
Appeared �with minor editorial changes� in Scienti�c Programming� ��������	��
� Winter ����

c� ���� John Wiley � Sons� Inc

An Extended Two�Phase Method for

Accessing Sections of Out�of�Core Arrays�

Rajeev Thakur Alok Choudhary

Math� and Computer Science Div� Dept� of Elect� and Comp� Eng�

Argonne National Laboratory Syracuse University

Argonne� IL ����� Syracuse� NY �����

thakur�mcs�anl�gov choudhar�cat�syr�edu

Abstract

A number of applications on parallel computers deal with very large data sets that cannot

�t in main memory In such applications� data must be stored in �les on disks and fetched into

memory during program execution Parallel programs with large out�of�core arrays stored in �les

must read�write smaller sections of the arrays from�to �les In this paper� we describe a method

for accessing sections of out�of�core arrays e�ciently Our method� the extended two�phase

method� uses collective I�O� Processors cooperate to combine several I�O requests into fewer

larger granularity requests� reorder requests so that the �le is accessed in proper sequence� and

eliminate simultaneous I�O requests for the same data In addition� the I�O workload is divided

among processors dynamically� depending on the access requests We present performance

results obtained from two real out�of�core parallel applications�matrix multiplication and a

Laplace�s equation solver�and several synthetic access patterns� all on the Intel Touchstone

Delta These results indicate that the extended two�phase method signi�cantly outperformed a

direct �noncollective� method for accessing out�of�core array sections

�This work was supported in part by the Scalable I�O Initiative� a multiagency project funded by the Advanced

Research Projects Agency �contract number DABT������C�����	� the Department of Energy� the National Aero�
nautics and Space Administration� and the National Science Foundation
 by a National Science Foundation Young
Investigator Award �CCR�������	
 and by a grant from Intel Scalable Systems Division� This work was performed
in part using the Intel Touchstone Delta System operated by Caltech on behalf of the Concurrent Supercomputing

Consortium� Access to this facility was provided by the Center for Research on Parallel Computation�

� Introduction

Parallel computers are being used increasingly to solve large computationally intensive as well as

data�intensive applications� such as large�scale computations in physics� chemistry� biology� engi�

neering� medicine� and other sciences� The data required by many of these applications must be

stored in �les on disks� as it is too large to �t in main memory ���� The program must perform

I�O to access data from disks� Examples of such applications are Hartree�Fock calculations in

chemistry� very large Fast Fourier Transforms to detect faint radio pulsars� seismic data processing�

weather and climate modeling� �D turbulence simulations� scattering and radiation problems in

computational electromagnetics� and several others �	��

Multidimensional arrays are widely used as data structures in scienti�c programs� Scienti�c

applications with large out�of�core data sets may therefore have one or more out�of�core multidi�

mensional arrays stored in �les� At run time� the program must fetch smaller sections of these

arrays from �les� perform computation� and� if necessary� store the results back to �les� Di
erent

processors may need di
erent sections of the arrays depending on the data distribution� and the

sections may have strides in each dimension�

In this paper� we describe a method� called the extended two�phase method� for parallel pro�

grams to access sections of out�of�core arrays e�ciently� In this method� the requesting processors

cooperate in reading or writing data�a process known as collective I�O� Speci�cally� processors

cooperate to combine several I�O requests into fewer larger granularity requests� reorder requests

so that the �le is accessed in proper sequence� and eliminate simultaneous I�O requests for the same

data� In addition� the extended two�phase method partitions the total I�O workload among pro�

cessors dynamically� depending on the access requests� Compared to a static partitioning scheme�

dynamic partitioning results in a more balanced distribution of I�O among processors and therefore

performs considerably better�

We present extensive performance results comparing the extended two�phase method with a

direct non�collective� method on the Intel Touchstone Delta� For this purpose� we use two real par�

allel applications�out�of�core matrix multiplication and out�of�core Laplace�s equation solver�as

well as several synthetic access patterns� We found that the extended two�phase method performed

considerably better than the direct method for a wide range of access patterns� array sizes� and

number of processors�

The rest of this paper is organized as follows� In Section �� we describe the I�O access patterns of

two out�of�core parallel applications and thus motivate the need for the extended two�phase method�

The method itself is explained in Section �� In Section �� we describe a simple static scheme for

partitioning I�O among processors and then show how the partitioning can be improved by using

