling to reduce expensive

I/O costs. Given N training samples, B as the global batch

size, and P as the number of processes, we evenly divide

samples into P groups and randomly assign each process

with one group of samples per epoch. Then, each individual

process randomly reads B
P samples from the assigned samples

at each iteration. In Section IV, we will further analyze the

parallelization performance.

IV. EVALUATION

In this section, we evaluate the performance of our multi-

resolution training strategy using two real-world scientific

applications: CosmoFlow and DeepCAM. All the experiments

are conducted on two supercomputers: Summit at ORNL and

Cori at NERSC, with different hardware configurations.

A. Experimental Setup

We conduct experiments on two large-scale HPC platforms,

Cori and Summit. Cori is a Cray XC40 supercomputer that

has 18 nodes for GPU machines. Each node has two sockets

of Intel Xeon Gold 6148 (Skylake) CPUs, 8 NVIDIA V100

GPUs, and 384 GB memory space. Summit is an IBM AC922

system that consists of 4,608 nodes. Each node has two sockets

of IBM Power9 CPUs, 6 NVIDIA V100 GPUs, and 512 GB

memory space.

407

For CosmoFlow, we use IBM Watson Machine Learning

Community Edition 1.7.0-3, which supports TensorFlow 2.1.0

and Horovod 0.19.0 on Summit. On Cori, we use TensorFlow

2.2.0 and Horovod 0.19.0. For DeepCAM, we follow the

source code from MLPerf HPC reference implementations at

[32] using PyTorch. We use PyTorch 1.7.1 and Distributed-

DataParallel (DDP) from Apex on Summit and Cori. Our

experiments use 32 to 128 GPUs and have one MPI rank per

GPU allocated (i.e., 6 ranks per node on Summit and 8 ranks

per node on Cori).

On Cori, the Lustre parallel file system is used to store the

datasets. On Summit, our datasets are stored on Alpine, which

is a POSIX-based IBM Spectrum Scale parallel file system.

Model architectures – We use the adapted neural network

models based on the ones provided in the MLPerf HPC bench-

mark suite. For CosmoFlow, we use a modified version of Liv-

ermore Big Artificial Neural Network (LBANN), consisting

of 7 3-D convolutional layers followed by 3 fully connected

layers. For DeepCAM, we use the modified DeepLabv3+

network, which consists of an Xception network [33] as an

encoder, atrous spatial pyramid pooling (ASPP) [34] blocks,

and a decoder.

When switching from the coarse model to the dense model,

based on III-C, we transferred the learned weights of con-

volution layers from the coarse model. For CosmoFlow, the

weights of fully connected layers are randomly initialized.

Then, the dense models are trained on the dense dataset by

fine-tuning all trainable parameters.

B. Performance Results of CosmoFlow

CosmoFlow is a deep learning tool for Cosmology data

analysis. The training data of CosmoFlow are simulated

3-dimensional distributions of masses with different initial

conditions. For each initial condition, there are 4 channels

representing the evolved universe with 4 red-shift values.

Each sample represents the simulated problem domain, which

represents the universe by binned into a cube of size 512 x

512 x 512. Then, the cubes are further reshaped into 128 x

128 x 128 x 4 by concatenating the binned cubes from 4

red-shifts on channel dimension. Given the mass distributions,

CosmoFlow estimates 4 initial conditions of the universe.

Thus, each sample size is 128 x 128 x 128 x 4, and the label

size is 4. There are 80 HDF5 files and each file contains 128

samples, which are split into 80% training, 10% validation,

and 10% test sets. These files are generated from the same

source files as CosmoFlow from the MLPerf HPC training

benchmark suite.

In the MLPerf HPC benchmarks, the CosmoFlow model is

trained with the standard SGD optimizer. The loss function

is Mean Square Error (MSE), and the initial learning rate is

0.001, which is dropped to 2.5× 10−4 and 1.25× 10−4 at 32

and 64 epochs. The global batch size is set to 64. The target

quality used in the MLPerf HPC benchmark is mean-absolute-

error (MAE) < 0.124.

We adjusted the settings and trained the model using Adam

optimizer [13]. We set the global batch size to 256 and used

TABLE I
THE VALIDATION LOSS, TRAINING EPOCH, TOTAL TRAINING TIME (ON

CORI AND SUMMIT) FOR COSMOFLOW WITH 32 GPUS. THE TIMINGS

ARE ALL IN SECONDS. MRT REDUCES THE TRAINING TIME BY 30% OVER

THE BASELINE (DENSE).

