IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 6, JUNE 1996 587

Efficient Algorithms for Array Redistribution

Rajeev Thakur, Alok Choudhary, Member, IEEE Computer Society,
and J. Ramanujam, Member, IEEE and IEEE Computer Society

Abstract—Dynamic redistribution of arrays is required very often in programs on distributed memory parallel computers. This paper
presents efficient algorithms for redistribution between different cyclic(k) distributions, as defined in High Performance Fortran. We
first propose special optimized algorithms for a cyclic(x) to cyclic(y) redistribution when x is a multiple of y, or y is a multiple of x. We
then propose two algorithms, called the GCD method and the LCM method, for the general cyclic(x) to cyclic(y) redistribution when
there is no particular relation between x and y. We have implemented these algorithms on the Intel Touchstone Delta, and find that
they perform well for different array sizes and number of processors.

Index Terms—Array redistribution, distributed-memory computers, High Performance Fortran (HPF), data distribution, runtime

support.

1 INTRODUCTION

N distributed-memory parallel computers, arrays have

to be distributed among processors in some fashion.
The distribution can either be regular, i.e., block, cyclic,
or block-cyclic, as in Fortran D [2] and High Performance
Fortran (HPF) [4], [9], or irregular in which there is no
simple arithmetic function specifying the mapping of
arrays to processors. The distribution of an array does
not need to remain fixed throughout the program. In
fact, it is very often necessary to change the distribution
of the array at run-time, which is called array redistribution.
This requires each processor to calculate what portions
of its local array to send to other processors, what por-
tions of its local array to receive from other processors,
and perform the necessary communication. It is essential
to use efficient algorithms for redistribution, otherwise the
performance of the program may degrade considerably.

This paper describes efficient and practical algorithms
for redistributing arrays between different cyclic(k) distri-
butions, as defined in HPF. The cyclic(k) distribution is the
most general regular distribution in which blocks of size k
of the array are distributed among processors in a round-
robin fashion. It is also commonly known as a biock-cyclic
distribution. Redistribution from a cyclic(x) to a cyclic(y)
distribution, for any general x and y, is interesting because
there is no direct algebraic formula to calculate the set of
elements to send to a destination processor and the local
addresses of these elements at the destination.

We first propose efficient algorithms for two special
cases of the cyclic(x) to a cyclic(y) redistribution—when x

o R. Thakur is with the Mathematics and Computer Science Division, Ar-
gonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439.
Email: thakur@mecs.anl.gov.

o A. Choudhary is with the Dept. of Electrical and Computer Engineering,
Syracuse University, Syracuse, NY 13244, Email: choudhar@cat.syr edu.

o . Ramanujam is with the Dept. of Electrical and Computer Engineering,
Louisiana State University, Baton Rouge, LA 70803.

Email: jxr@gate.ce.lsu.edu.
Manuscript received June 27, 1994; revised Dec. 21, 1994.

For information on obtaining reprints of this article, please send e-mail to:
transpds@computer.org, and reference IEEECS Log Number D95177.

is a multiple of y, or y is a multiple of x. We then propose
two methods called the GCD Method and the LCM Method
for the general case when there is no particular relation
between x and y. The GCD and LCM methods make use
of the optimized algorithms developed for the above
special cases. The proposed algorithms have low runtime
overhead, and are simple and practical enough to be
used in the runtime library of a compiler, or directly in
application programs requiring redistribution.

The rest of this paper is organized as follows. The
notations, assumptions and definitions used in this pa-
per are given in Section 2. Section 3 describes the algo-
rithm for the special case of a cyclic(x) to cyclic(y) redis-
tribution where x is a multiple of y. Section 4 describes
the algorithm for the special case where y is a multiple of
x. The GCD and LCM methods for the general case are
proposed in Section 5. Section 6 discusses related work
in this area, followed by conclusions in Section 7.

2 Notations and Definitions

The notations used in this paper are given in Fig. 1. We
assume that all arrays are indexed starting from 1, while
processors are numbered starting from 0. We also as-
sume that the number of processors on which the array is
distributed remains the same before and after the redis-
tribution. In HPF, an array can be distributed as block(m)
or cyclic(m), which are defined as follows. Consider an
array of size N distributed over P processors. Let us de-
fine the ceiling division function CD(j, k) = G+k-1/k
and the ceiling remainder function CR(j, k) =j - kx CD(, k).
Then, block(m) distribution means that index j of the ar-
ray is mapped to logical processor number CD(j, m) — 1.
Note that for a valid block(m) distribution, m x P =2 N
must be true. Block by definition means the same as
block(CD(N, P)). In a cyclic(m) distribution, index j of the
global array is mapped to logical processor number
mod(CD(j, m) — 1, P).! Cyclic by definition means the
same as cyclic(1).

1. mod(a, b) = a modulo b.