	

a dynamic scheme� Extensive performance and scalability results are presented in Section �� We

draw overall conclusions in Section ��

� Two Out�of�Core Parallel Applications

Here we describe the I�O access patterns of two out�of�core parallel applications�matrix multipli�

cation and a Laplace�s equation solver�

��� Out�of�Core Matrix Multiplication

We consider an out�of�core GAXPY algorithm for matrix multiplication� described in ���� Let A�

B� and C be n � n matrices such that C � A � B� The matrices can be represented in terms of

their individual columns as

A � �a�� � � � � an�� aj � R
n

B � �b�� � � � � bn�� bj � R
n

C � �c�� � � � � cn�� cj � R
n

The GAXPY algorithm for computing C � A� B is

cj �
Pn

k�� bkjak � j � 	 � n

In other words� to compute the jth column of C� we need the jth column of B and all columns

of A� An out�of�core GAXPY algorithm for matrix multiplication can be implemented as follows�

In the �rst step� processors read two�dimensional sub�blocks of matrix A into main memory such

that the sub�blocks of all processors together span entire rows see Figure 	�� The processors also

read two�dimensional sub�blocks of matrix B into memory such that the sub�blocks of all processors

together span entire columns� The data now present in memory is su�cient to compute the �rst

two�dimensional sub�block of matrix C� This computation requires a global sum operation� The

processors then write the newly computed sub�block of C to the �le� In the following step� processors

read the next set of sub�blocks of B shown by dashed lines in Figure 	�� reuse the sub�blocks of A

fetched in the previous step� and calculate the second sub�block of C� This process is repeated until

all the sub�blocks in the �rst block of rows of C are computed� The above process is then repeated

with the sub�blocks from the next set of rows of A� shown by dashed lines� The entire matrix C is

computed in this fashion� Note that� at any time� each processor has only one sub�block of matrices

A� B� and C in memory�

�

0 1 2 3 0

1

2

A B C

C = A x B

3

0

1

2

3

0 1 2 3

Step 2

Step 5

Step 2, 6 Step 1

Step 1

Step 5

Step 1, 5

Figure 	� I�O access pattern in out�of�core matrix multiplication

��� Out�of�Core Laplace�s Equation Solver

We consider a Laplace�s equation solver that uses a Jacobi iteration method� This is a stencil

computation where the value at each point is computed by using the values at its neighbors in each

of the four directions�

do k � 	� niter

Ai� j� � Bi� 	� j� � Bi� 	� j� �Bi� j � 	� �Bi� j � 	����� i� j � 	 � n

Exchange A and B

end do

An out�of�core Laplace�s equation solver can be implemented as follows� Divide the out�of�core

array into two�dimensional sub�blocks such that two blocks one for old values� one for new values�

can �t at a time in the memory of each processor� Assign blocks to processors in a round�robin

fashion as shown in Figure �� Each processor reads one block at a time from the �le containing

the array� Processors can either communicate boundary rows and columns or read them directly

from the �le� After a processor computes new values� it writes the new block to a �le containing

the new array� This process is repeated on other sub�blocks of the array to complete one iteration�

The algorithm is repeated for further iterations until it converges�

��� Accessing Out�of�Core Array Sections

In the above applications� processors access two�dimensional sub�blocks of out�of�core arrays� This

type of access pattern also occurs in other applications� such as out�of�core LU solvers �	��� Since

�

0 1

32

0 1

32

0 1

32

Figure �� I�O access pattern in an out�of�core Laplace�s equation solver

arrays are usually stored in a �le in either column�major order as in Fortran� or row�major order

as in C�� the data required by each processor is not located contiguously in the �le� In many cases�

the requests of di
erent processors are interleaved in the �le� To read non�contiguous data with

the interfaces currently provided by parallel �le systems� each processor must explicitly seek to the

appropriate location in the �le� read a small chunk of data� then seek to the next location� and

so on� We call this the direct method� The Vesta and PIOFS �le systems on the IBM SP ��� ��

and the nCUBE �le system ��� do provide support for the user to specify a logical view of the

data to be read and use a single call to read data� Each processor�s request� however� is serviced

independently� and the �le systems do not perform collective I�O�

The drawback of the direct method is that the parallel �le system may receive a large number

of low�granularity requests from multiple processors in any order� As I�O latency is very high�

such access requests perform poorly� For many access patterns� such as in the above applications�

the I�O performance can be improved by using the collective knowledge of the access requests of

all processors� Processors can cooperate among themselves to perform I�O in large chunks and

in the proper order� a process known as collective I�O� The extended two�phase method speci�es

a procedure for performing collective I�O to access out�of�core array sections� Other examples of

collective I�O are disk�directed I�O �		� and server�directed collective I�O �	���

� Extended Two�Phase Method

The two�phase method� proposed in ��� ��� is a collective I�O technique for reading an entire in�core

array from a �le into a distributed array in main memory� and conversely� for writing a distributed

�

in�core array to a �le� I�O is done in two phases� In the �rst phase� processors always read data

assuming a conforming distribution� A conforming distribution is de�ned as a distribution of an

array among processors such that each processor�s local array is stored contiguously in the �le�

resulting in each processor reading a single large chunk of data� For an array stored in a �le in

column�major order� a column�block distribution is the conforming distribution� In the second

phase� data is redistributed among processors to the desired distribution� Since I�O cost is orders

of magnitude more than communication cost� the cost incurred by the second phase is negligible�

This two�phase approach is found to perform well for all array distributions ��� ���

We have extended the basic two�phase method to access sections of out�of�core arrays� This

extended two�phase method performs I�O for out�of�core arrays e�ciently by�

� dynamically partitioning the I�O workload among processors� depending

on the access requests�

� combining several I�O requests into fewer larger granularity requests�

� reordering requests so that the �le is accessed in proper sequence� and

� eliminating simultaneous I�O requests for the same data�

��� Reading Sections of Out�of�Core Arrays

We �rst describe the extended two�phase method for reading array sections� For the purpose of

explanation� we consider the case where each processor must read a section speci�ed in terms of

a lower�bound� upper�bound� and stride in each dimension� of a two�dimensional array stored in a

�le in column�major order� In general� the extended two�phase method can be used for arrays with

any number of dimensions� stored in any order in the �le� and accessed by a subset of the total

number of processors�

The extended two�phase method divides the I�O workload among processors by assigning own�

ership to portions of the �le� A processor can directly access only the portion of the �le it owns�

called its �le domain� For a �le stored in column�major order� the �le domain of each processor

is some set of columns of the array� Section � describes two ways of assigning �le domains to

processors�

Assume that each processor must read a section l� � u� � s�� l� � u� � s�� of the out�of�core array�

in global coordinates� The sections required by di
erent processors may be identical� overlapping�

or distinct� In the �rst step of the extended two�phase method� processors exchange their own

access information the indices l�� u�� s�� l�� u�� s�� with other processors� so that each processor

�

0’s request

1’s request

2’s request

3’s request

A D

CB

File Domain of processor 0

Figure �� Processor � must read the requested data from its �le domain� Section ABCD is the

smallest section containing all the requested data� Processor � reads this section by using an

optimization called data sieving�

knows the access requests of other processors� This information is stored in a data structure called

the �le access descriptor FAD�� The FAD contains exactly the same information on all processors�

This exchange phase is not required if the collective I�O interface itself provides information about

the access requests of other processors�

Since each processor knows its own �le domain and the access requests of other processors�

it can determine what portion of the data in its �le domain is needed by other processors� This

is done by computing the intersection of the requests of other processors from the FAD and its

own �le domain� This information is stored in a data structure called the �le domain access table

FDAT�� The FDAT of a processor thus contains information indicating which portions of its �le

domain have been requested by other processors�

Each processor must now read data from its �le domain as speci�ed by the FDAT� For example�

Figure � shows the �le domain of processor � and� for some access pattern� the portions of this �le

domain that have been requested by other processors� A simple way of reading is to read all the

data needed by processor �� followed by that needed by processor 	� and so on� in order of processor

number� This method� however� may result in too many small accesses that are not in sequence�

For reading the data e�ciently� processors must analyze the FDAT and use a read strategy that

accesses the �le in sequence and contiguously�

We use the following general method for this purpose� Each processor calculates the minimum of

the lower�bounds and the maximum of the upper�bounds of all sections in its FDAT� This e
ectively

determines the smallest section containing all the data that must be read from the �le domain for