Dataset Validation
loss (MSE)

Number of
epochs

Total time
(Cori)

Total time
(Summit)

Coarse 0.0066 85 145.35 148.75
Dense 0.0025 88 1073.60 858.00

MRT 0.0025
55 (coarse) +

54 (dense)
752.85 622.75

TABLE II
THE VALIDATION LOSS, TRAINING EPOCH, TOTAL TRAINING TIME (ON

CORI AND SUMMIT) FOR COSMOFLOW WITH 64 GPUS. THE TIMINGS

ARE ALL IN SECONDS. MRT REDUCES THE TRAINING TIME BY 27% OVER

THE BASELINE (DENSE).

Dataset Validation
loss (MSE)

Number of
epochs

Total time
(Cori)

Total time
(Summit)

Coarse 0.0066 85 102.00 90.95
Dense 0.0025 88 561.44 483.12

MRT 0.0025
55 (coarse) +

54 (dense)
410.52 355.31

0.002 as the initial learning rate. The learning rate is decayed

twice with a factor of 0.1 at 50 and 75 epochs. We evaluate

our multi-resolution training method over training with the

original dataset with CosmoFlow on Summit using 32 and 64

GPUs. Given data samples with the size 128 x 128 x 128 x 4,

we divide the cubes of size 128 x 128 x 128 into small cubes

of size 2 x 2 x 2 and replace the small cubes with the sum of

8 values in them to get the coarse samples of size 64 x 64 x

64 x 4. The best-tuned model using the original dataset could

achieve the validation loss (MSE) of 0.0025 and validation loss

(MAE) of 0.023. Thus, we set 0.0025 as the target validation

loss (MSE) to decide when to stop the training.

We refer to baseline case as the original neural network

models trained with only the dataset in the original resolution,

i.e., dense data. Tables I and II show the performance of

the baseline, training only with the coarse dataset, and our

proposed multi-resolution training strategy (MRT) in terms of

validation loss, the number of training epochs, and the total

training time on both Cori and Summit. We average the results

over five random seeds for each training strategy. First, as we

expected, training only with the coarse dataset takes a much

shorter time than training with the original dataset. However,

with the best-tuned hyper-parameters, the end validation loss

is 0.0064, which cannot achieve a similar one as the baseline.

Because the coarse dataset is generated by summing up the

adjacent elements, it does not contain enough information

for more accurate predictions. Second, we can see that the

proposed multi-resolution training strategy reduces the training

time by 29.87% on Cori and 27.42% on Summit. This end-

to-end training time comparison clearly shows how effectively

our proposed training strategy speeds up the neural network

training.

408

Fig. 2. The learning curves of CosmoFlow of the baseline and our proposed MRT strategy. The global batch size is 256 and the learning rate is 0.002. We
used Adam optimizer. Using Mean Squared Error (MSE) metric, the achieved validation loss is 0.0025.

(a) Summit (b) Cori

Fig. 3. Comparison of the training timing breakdown for CosmoFlow between baseline and the proposed MRT strategy on Summit (a) and Cori (b).

TABLE III
THE AVERAGE EPOCH TIMING BREAKDOWN FOR COSMOFLOW ON

SUMMIT. THE TIMINGS ARE ALL IN SECONDS.

Number
of GPUs Dataset I/O

time
Comm
time

Comp
time

Average
epoch time

32
Coarse 0.04 0.23 1.48 1.75
Dense 0.00 0.44 9.31 9.75

64
Coarse 0.00 0.28 1.07 1.35
Dense 0.04 0.59 4.86 5.49

Figure 2 shows the training and validation loss curves of

the baseline and our proposed MRT strategy. From figure

2, first, we can see that the loss curves of MRT have a

spike when switching the model. Because the fully connected

layers are newly initiated, and the input data is different, the

model takes a few epochs to adjust to the data samples with

different resolutions. Second, comparing the curves of the

second training stage of MRT with the first half curves of

the baseline, after training for about 20 epochs, both losses of

our proposed strategy become smaller than the corresponding

values in the baseline. This shows that transferred knowledge

from the coarse model boosts the training with the dense

dataset after switching the model without affecting the end

validation accuracy.