1045-9219/96$05.00 ©1996 IEEE

588 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 6, JUNE 1996

N || global array size

P || number of processors

p; || logical processor ¢

p || logical number of the processor
executing the program

P, || source processor

p4 || destination processor

L || local array size

m || block size

Fig. 1. Notations.

In other words, in a block distribution, contiguous
blocks of the array are distributed among processors. In a
cyclic distribution, array elements are distributed among
processors in a round-robin fashion. In a cyclic(m) distribution,
blocks of size m are distributed cyclically. Block and cyclic
distributions are special cases of the general cyclic(m) dis-
tribution. A cyclic(m) distribution with m = N/P1is a block
distribution, and a cyclic(m) distribution with m = 1 is a
cyclic distribution. The formulae for conversion between
local and global indices for the different distributions in
HPF are given in Table 1.

TABLE 1
DATA DISTRIBUTION AND INDEX CONVERSION

BLOCK(7m)
p=CD{g,m)-1

CYCLIC
p = mod(g — 1, P)

CYCLIC(m)
p = mod(CD(g,m) - 1. P)

global index (g) to
processor number (p)

global index (g) {=m+CR(g,m)|l=(g-1)/P+1 T=mod(g ~ Lm) + 1+
to local index (1) (g/(m P))m
local index ({) to g=Il+mp g=(-1)P+p+1|g=mod(l—1,m)+ 1+

global index (g) (P((! - 1)/m) + p)m

This assumes that arrays are indexed starting from 1 and processors are num-
bered starting from 0. CD(j + k -D/k and CR(j, k) = j -k xCD (j, k).

The redistribution algorithms proposed in this paper are
intended to be portable. Hence, we do not specify how data
communication should be performed because the best
communication algorithms are often machine dependent.
Redistribution requires all-to-many personalized communi-
cation in general, and in many cases it requires all-to-all
personalized communication. Algorithms to implement
these communication patterns are described in detail in
[15], [10], [17], [12], [13]. The performance results presented
in this paper were obtained using the communication algo-
rithms given in [15], [10], [17]. We do assume that all the
data to be sent from any processor 7 to processor j has to be
collected in a packet in processor i and sent in one commu-
nication operation, so as to minimize the communication
startup cost. The redistribution algorithms described in this
paper are for one-dimensional arrays. Multidimensional
arrays can be redistributed by applying these algorithms to
each dimension of the array separately. In the rest of this
paper, any division involving integers should be considered
as integer division unless specified otherwise.

3 Cyctic(x) To CycLic(y) REDISTRIBUTION:
SPECIAL CASEx = ki
For a general cyclic(x) to cyclic(y) redistribution, there is no

direct algebraic formula to calculate the set of elements to
send to a destination processor, and the local addresses of

these elements at the destination. Hence, we consider two
special cases where x is a multiple of y, or y is a multiple of x.
For the general case where there is no particular relation
between x and y, we propose two algorithms called the GCD
method and the LCM method, which make use of the opti-
mized algorithms developed for the above two special cases.

Let us first consider the special case where x is a multiple
ofy. Letx=ky.

THEOREM 3.1. In a cyclic(x) to cyclic(y) redistribution where
x =kvy, ifk <P, each processor communicates with k or
k — 1 processors. If k = P, each processor communicates
with all other processors.

PROOF. Assume k < P. Since x = k y, each block of size x is
divided into k sub-blocks of size y and distributed cy-

clically. Consider any processor p;. Assume that it has
to send its first sub-block of size y to processor p;.
Then the remaining k — 1 sub-blocks of the first block
are sent to the next k — 1 processors in order. The next
k(P — 1) sub-blocks of the global array are located in
the other P — 1 processors. This results in a total of k P
sub-blocks. Hence, the (k + T)th sub-block of size y in
pi is also sent to p;. As a result, all sub-blocks from p;
are sent to k processors starting from p;- One of these

processors may be p; itself, in which case p; has to send
data to k — 1 processors. For the receive phase, consider
the first k P sub-blocks of size y in the global array
corresponding to the first P blocks of size x. Let us
number these k P sub-blocks from 0 to k P — 1. Qut of

these, the sub-blocks that are mapped to processor p;

in the new distribution are numbered p; to P(k — 1) + p;
with stride P. These sub-blocks come from

P(k-1)+p,}-p;
Mﬂ +1=k processors. One of these proces-

sors may be p; itself, in which case p; receives data
from k — 1 processors.