�

example� section ABCD in Figure ��� This section may also contain some data that is not required

by any processor� If the processor attempts to read only the useful data� it may result in a number

of small strided accesses� To avoid this� the processor uses an optimization we proposed previously�

called data sieving �	�� 	��� The processor reads a column for column�major order� of the section

at a time in a single operation into a temporary bu
er� This may include some unwanted data� The

useful data is extracted from the temporary bu
er and placed in communication bu
ers� depending

on which processors need the data� The entire section is read from the �le domain in this fashion�

The processor may read more than one column at a time� if su�cient memory is available to do

sieving on the set of columns� This forms the �rst phase of the extended two�phase method�

The second phase of the extended two�phase method consists of communicating the data read

in the �rst phase to the respective processors� From the information in the FDAT� each processor

determines what data must be sent to which processor� In addition� since each processor knows

the �le domains of other processors and its own access request� it can calculate how much data to

receive from other processors and where to store it in memory�

The two phases of the extended two�phase method either can be done distinctly by performing

all I�O �rst and then communication� or they can be overlapped pipelined� by reading smaller

portions of data and communicating it�

��� Writing Sections of Out�of�Core Arrays

The algorithm for writing sections is essentially the reverse of the algorithm for reading sections�

From the FAD� each processor determines what portions of its write request are located in the

�le domains of other processors� those portions must be sent to the respective processors� From

the FDAT� each processor determines what portions of the write requests of other processors are

located in its own �le domain� those portions must be received from the respective processors� This

communication forms the �rst phase of the extended two�phase method for writing sections�

Data is written to the �le in the second phase� The FDAT is analyzed in the same way as in the

read algorithm� Each processor calculates the minimum and maximum of all indices in its FDAT�

which determines the smallest section containing all the data to be written to the �le domain� The

processor uses data sieving �	�� 	�� to write the useful data in this section� Note that� since there

may be �holes� between the useful data to be written� an extra read operation is required before

writing� This extra read is not required if the useful data is located contiguously in the �le�

If the sections requested to be written by di
erent processors have some elements in common�

there is a data�consistency problem� The result depends on the particular implementation of the

extended two�phase method� In our implementation� if there are write requests from multiple

�

processors to the same location� the data from the highest numbered processor is written to the

�le�

� Partitioning the I�O Workload

In the extended two�phase method� processors cooperate to perform I�O� The exact partitioning of

the I�O workload among processors depends on how �le domains are de�ned� In general� I�O can

be partitioned either statically or dynamically� Note that we are referring to a logical partitioning

of the �le among processors� the �le is not physically repartitioned into separate �les�

��� Static Partitioning

One way of partitioning I�O for an array stored in column�major order� is to assign a block of

columns of the entire out�of�core array to each processor� as if the array were distributed among

processors in a column�block fashion� The �le domain of each processor is therefore a block of

columns of the array� stored contiguously in the �le� The size of each �le domain can be determined

from the size of the array and the number of processors and is independent of the access requests�

This is called a static partitioning scheme� Figure �A� shows the �le domains of four processors�

with static partitioning of I�O�

��� Dynamic Partitioning

The main drawback of static partitioning is that the partitioning is independent of the access

requests� For many access patterns� static partitioning may result in an imbalance of I�O among

processors� some processors may perform more I�O than others� some may not perform any I�O

at all� For example� consider the access pattern in Figure �� With static partitioning� the access

requests span the �le domains of only two processors 	 and ��� therefore� only two processors

perform all the I�O� In addition� if we increase the size of the out�of�core array� keeping the number

of processors �xed� the size of each �le domain also increases� and the access requests span the �le

domains of fewer processors� resulting in greater I�O imbalance�

A dynamic partitioning scheme� based on access requests� can divide the I�O workload more

evenly and therefore improve I�O throughput� Figure �B� illustrates such a partitioning scheme�

For a �le stored in column�major order� each processor calculates the �rst and last among the

columns of the sections requested by all processors� The section formed by these columns and all

the rows of the out�of�core array is called the bounding section� The bounding section includes

the sections requested by all processors and is located contiguously in the �le� Figure �B� shows

�

FD FD FDFD
of 0 of 1 of 2 of 3

FD FD FD FD
of 0 of 3of 2of 1

Bounding Section

(B) Dynamic(A) Static

Access Requests

Figure �� Static versus dynamic partitioning� FD � �le domain

the bounding section for the given access requests� File domains are determined by dividing the

bounding section among processors in a column�block fashion� The �le domain of each processor

is thus a contiguous chunk of the bounding section�

If the requested sections span all the columns of the out�of�core array� the dynamically selected