Scaling performance – The two supercomputers, Summit

and Cori, have different hardware configurations. With differ-

ent settings of GPUs, we expect different computation times

per GPU. Also, different communication networks and file

system settings can affect the communication time and the

I/O time. Thus, we measure and present the performance of

CosmoFlow on both supercomputers. We use the same hyper-

parameter settings and train both models with three random

seeds to calculate the mean values.

1) Summit GPU Nodes: Figure 3 compares the end-to-end

training time for CosmoFlow between the baseline and our

strategy using 32 and 64 processes on Summit. The model does

not fit into fewer than 32 GPUs. Thus, we present the scaling

performance from 32 processes (GPUs). The training time on

the coarse model is marked in yellow. The figure shows that

training on the coarse model only takes a small portion of

time. When using 64 GPUs on Cori, the learned knowledge

helps largely reduce the training time on the dense model

(344.52 sec) to achieve the target validation loss compared

to the baseline (561.44 sec). Therefore, the total training time

of our proposed training strategy ends up being shorter than

the baseline.

Table III presents the scaling performance of CosmoFlow

on Summit GPU nodes. First of all, as data samples are

prefetched for each epoch, most of the I/O time for training

with the coarse or the dense dataset is overlapped with the

computation time. For the dense model, when increasing the

number of GPUs to 64, partial I/O cost is exposed due to

reduced computation time. Second, though the input data size

becomes 1/8 for the coarse model, the sizes of the weights of

convolutional layers and the last two fully connected layers

are the same. The weight size of the first fully connected

layer becomes 1/8 for the coarse model. Thus, the average

communication cost per epoch of the coarse model is around

half of training with the dense set. When using 64 GPUs, the

communication cost increases as more processes are involved

in the synchronization at each iteration. Third, we can see

that the computation time significantly reduces when training

on the coarse dataset. Because of the small input data size,

409

TABLE IV
THE AVERAGE EPOCH TIMING BREAKDOWN FOR COSMOFLOW ON CORI.

THE TIMINGS ARE ALL IN SECONDS.

Number
of GPUs Dataset I/O

time
Comm
time

Comp
time

Average
epoch time

32
Coarse 0.09 0.13 1.49 1.71
Dense 1.27 0.21 10.72 12.20

64
Coarse 0.05 0.19 0.96 1.20
Dense 0.37 0.19 5.67 6.38

training with the coarse dataset has much lower computation

cost.

2) Cori GPU Nodes: We perform the same CosmoFlow

experiments on Cori. Table IV and figure 3 (b) show the perfor-

mance results of CosmoFlow on Cori. The timing breakdown

shows similar performance results compared to the results on

Summit. Note that due to different hardware configurations,

the computation time of the dense model on Cori is longer

than that on Summit, while it is the opposite for the coarse

model results. Thus, the training time of the coarse model

takes a smaller portion of the total time than that on Summit.

C. Performance Results of DeepCAM

DeepCAM is a deep learning tool for the segmentation of

extreme weather phenomena. The model is trained with the

CAM5 dataset, which contains simulated climate variables

stored on an 1152 x 768 spatial grid. For each grid, the sample

contains 16 channels representing water vapor, precipitation,

pressure, etc. The grid-level mask labels are generated with

the Toolkit for Extreme Climate Analysis and a flood fill

algorithm. They correspond to 3 classes: Tropical Cyclone

(TC), Atmospheric River (AR), and background (BG) class.

So, each sample size is 1152 x 768 x 16, and the corresponding

label size is 1152 x 768. The CAM5 dataset has 63K samples

in total, which are split into 80% training, 10% validation, and

10% test samples.

Following the same settings used in the MLPerf HPC

Training v0.7 benchmark [21], we trained a modified version

of DeepLabv3+ network on the CAM5 dataset using LAMB

optimizer [35], the layer-wise adaptive optimizer for large-

batch training. For the segmentation accuracy, we use the

intersection over union (IoU) metric, which measures how

much the given two regions are overlapped with each other.