If k 2 P, each block of size x has to be divided into
k sub-blocks and distributed cyclically, where the
number of sub-blocks is greater than or equal to the
number of processors. So, clearly each processor has
to send to and receive from all other processors (all-
to-all communication). O

The algorithm for cyclic(x) to cyclic(y) redistribution,
where x = k y is given in Fig. 2. We call this the
KY_TO_Y algorithm. In the send phase, each processor p
calculates the destination processor p, of the first ele-
ment of its local array as p; = mod(k p, P). The first y ele-
ments have to be sent to p,, the next y to mod(p, + 1, P),

the next to mod(p; + 2, P) and so on until the end of the
first block of size x. The next k sub-blocks of size y have
to be sent to the same set of k processors starting from

pa- The sequence of destination processors can be stored
and need not be calculated for each block of size x. In
the receive phase, there are two cases depending on the
value of k :

THAKUR ET AL.: EFFICIENT ALGORITHMS FOR ARRAY REDISTRIBUTION

1. (k< P) and (mod(P, k) = 0) : In this case, each processor p
calculates the source processor of the first block of size y

of its local array as p; = p/k. The next block of size y will
come from processor mod(p, + P/k, P), the next from

mod(p, + 2(P/k), P) and so on until the first k blocks. The
above sequence of processors is repeated for the re-
maining sets of k blocks of size x, and hence can be
stored and reused. The data received from other proces-
sors cannot be directly stored in the local array as it has
to be stored with a stride. As a result, the data has to be
first stored in a temporary buffer in memory. This gives
us two choices in implementing the receive phase:

¢ Synchronous Method: In this method, each proc-
essor waits till it receives data from all other proc-
essors, before placing any data in the local array.
This increases the memory requirements of the al-
gorithm and also increases the processor idle time.
These problems worsen as the number of proces-
sors is increased, so this method is not scalable.

¢ Asynchronous Method: In this method, the proces-
sors do not wait for data from all processors to ar-
rive. Instead, each processor takes any packet
which has arrived and places the data into appro-
priate locations in the local array. This method
overlaps computation and communication. Each proc-
essor posts non-blocking receive calls and waits for
data from any processor to arrive. As soon as a
packet is received, it places the data in appropriate
locations in the local array. During this time, data
from other processors may have arrived. When the
processor has placed all data from the earlier packet
into the local array, it takes up the next packet, and
so on. This reduces processor idle time. Since all
packets do not have to be in memory at the same
time, it also reduces memory requirements. This
method is scalable as neither processor idle time
nor memory requirements increase as the number
of processors is increased.

If the synchronous method is used for receiving data,

Send Phase Receive Phase
1. The destination processor (pg) of the L If (k < P) and (mod(P, k) = 0) then
first element of the local array is 2. The source processor (p,) of the first
P4 =mod(kp, P). element of the local array is p, = p/k.
2. For each block of size z in the local array Synchronous Method:
3 Fori=0tok—1 3. Receive data from all processors into
4. The destination processor of elements temporary buffers.
(iy+1) to (i + L)y of this block of 4. Forj=1to[L/z] do
size z is mod{pq + 1, P). 5. Fori=0tok—1do

5. Send data to other processors. 5 Read the next block of size y from the
data received from processor
mod(p, + i(P/k), P}
Asynchronous Method:
3. The &* block of size y, 0 < < £ — 1, is to be
received from processor mod(p, + i{ P/k), P).
4. Fori=0tok~1ldo
5. Receive data from any processor p; into
a temporary buffer.
6. Place the first block of size y in the local
array starting from the location calculated
above, and the other blocks with stride z.
7. Else
8. Receive data from all processors into
temporaty buffers
9. Fori=0to[L/y]-1do
10. The source processor (p,) of the
first element (j = iy + 1) of this block of
size y is p, = mod((i P+ p)/k, P]
11. Read this block of size y from
the data received from p,.

Fig. 2. KY_TO_Y algorithm for cyclic(x) to cyclic(y) redistribution,
where x =ky.

589

the local array needs to be scanned only once and the
ith block, 0 < i <[L/y] -1, of size y of the local array
will be read from the data received from processor
mod(p, + i(P/k), P). If the asynchronous method is used,
the first block from the data received from some proc-
essor p; will be stored starting at the location calculated
above. The remaining blocks will be stored with stride x.

2. If k does not satisfy the above condition, it is necessary
to calculate the source processor of the first element
(j = iy + 1) of each block of size y, 0 <i<[L/yl -1, of
the local array as p, = mod[(i P + p)/k, P]. The block is
read from the data received from p,. The sequence of
processors does not repeat itself and hence cannot be
stored. In this case, the synchronous method is used.

In the synchronous method, the local array needs to
be scanned only once to be filled. In the asynchronous
method, array elements are filled with a certain amount
of stride and the array has to be scanned P times. So,
clearly the synchronous method makes better use of the
cache than the asynchronous method. We have tested
the performance of the KY_TO_Y algorithm using both
synchronous and asynchronous methods on the Intel
Touchstone Delta. Fig. 3 compares the performance of
the synchronous and asynchronous methods for a cy-
clic(4) to cyclic(2) redistribution of a global array of 1M
integers for different number of processors. We observe
that the asynchronous method performs better than the
synchronous method, even though in this case each
processor communicates with at most two other proces-
sors. This is because the asynchronous method overlaps
computation and communication, and thus reduces
processor idle time. The better cache utilization of the
synchronous method does not improve its overall per-
formance. Fig. 4 shows the performance of the
KY_TO_Y algorithm for a cyclic(4) to cyclic(2) redistri-
bution on 64 processors for different array sizes. For
small arrays, the difference in performance between the
synchronous and asynchronous methods is small, be-
cause of the small data sets. For large arrays, the differ-
ence is significant because of the higher processor idle
time in the synchronous method.

1000 T T T T T T

Synchronous Method ——
Asynchronous Method -+--

Time (ms)
o1
o
o
T

L L

100 L L \ .
0 20 40 60 80
Processors

100

Fig. 3. Performance of the KY_TO_Y algorithm for a cyclic(4) to cyclic(2)
redistribution on the Intel Touchstone Delta. The array size is 1M inte-
gers, and the number of processors is varied.

590 |EEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 6, JUNE 1996

300 T T ™
Synchronous Method —+— /
250 + Asynchronous Method -+ / B
. 200 il
W g
B
150 7
o)
&
-
=

100

50

100
(Kbytes)

Array Size

Fig. 4. Performance of the KY_TO_Y algorithm for a cyclic(4) to cy-
clic(2) redistribution on the Intel Touchstone Delta. The number of
processors is 64, and the array size is varied.

4 CycLic(x) To CycLic(y) REDISTRIBUTION:
SPECIALCASE y = kx

We now consider the special case where y is a multiple of
x. Let y = k x. This is essentially the reverse of the case
where x = ky.

THEOREM 4.1. In a cyclic(x) to cyclic(y) redistribution where y = k x,
if k < P, each processor sends data to k or k — 1 processors
and receives data from k or k — 1 processors. If k > P, each
processor has to communicate with all other processors (all-
to~all communication).

PROOF. Assume k < P. Consider the first k P sub-blocks of size
x in the global array corresponding to the first P sub-
blocks of size y. Let us number these k P sub-blocks
from 0 to k P — 1. Out of these, the sub-blocks that are

located in processor p; are numbered from p; to P(k — 1)

=1+ p; with stride P. In the new distribution, these sub-

{P(k-1)-1+p,}
P

blocks will be mapped to +1=k proces-

sors. One of these processors may be p; itself, in which
case p; sends data to k — 1 processors. In the receive
phase, since y = k x, each block of size y in the new dis-
tribution consists of k sub-blocks of size x which will
come from k processors. Consider any processor p;. As-
sume that it receives its first sub-block of size x from
processor p;. Then the remaining k — 1 sub-blocks of the
first block are received from the next k — 1 processors in
order. The other P —1 processors receive the next k(P — 1)
sub-blocks of the global array. This results in a total of k
P sub-blocks. Hence the next sub-block in p;, which is
the first sub-block of the next block of size y, is also re-
ceived from p;. As a result, all sub-blocks from p; are re-
ceived from k processors starting from p;. One of these

processors may be p; itself, in which case p; receives
data from k — 1 processors.

If k > P, each block of size y will consist of k sub-
blocks of size x, where the number of sub-blocks is
greater than or equal to the number of processors. So,

clearly each processor has to send to and receive from

all other processors (all-to-all communication). O

The algorithm for cyclic(x) to cyclic(y) redistribution,

where y = k x, is given in Fig. 5. We call this the X_TO_KX

algorithm. In the send phase, there are two cases depending
on the value of k:

1. (k< P} and (mod(P, k) = 0): In this case, each processor p
calculates the destination processor of the first block of

size x of its local array as p; = p/k. The next block of size
x has to be sent to processor mod(p; + P/k, P), the next

to mod(p; + 2(P/k), P), and so on until the first k blocks.
The above sequence of processors is repeated for the
remaining sets of k blocks of size x, and hence need not
be calculated again.

2. If k does not satisfy the above condition, it is neces-
sary to individually calculate the destination proces-
sor of each block i of size x, 0 <i<[L/x1-1, as pa=
mod[(i P + p)/k, P].

In the receive phase, each processor p calculates the source proc-
essor of the first element of its local array as p, = mod[k p, P]. As
in the KY_TO_Y algorithm, the receive phase can be imple-
mented using either the synchronous method or the asyn-
chronous method. If the synchronous method is used, for each
block of size y of the local array, the k sub-blocks of size x are
read from the packets received from the k processors starting
from p, in order of processor number. If the asynchronous
method is used, we know that the ith block of size x of the local
array, 0 <7 <k — 1, will be received from processor mod(p, + i, P).
Thus the local index of the first block received from any source
processor can be calculated. The remaining blocks have to be
stored with stride y.

Send Phase Receive Phase
1. If (k < P) and (mod(P, k) = 0) then
2. The destination processor (pg) of the

first element of the local array is pg = p/k
3. Forj=0to [L/y) —1
4. Fori=0tok—1

. The source processor (p,) of the first

element of the local array is p, = modlk p, P).
Syhchronous Method:

Receive data from all processors into

temporary buffers.

o

EN The destination processor of the 3. For each block of size y in the local array do
next block of size z of the local 4. Fori=0tok—1do
artay is mod(py + i(P/k), P). 5. Read eclements (i + 1) to (i + 1)z of
6. Else the current block of size y from the packet
7. Fori=0to{L/z] -1 received from processor mod(p, + i, P).
2. The destination processor (pg) of the

first element (j = i2 + 1) of this block
of size z is pg = mod{(i P + p)/k, P].