In the original publication describing this application [19], the

IoU accuracy achieved is 73%. In the MLPerf HPC Training

v0.7 benchmark [21], DeepCAM is trained until reaching

the quality target, 0.82 of the validation IoU between the

predictions and the targets. We adopt the same target validation

accuracy to train the model until the validation accuracy

reaches 0.82. Because of the class imbalance, DeepCAM uses

the weighted cross-entropy loss. Due to the GPU memory

limitation, we use 2 as the local batch size for the dense model.

For the baseline and our proposed MRT strategy, we present

results with the best-tuned hyper-parameter settings. We use

0.001 as the initial learning rate and decay the learning rate by

TABLE V
THE VALIDATION ACCURACY, TRAINING STEP, THE TOTAL TIME ON CORI,
AND THE TOTAL TIME ON SUMMIT FOR DEEPCAM WITH 64 GPUS. THE

TIMINGS ARE ALL IN SECONDS. MRT REDUCES THE TRAINING TIME BY

23% OVER THE BASELINE (DENSE).

Dataset Validation
accuracy

Number of
iterations

Total time
(Cori)

Total time
(Summit)

Coarse 0.75 4500 2301.29 2318.26
Dense 0.82 8900 4924.79 4324.53

MRT 0.82
1888 (coarse) +

5100 (dense)
3787.59 3450.74

TABLE VI
THE VALIDATION ACCURACY, TRAINING STEP, THE TOTAL TIME ON CORI,
AND THE TOTAL TIME ON SUMMIT FOR DEEPCAM WITH 128 GPUS. THE

TIMINGS ARE ALL IN SECONDS. MRT REDUCES THE TRAINING TIME BY

18% OVER THE BASELINE (DENSE).

Dataset Validation
accuracy

Number of
iterations

Total time
(Cori)

Total time
(Summit)

Coarse 0.75 4500 1326.16 1552.50
Dense 0.82 4500 2507.44 2159.24

MRT 0.82
1652 (coarse) +

2800 (dense)
2047.04 1913.47

a factor of 10. We evaluate the performance on Summit and

Cori using 64 and 128 GPUs. With the size of the original set

as 1152 x 768 x 16, we preprocess the samples to the coarse

dataset with the size 576 x 384 x 16.

The computational efficiency is affected if we keep using a

small local batch size when training with the coarse dataset.

Thus, very limited time reduction is gained compared to using

the dense dataset. Reduced sample sizes allow a larger number

of samples assigned to one worker, so we increase the local

batch size to 8 when training with the coarse set. We use 250

as the patience and 0.001 as the improvement threshold on

training loss to decide when to switch the model. When the

improvement in training loss is smaller than the threshold for

a number of iterations as the patience, we switch the model

at the end of the current training epoch.

Table V and Table VI present the validation accuracy, the

number of training iterations, the training time comparison

among the baseline, the training only with the coarse dataset,

and our proposed MRT strategy. First, since less information

is included in the coarse samples for a specific geographic

region, the best validation accuracy that can be achieved with

the coarse dataset is reduced to 0.75. Second, we can see that

our training strategy achieves the same accuracy with 23.09%

reduced end-to-end training time on Cori and 20.20% reduced

time on Summit compared to the baseline. It indicates that our

method not only boosts the training efficiency of regression

problems like CosmoFlow but also improves the performance

of pixel-level segmentation problems.

Figure 4 shows the training and validation accuracy cal-

culated with IoU of the baseline and our proposed training

strategy. The training accuracy is measured for every 10

iterations (steps), and the validation accuracy is for every 100

410

Fig. 4. The training and validation accuracy (IoU) curves of DeepCAM of the baseline and our proposed MRT strategy. The global batch size is 128 and the
learning rate is 0.001. We used LAMB optimizer. Using the Intersection over Union (IoU) metric, the achieved validation accuracy is 0.82.

(a) Summit (b) Cori

Fig. 5. Comparison of the training timing breakdown for DeepCAM between baseline and the proposed MRT strategy on Summit (a) and Cori (b).

TABLE VII
THE AVERAGE EPOCH TIMING BREAKDOWN FOR DEEPCAM ON SUMMIT.

THE TIMINGS ARE ALL IN SECONDS.

Number
of GPUs Dataset I/O

time
Comm
time

Comp
time

Average
epoch time

64
Coarse 3.15 8.24 110.19 121.58
Dense 8.23 30.69 421.23 460.15

128
Coarse 2.29 10.38 68.75 81.42
Dense 4.89 16.19 205.88 226.96

iterations. Similar to the curves of CosmoFlow, there is a spike

when switching between the coarse and the dense models.