9. Send data to other processors

Asynchronous Method:
The i** block of size 7,0 S i < £~ L, is 10 be
received from processor mod(p, + i, P).
Fori=0tok—1do
Receive data from any processor p; into
a temporary buffer.
5. Place the first block of size in the locat
array starting from the location calculated
above, and the other blocks with stride y.

&~

Eald

Fig. 5. X_TO_KX algorithm for cyclic(x) to cyclic(y) redistribution,
where y =k x.

We have tested the performance of the X_TO_KX al-
gorithm on the Intel Touchstone Delta for different ar-
ray sizes and number of processors. Fig. 6 compares the
performance of the synchronous and asynchronous
methods for a cyclic(2) to cyclic(4) redistribution of an
array of 1M integers for different number of processors.
Fig. 7 compares the performance of the two methods
for different array sizes on 64 processors. The results
are similar to those obtained for the KY_TO Y algo-
rithm. The asynchronous method is found to perform
better in all cases.

THAKUR ET AL.: EFFICIENT ALGORITHMS FOR ARRAY REDISTRIBUTION

1000 T T T T T T

Synchronous Method ——

900 Asynchronous Method -+ |

Time (ms)
(1 Yo
o O
o O

300

100 . | . .
0 20 40 60 80
Processors

Fig. 6. Performance of the X_TO_KX algorithm for a cyclic(2) to cyclic(4)
redistribution on the Intel Touchstone Delta. The array size is 1M integers,
and the number of processors is varied.

300 T

Synchronous Method ——
Agynchronous Method -+ -

(ms)

Time

1000

100
(Kbytes)

Array Size

Fig. 7. Performance of the X_TO_KX algorithm for a cyclic(2) to cyclic(4)
redistribution on the Intel Touchstone Delta. The number of processors
is 64, and the array size is varied.

5 GENERAL CycLic(x) To CycLic(y)
REDISTRIBUTION

Let us consider the general case of a cyclic(x) to cyclic(y)
redistribution in which there is no particular relation be-
tween x and y. One algorithm for doing this is to explicitly
calculate the destination and source processor of each
element of the local array, using the formulae given in
Table 1. We call this the General Method and is described

below.

5.1 General Method

In the send phase, the destination processor of each ele-
ment of the local array can be determined by first calcu-
lating its global index based on the current distribution
and then the destination processor based on the new dis-
tribution. These two calculations can be combined into a
single expression to give the destination processor of
element i of the local array as p; = mod[{mod(i — 1, x) +
(PG — 1)/x) + p)x + y}/y — 1, P]. Similarly in the receive
phase, the source processor of each element of the local
array can be determined by first calculating its global in-
dex based on the new distribution and then the source
processor based on the old distribution. These two calcu-

591

lations can be combined into a single expression to give
the source processor of element 7 of the local array as p, =
mod[{mod(i =1, y) + PG -1/ +p y+xt/x-1,P].

The drawback of this algorithm is that calculations are
needed individually for all elements of the array. We
propose two algorithms called the GCD method and the
LCM method, which make use of the optimized
KY_TO_Y and X_TO_KX algorithms, and hence require a
Iot less calculations.

5.2 GCD Method

This method takes advantage of the fact that we have de-
veloped special optimized algorithms for a cyclic(x) to
cyclic(y) redistribution when x = k y (the KY_TO_Y algo-
rithm) and y = k x (the X_TO_KX algorithm). In the GCD
method, the redistribution is done as a sequence of two
phases—cyclic(x) to cyclic(m) followed by cyclic(m) to cy-
clic(y), where m = GCD(x, y). Since both x and y are multi-
ples of m, the KY_TO_Y algorithm can be used for the cy-
clic(x) to cyclic(m) phase, and the X_TO_KX algorithm can
be used for the cyclic(m) to cyclic(y) phase. This is described
in Fig. 8. The GCD method involves the cost of having to do
two separate redistributions. For small arrays, the increased
communication may outweigh the savings in computation,
but for large arrays in some cases, the performance is better
than that of the general method. This can be observed from
Fig. 9 which shows the performance of a cyclic(15) to cy-
clic(10) redistribution, for an array of size 1M integers on
the Delta. We see that for a small number of processors, the
GCD method performs considerably better than the general
method because of the saving in the amount of computa-
tion per processor. Since the size of the global array is kept
constant, as the number of processors is increased, the size
of the local array in each processor becomes smaller and
each processor spends less time on address calculation.
Hence, the performance improvement of the GCD method
over the general method is also small.

GCD Method LCM Method

. Let m = GCD(z,y).

. Redistribute from cyclic(z) to cyclic(m)
using the KY_TO.Y algorithm.