Comparing the baseline with the second phase of training

with the MRT strategy, we can see that both the training and

validation accuracy curves of our proposed MRT strategy are

higher than the baseline. Also, with the proposed strategy, the

same accuracy is achieved with fewer training iterations. These

results demonstrate that our proposed training strategy reduces

the end-to-end training time without losing accuracy.

Scaling performance – We also study the scaling perfor-

mance of the DeepCAM application on Summit and Cori.

Compared to CosmoFlow, DeepCAM has a significantly larger

model. Thus, we expect a different performance impact of

our proposed training strategy on DeepCAM. Note that the

model does not fit the memory space when using fewer than

64 GPUs; thus, we scale up the training to 128 GPUs.

1) Summit GPU nodes: Figure 5 presents the scaling per-

formance of DeepCAM on Summit. We can see how our

proposed method affects the end-to-end training time. Training

with the coarse dataset has a much cheaper average epoch time

than training with the dense dataset. Though training with

TABLE VIII
THE AVERAGE EPOCH TIMING BREAKDOWN FOR DEEPCAM ON CORI.

THE TIMINGS ARE ALL IN SECONDS.

Number
of GPUs Dataset I/O

time
Comm
time

Comp
time

Average
epoch time

64
Coarse 2.19 3.66 114.84 120.69
Dense 8.96 19.14 495.92 524.02

128
Coarse 2.39 8.92 58.25 69.55
Dense 4.09 12.78 246.69 263.56

the coarse dataset brings extra cost, the wall-clock time is

reduced due to the reduced training steps on the dense dataset

to achieve the same validation accuracy. Table VII shows

the timing breakdown of the average training time per epoch

for both the coarse and the dense datasets. We can see that

the computation time and exposed I/O time are significantly

reduced for the coarse model. Because in the coarse model,

the input samples are 1/4 size of the dense samples, which

reduces the computation cost. The communication time of the

coarse model is also reduced compared to the time of the dense

model, which corresponds to what we expected. Since the local

batch size increases when using the coarse dataset, the number

of iterations per epoch is reduced accordingly. Considering that

the structure of layers with trainable weights is not changed

between two models, the amounts of gradients averaged per

iteration are the same. However, due to fewer synchronizations

conducted for the coarse model, the communication time

becomes shorter.

2) Cori GPU nodes: We compare the performance of

DeepCAM adopting the same settings on Cori. Figure 5 (b)

411

(a) (b)

Fig. 6. (a) The learning curves of CosmoFlow on the coarse model. (b) The end-to-end training times for different epoch numbers when switching the model.

(a) (b)

Fig. 7. (a) The learning curves of DeepCAM on the coarse model. (b) The end-to-end training times for different iteration numbers when switching the
model.

presents the scaling performance of DeepCAM on Cori. The

end-to-end training time shows similar performance results to

that on Summit GPU nodes. Table VIII presents the timing

breakdown of training with the coarse and the dense model

on Cori. Similar analysis has been given with the observation

of the same trend of the largely reduced time on the coarse

model.

D. Impact of Switching Point

Picking a proper epoch number to switch from the coarse to

dense model is critical to the end-to-end training time. In order

to study the impact of the model switch points, we repeated

the entire training 10 times, each using a different switching

epoch number. This experiment is used to compare against

the automatic switching approach that uses a threshold and

patience on the training loss. In our case, we set the patience

to 5 epochs and the improvement threshold to 0.001.

Figure 6 (b) shows the end-to-end training times of Cos-

moFlow when switching from coarse to dense models at

a given epoch number. The curve points out that the best

end-to-end training time (the lowest value) is achieved when

switching at epoch 60, corresponding to the switching point

calculated based on the patience and threshold. From the loss

curves shown in Figure 6 (a), we can see both the training and

validation losses become relatively flat at around epoch 60. In

addition, we observe that when the switching epoch number

is smaller than 30, the cost of dense model training is much

higher than others. This is because the coarse model does not

receive enough training, resulting in the learned features with

little effect on the training for the dense model. When the

switching epoch number is larger than 80, the end-to-end time

also dramatically increases. This is because the training and

validation losses do not decrease after epoch 80. Continuing

the training of the coarse model beyond that prolongs the time

to convergence for the dense model. Figure 7 shows the loss

curves of training on the coarse model and end-to-end training

times of DeepCAM when switching at different numbers of

iterations. We can see similar patterns of the training times

at different switching points. These results demonstrate that

measuring the loss improvement in consecutive epochs and

switching the model when the improvement is smaller than a

preset threshold for a number of epochs as the patience can

lead to the switching point with a relatively shorter end-to-end

training time.

V. CONCLUSION

In the paper, we discussed that given a scientific dataset that

can be represented as different resolutions, how to take ad-

vantage of this feature to reduce neural network training time.

We proposed a multi-resolution training strategy that transfers

knowledge from the coarse dataset to accelerate the training

on the original problem. We applied our proposed strategy

to two real-world scientific applications. Our experimental

results demonstrate that the proposed multi-resolution training

can reduce the end-to-end training time while maintaining

the model accuracy. Considering data of different resolutions

can be generated from the original data, further exploring the

interactions between data of different resolutions and utilizing

more than two resolutions can be interesting future work.

ACKNOWLEDGMENT

This work is supported in part by U.S. Department of

Energy (DoE) under award numbers DE-SC0021399, DE-

412

SC0019358, DoE Contract No. DE-AC02-05CH11231, the

National Institute of Standards and Technology award number

70NANB19H005, and the Exas-cale Computing Project (17-

SC-20-SC), a collaborative effort of the U.S. Department of

Energy Office of Science and the National Nuclear Security

Administration. This research used resources of the National

Energy Research Scientific Computing Center (NERSC), a

U.S. Department of Energy Office of Science User Facility

located at Lawrence Berkeley National Laboratory, operated

under Contract No. DE-AC02-05CH11231 using NERSC

awards ASCR-ERCAP0021094 and ASCR-ERCAP0021411.

This research used resources of the Oak Ridge Leadership

Computing Facility at the Oak Ridge National Laboratory,

which is supported by the Office of Science of the U.S. Depart-

ment of Energy under Contract No. DE-AC05-00OR22725.

REFERENCES

[1] A. Piccione, J. Berkery, S. Sabbagh, and Y. Andreopoulos, “Physics-
guided machine learning approaches to predict the ideal stability
properties of fusion plasmas,” Nuclear Fusion, vol. 60, no. 4, p.
046033, mar 2020. [Online]. Available: https://doi.org/10.1088/1741-
4326/ab7597

[2] A. Agrawal and A. Choudhary, “Deep materials informatics: Appli-
cations of deep learning in materials science,” MRS Communications,
vol. 9, no. 3, pp. 779–792, 2019.

[3] A. Mathuriya, D. Bard, P. Mendygral, L. Meadows, J. Arnemann,
L. Shao, S. He, T. Kärnä, D. Moise, S. J. Pennycook et al., “Cos-
moflow: Using deep learning to learn the universe at scale,” in SC18:
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2018, pp. 819–829.

[4] D. George and E. Huerta, “Deep neural networks to enable real-time
multimessenger astrophysics,” Physical Review D, vol. 97, no. 4, p.
044039, 2018.

[5] T. Kurth, J. Zhang, N. Satish, E. Racah, I. Mitliagkas, M. M. A. Patwary,
T. Malas, N. Sundaram, W. Bhimji, M. Smorkalov et al., “Deep learning
at 15pf: supervised and semi-supervised classification for scientific data,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2017, pp. 1–11.

[6] Y. You, J. Hseu, C. Ying, J. Demmel, K. Keutzer, and C.-J. Hsieh,
“Large-batch training for lstm and beyond,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2019, pp. 1–16.

[7] T. Akiba, S. Suzuki, and K. Fukuda, “Extremely large minibatch
sgd: Training resnet-50 on imagenet in 15 minutes,” arXiv preprint
arXiv:1711.04325, 2017.

[8] N. Dryden, N. Maruyama, T. Moon, T. Benson, M. Snir, and B. Van Es-
sen, “Channel and filter parallelism for large-scale cnn training,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019, pp. 1–20.

[9] Y. Ma, F. Rusu, K. Wu, and A. Sim, “Adaptive elastic training for sparse
deep learning on heterogeneous multi-gpu servers,” 2021.

[10] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,”
Advances in Neural Information Processing Systems, vol. 30, pp. 1709–
1720, 2017.