. Redistribute from cyclic(m) to cyclic(y)
using the X.TO_KX algorithm.

. Let m = LCM(z,y).

. Redistribute from cyclic(z) to cyclic(m)
using the X_TO.KX algorithm.

. Redistribute from cyclic(m) to cyclic(y)
using the KY_TO.Y algorithm.

r o~
N

w
©

Fig. 8. GCD and LCM methods for the general cyclic(x) to cyclic(y)
redistribution.

One disadvantage of the GCD method is that in the inter-
mediate cyclic(m) distribution, the block size m is smaller
than both x and y. In the KY_TO_Y and X_TO_KX algo-
rithms, all the address and processor calculations are done
for blocks of size x or y. Since m is the GCD of x and y, m can
even be equal to 1 in some cases (when x and y are relatively
prime). When m = 1, calculations have to be done for each
element, which is no better than in the general method. In
this case, the general method is expected to perform better
than the GCD method. Fig. 10 shows the performance of cy-
clic(11) to cyclic(3) redistribution on the Delta for an array of
size 1M integers. Since the GCD of 11 and 3 is 1, we find that
the general method always performs better than the GCD
method.

592 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 6, JUNE 1996

3000.0 T i : T

2500.0

2000.0

1500.0 +

1000.0

500.0

0.0

64

Processors

Fig. 9. Comparison of the GCD, LCM, and general methods for a cyclic(15)
to cyclic(10) redistribution on the Intel Touchstone Deita. The array
size is 1M integers.

5.3 LCM Method

The key to getting good performance in this two-phase ap-
proach for redistribution is to have a large value for m. One
way of ensuring that m is always large is by choosing m as
the LCM of x and y. Since m is a multiple of both x and y, the
X_TO_KX algorithm can be used for the cyclic(x) to cyclic(m)
phase and the KY_TO_Y algorithm can be used for the cy-
clic(m) to cyclic(y) phase. This is described in Fig. 8. Also,
since m1 is larger than both x and y, all calculations are done
for this larger block size. This results in fewer calculations
than in the GCD and general methods. Fig. 9 and Fig. 10
compare the performance of the LCM, GCD, and general
methods for an array of 1M integers on different number of
processors. We observe that the LCM method performs bet-
ter in all cases. Fig. 11 compares the performance of the LCM
and general methods for a cyclic(11) to cyclic(3) redistribu-
tion keeping the number of processors fixed at 64 and vary-
ing the array size. We observe that for small arrays, the gen-
eral method performs better because it has less communica-
tion, but for large arrays the LCM method performs better
because the saving in computation is higher than the increase
in communication.

Note that the timings for the GCD and LCM methods in
Fig. 9, Fig. 10, and Fig. 11 include the time for calculating the
GCD and LCM. For the cydlic(15) to cyclic(10) redistribution,
both the special-case redistributions within the GCD and LCM
algorithms were performed using the asynchronous method,
since the condition ((k < P) and (mod(P, k) = 0)) is satisfied in
this case. For the cyclic(11) to cyclic(3) redistribution, however,
the synchronous method was used in the KY_TO Y algorithm,

3000.0 T T . T

2500.0 -

2000.0 -
1500.0 +
1000.0 -

500.0 -

0.0

16 32
Processors

Fig. 10. Comparison of the GCD, LCM, and general methods for a

cyclic(11) to cyclic(3) redistribution on the Intel Touchstone Delta. The

array size is 1M integers.

700 T T T

600 FLCM -#e- o

500

(ms)
iy
(o]
(e}

Time
w
O
(o]

100
(Kbytes)

1 10
Array Size

Fig. 11. Comparison of the LCM and general methods for a cyclic(11)
to cyclic(3) redistribution on the Intel Touchstone Delta. The number of
processors is 64, and the array size is varied.

since the condition ((k < P) and (mod(P, k) = 0)) is not satisfied,
and the asynchronous method was used in X_TO_KX algo-
rithm, since it does not require the above condition.

6 RELATED WORK

Gupta et al [3] and Koelbel [8] provide closed form expres-
sions for determining the send and receive processor sets
and data index sets for redistributing arrays between block
and cyclic distributions. Efficient algorithms for block(m) to
cyclic, and cyclic to block(m) redistributions are described
in {16]. A model for evaluating the communication cost of

THAKUR ET AL.: EFFICIENT ALGORITHMS FOR ARRAY REDISTRIBUTION

data redistribution is given in [6]. A virtual processor ap-
proach for the general block-cyclic redistribution is pro-
posed in [3]. Wakatani and Wolfe [18] describe a method of
array redistribution, called strip mining redistribution, in
which parts an array are redistributed in sequence, instead
of redistributing the entire array at one time as a whole. The
reason for doing this is to try to overlap the commumication
involved in redistribution with some of the computation in
the program. Kalns and Ni [5] present a technique for map-
ping data to processors so as to minimize the total amount
of data that must be communicated during redistribution.
A multiphase approach to redistribution is discussed in [7].
Algorithms for redistribution, based on a mathematical
representation for regular distributions called PITFALLS,
are proposed in [11].