[11] M. Chen, Z. Yan, J. Ren, and W. Wu, “Standard deviation based
adaptive gradient compression for distributed deep learning,” in 2020
20th IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing (CCGRID). IEEE, 2020, pp. 529–538.

[12] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization.” Journal of machine
learning research, vol. 12, no. 7, 2011.

[13] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[14] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arXiv preprint arXiv:1711.05101, 2017.

[15] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent
using predictive variance reduction,” Advances in neural information
processing systems, vol. 26, pp. 315–323, 2013.

[16] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč, “Sarah: A
novel method for machine learning problems using stochastic recursive
gradient,” in International Conference on Machine Learning. PMLR,
2017, pp. 2613–2621.

[17] S. R. Fulton, P. E. Ciesielski, and W. H. Schubert, “Multigrid methods
for elliptic problems: A review,” Monthly Weather Review, vol. 114,
no. 5, pp. 943–959, 1986.

[18] I. Suisalu and E. Saar, “An adaptive multigrid solver for high-resolution
cosmological simulations,” Monthly Notices of the Royal Astronomical
Society, vol. 274, no. 1, pp. 287–299, 1995.

[19] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips,
A. Mahesh, M. Matheson, J. Deslippe, M. Fatica et al., “Exascale
deep learning for climate analytics,” in SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2018, pp. 649–660.

[20] P. Mattson, V. J. Reddi, C. Cheng, C. Coleman, G. Diamos, D. Kanter,
P. Micikevicius, D. Patterson, G. Schmuelling, H. Tang et al., “Mlperf:
An industry standard benchmark suite for machine learning perfor-
mance,” IEEE Micro, vol. 40, no. 2, pp. 8–16, 2020.

[21] S. Farrell, M. Emani, J. Balma, L. Drescher, A. Drozd, A. Fink, G. Fox,
D. Kanter, T. Kurth, P. Mattson et al., “Mlperftm hpc: A holistic
benchmark suite for scientific machine learning on hpc systems,” arXiv
preprint arXiv:2110.11466, 2021.

[22] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on
deep transfer learning,” in International conference on artificial neural
networks. Springer, 2018, pp. 270–279.

[23] D. Jha, K. Choudhary, F. Tavazza, W.-k. Liao, A. Choudhary, C. Camp-
bell, and A. Agrawal, “Enhancing materials property prediction by
leveraging computational and experimental data using deep transfer
learning,” Nature communications, vol. 10, no. 1, pp. 1–12, 2019.

[24] V. Gupta, K. Choudhary, F. Tavazza, C. Campbell, W.-k. Liao, A. Choud-
hary, and A. Agrawal, “Cross-property deep transfer learning framework
for enhanced predictive analytics on small materials data,” Nature
communications, vol. 12, no. 1, pp. 1–10, 2021.

[25] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and
T. Darrell, “Decaf: A deep convolutional activation feature for generic
visual recognition,” in International conference on machine learning.
PMLR, 2014, pp. 647–655.

[26] S. Kornblith, J. Shlens, and Q. V. Le, “Do better imagenet models trans-
fer better?” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 2661–2671.

[27] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable
are features in deep neural networks?” arXiv preprint arXiv:1411.1792,
2014.

[28] Y. Guo, H. Shi, A. Kumar, K. Grauman, T. Rosing, and R. Feris, “Spot-
tune: transfer learning through adaptive fine-tuning,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 4805–4814.

[29] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in European conference on computer vision. Springer,
2014, pp. 818–833.

[30] M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein, “Svcca: Singular
vector canonical correlation analysis for deep learning dynamics and
interpretability,” arXiv preprint arXiv:1706.05806, 2017.

[31] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the
recent architectures of deep convolutional neural networks,” Artificial
Intelligence Review, vol. 53, no. 8, pp. 5455–5516, 2020.

[32] “Mlperf hpc benchmark suite,” 2021. [Online]. Available:
https://github.com/mlcommons/hpc

[33] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 1251–1258.

[34] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE transactions on
pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834–848,
2017.

[35] Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song,
J. Demmel, K. Keutzer, and C.-J. Hsieh, “Large batch optimiza-
tion for deep learning: Training bert in 76 minutes,” arXiv preprint
arXiv:1904.00962, 2019.

413