There has also been some research on the closely related
problem of determining the local addresses and communi-
cation sets for array assignment statements like A(l;: h;: s7)
= B(l,: hy: s,) where A and B have different cyclic(m) distri-
butions. Chatterjee et al [1] present an approach to calculate
the sequence of local memory addresses that a given proc-
essor must access while doing a computation involving the
regular array section A(l: i: s), when the array A has a cy-
clic(k) distribution. They show that the local memory access
sequence is characterized by a finite state machine of at
most k states. Stichnoth et al. [14] define a cyclic(k) distri-
bution as a disjoint union of slices, where a slice is a se-
quence of array indices specified by a lower bound, upper
bound and stride (I: /i: s). The processor and index sets for
array assignment statements are calculated in terms of un-
ions and intersections of slices.

7 CONCLUSIONS

We have presented efficient and practical algorithms for
redistributing arrays between different cyclic(k) distribu-
tions, which is the most general form of redistribution. The
algorithms are portable and independent of the communi-
cation mechanism used.

We find that the asynchronous method performs better
than the synchronous method in all cases, because it re-
duces processor idle time. For the general case where there
is no particular relation between x and y, the general
method performs well for small arrays because it requires
communication only once. However, for large arrays, the
LCM method performs much better than the general
method, because it requires a lot less address calculation.
The GCD method also performs better than the general
method for large arrays, provided the GCD of x and y is
greater than 1. The LCM method always performs better
than the GCD method because the LCM of x and y is al-
ways greater than their GCD.

The relative performance of the three methods may be
affected by changes in the underlying architecture of the
system. For example, in a system with very high communi-
cation costs, the general method may perform better since it
has only one communication phase. Improved scalar com-
pilers that optimize expensive index calculations may also
improve the performance of the general method.

593

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation Young Investigator Award CCR-9357840 with a
matching grant from Intel SSD. J. Ramanujam is supported
in part by the National Science Foundation Young Investi-
gator Award CCR-9457768, NSF grant CCR-9210422, and
by the Louisiana Board of Regents through contract LEQSF
(1991-94)-RD-A-09. This research was performed, in part,
using the Intel Touchstone Delta System operated by Cal-
tech on behalf of the Concurrent Supercomputing Consor-
tium. Access to this facility was provided by the Center for
Research on Parallel Computation.

REFERENCES

[1]1 S. Chatterjee, J. Gilbert, F. Long, R. Schreiber, and S. Teng,
“Generating Local Addresses and Communication Sets for Data
Parallel Programs,” Proc. Principles and Practices of Parallel Pro-
gramming (PPoPP), pp. 149-158, May 1993.

[2] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and
C. Tseng, “Fortran D Language Specifications,” Technical Report
COMP TR90-141, CRPC, Rice Univ., 1990.

[3] S. Gupta, S. Kaushik, 5. Mufti, S. Sharma, C. Huang, and P.
Sadayappan, “On the Generation of Efficient Data Communica-
tion for Distributed Memory Machines,” Proc. Int'l Computing
Symp., pp- 504-513, 1992.

[4] High Performance Fortran Forum, High Performance Fortran Lan-
guage Specification, Version 1.0, May 1993.

[5] E.Kalns and L. Ni, “Processor Mapping Techniques Toward Effi-
cient Data Redistribution,” Proc. Eighth Int’l Parallel Processing
Symp., pp. 469-476, Apr. 1994.

[6] S. Kaushik, C. Huang, R. Johnson, and P. Sadayappan, “An Ap-
proach to Communication-Efficient Data Redistribution,” Proc.
Eighth ACM Int’l Conf. Supercomputing, July 1994.

[7] S. Kaushik, C. Huang,]. Ramanujam, and P. Sadayappan, “Multi-
phase Array Redistribution: Modeling and Evaluation,” Proc.

. Ninth Int’l Parallel Processing Symp., pp. 441-445, Apr. 1995.

[8] C. Koelbel, “Compile-Time Generation of Regular Communica-
tion Patterns,” Proc. Supercomputing ‘91, pp. 101~110, Nov. 1991.

[9] C. Koelbel, D. Loveman, R. Schreiber, G. Steele, and M. Zosel,
High Performance Fortran Handbook. MIT Press, 1994.

[10}] R. Ponnusamy, R. Thakur, A. Choudhary, and G. Fox,
“Scheduling Regular and Irregular Comm. Patterns on the CM-5,”
Proc. Supercomputing ‘92, pp. 394402, Nov. 1992.

[11] S. Ramaswamy and P. Banerjee, “Automatic Generation of Effi-
cient Array Redistribution Routines for Distributed Memory
Multicomputers” Proc. Fifth Symp. Frontiers of Massively Parallel
Computation, pp. 342-349, Feb. 1995.

[12] S. Ranka, J. Wang, and M. Kumar, “Irregular Personalized Com-
munication on Distributed Memory Systems,” J. Parallel and Dis-
tributed Computing, vol. 25, no. 1, pp. 58-71, Feb. 1995.

[13] D. Scott, “Efficient All-to-All Communication Patterns in Hyper-
cube and Mesh Topologies,” Proc. Sixth Distributed Memory Com-
puting Conf., pp. 398-403, 1991.

[14] J. Stichnoth, D. O'Hallaron, and T. Gross, “Generating Communi-
cation for Array Statements: Design, Implementation, and
Evaluation,” J. Parallel and Distributed Computing, pp. 150-159,
Apr. 1994.

[15] R. Thakur and A. Choudhary, “All-to-All Communication on
Meshes with Wormhole Routing,” Proc. Eighth Int’l Parallel Proc-
essing Symp., pp- 561-565, Apr. 1994.

[16] R. Thakur, A. Choudhary, and G. Fox, “Runtime Array Redistri-
bution in HPF Programs,” Proc. Scalable High Performance Com-
puting Conf., pp. 309-316, May 1994.

[17] R. Thakur, R. Ponnusamy, A. Choudhary, and G. Fox, “Complete
Exchange on the CM-5 and Touchstone Delta,” J. Supercomputing,
vol. 8, no. 4, pp. 305-328, 1995.

[18] A. Wakatani and M. Wolfe, “A New Approach to Array Redistri-
bution: Strip Mining Redistribution,” Proc. Parallel Architectures
and Languages Europe (PARLE 94), pp. 323-335, July 1994.

594 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 6, JUNE 1996

Rajeev Thakur received a BE degree in com-
puter engineering from the University of Bom-
bay, India, in 1990, an MS degree in computer
engineering from Syracuse University in 1992,
and a PhD degree in computer engineering
from Syracuse University in 1995. He also
received a masters certificate in computational
science from Syracuse University in 1994,
During the summer of 1993, he worked as an
intern at Intel Supercomputer Systems Divi-
sion. He presented a paper at Supercomputing
'92, which received the Best Student Paper Award in the category of
performance measurement. Dr. Thakur was awarded a Syracuse
University Graduate Fellowship for the year 1994-95. He is a post-
doctoral researcher in the Mathematics and Computer Science Divi-
sion at Argonne National Laboratory. His research interests include
parallel /O, multiprocessor file systems, software tools for paral-
lel/distributed computing, and using parallel computing for applica-
tions in computational fluid dynamics.

Alok Choudhary received a PhD degree in
electrical and computer engineering from the
University of lllinois, Urbana-Champaign, in
1989, an MS degree from the University of Mas-
sachusetts, Amherst, in 1986, and a BE degree
(honors) in electrical and electronics engineer-
ing from Birla Institute of Technology and Sci-
ence, Pilani, India, in 1982. He is an associate
professor in the Department of Electrical and
Computer Engineering at Syracuse University.
His research interests include high-performance
parallel and distributed computing, software environments such as
compilers, runtime systems and operating systems for parallel comput-
ers, high-performance input-output, and multimedia and database
systems. He has coauthored a book and written several book chapters
and technical papers in the above areas. He has spent time as a visit-
ing researcher at Intel and IBM.

Dr. Choudhary served as a program cochair for the International
Conference on Parallel Processing, 1993. He is currently the Program
Chair for the Fourth International Workshop on Input-Output in Parallel
and Distributed Systems, to be held in May 1996. He served as a guest
editor for IEEE Computer, and Journal of Parallel and Distributed
Computing (JPDC). He is currently an editor of JPDC. He received the
National Science Foundation’s Young Investigator Award in 1993. He
also received an IEEE Engineering Foundation award in 19390, an IBM
Faculty Development Award in 1994, and an Intel Research Council
Award in 1993 and 1994. He is a member of the IEEE Computer Soci-
ety and the Association for Computing Machinery.

J. Ramanujam received the B. Tech. degree
in electrical engineering from the Indian Insti-
tute of Technology, Madras, in 1983, and the
MS and PhD degrees in computer science
from Ohio State University, Columbus, Ohio, in
1987 and 1990, respectively. He is an associ-
ate professor in the Department of Electrical
and Computer Engineering at Louisiana State
University, Baton Rouge. His research inter-
ests are in compilers for high-performance
computer systems, program transformations,
parallel programming environments and operating systems, parallel
architectures, and algorithms.

Dr. Ramanujam received the National Science Foundation’s Young
Investigator Award in 1994. He has served on the program committee
of the eighth International Conference on Supercomputing (1995), and
is a member of the High Performance Fortran Forum. He has taught
tutorials on compilers for high-performance computers at several con-
ferences such as the International Conference on Parallel Processing
(1995), Supercomputing 94, Scalable High-Performance Computing
Conference (SHPCC 94), and the International Symposium on Com-
puter Architecture (1993 and 1994).