�le domains are identical to those determined statically� If the requested sections span only a few

columns� however� dynamic partitioning provides a much better balance of I�O among processors

as Figure � shows�� It also reduces the memory requirements of the extended two�phase method�

because the �le domain of each processor is smaller� With static partitioning� if all requested

sections are located in a single processor�s �le domain� all the requested data may not �t in the

memory of that processor� Consequently� I�O and communication may need to be done in stages�

several times� This situation is less likely to occur with dynamic partitioning� because the requested

data is more evenly divided among processors�

For an array stored in row�major order� �le domains are determined as follows� Each processor

calculates the �rst and last among the rows of the sections requested by all processors� The

bounding section is the section formed by these rows and all the columns of the out�of�core array�

File domains are determined by dividing the bounding section among processors in a row�block

fashion�

Figure � summarizes the extended two�phase method for reading sections of out�of�core arrays�

with dynamic partitioning of I�O�

�

�� Exchange access information with other processors and �ll in the �le access descriptor �FAD��

�� Calculate the smallest section� called the bounding section� that includes the sections

requested by all processors�

�� Determine the �le domain of each processor by dividing this bounding section

among processors in a column�block manner for arrays stored in column�major order

or row�block manner for arrays stored in row�major order�

	� Compute the intersection of the FAD and this processor
s �le domain�and �ll in the

�le domain access table �FDAT��

�� Calculate the minimum of the lower bounds and the maximum of the upper bounds

of all sections in the FDAT to determine the smallest section containing all the data

needed from the �le domain�

�� Read this section by using data sieving� and communicate the data to the requesting

processors�

Figure �� Extended two�phase method for reading sections of out�of�core arrays with dynamic

partitioning of I�O

� Performance

We used the Intel Touchstone Delta for an experimental study of the performance of the extended

two�phase method� The Touchstone Delta has �	� compute nodes each an Intel i����XR micro�

processor� and �� I�O nodes each an Intel ����� microprocessor�� Each I�O node is connected to

two disks� resulting in a total of �� disks� Intel�s Concurrent File System CFS� provides parallel

access to �les� By default� CFS stripes �les across all �� disks in ��Kbyte blocks� See ��� for a

detailed discussion of the performance of CFS�

We studied the performance of the extended two�phase method versus the direct method exten�

sively for several synthetic access patterns as well as for two real out�of�core parallel applications�

matrix multiplication and a Laplace�s equation solver� We report the results of these experiments

below�

	�

��� Synthetic Access Patterns

We used three basic types of synthetic access patterns�

	� Common sections� All processors access the same section of the array�

�� Overlapping sections� Parts of the section requested by a processor may overlap with parts

of the sections requested by other processors�

�� Distinct sections� The section requested by each processor does not have any data in common

with the section requested by any other processor�

����� Reading Common Sections

Table 	 shows the performance of the direct and extended two�phase methods for reading common

sections �K � �K array� 	� processors�� Figure � illustrates the approximate location of each

of these sections in the array� We measured the performance of the extended two�phase method

with both static and dynamic partitioning� In all cases� the extended two�phase method performed

considerably better than the direct method� because it read the common section only once and

broadcast it to other processors� In the direct method� on the other hand� all processors read the

same section from the �le simultaneously� resulting in extra I�O overhead�

In all cases� the extended two�phase method took much less time with dynamic partitioning�

With static partitioning� each processor�s �le domain was of size �K � ���� Therefore� all sections�

except those in case V� were located in the �le domains of only a few processors� With dynamic

partitioning� on the other hand� the I�O requests were evenly divided among all available processors�

resulting in higher I�O throughput� Since the section in case V spanned all ���� columns� the

statically and dynamically selected �le domains were identical� and so was the performance� For

case V� the extended two�phase method performed considerably better than the direct method�

because the direct method resulted in a large number of small requests spread across the entire �le�

����� Reading Overlapping Sections

Table � shows the time taken for reading various overlapping sections� Figure � illustrates the

approximate location of each of these sections in the array� To represent these overlapping sections

for all processors concisely� we use the following notation� Each processor�s request is denoted by

l� � ov	� p � u� � ov	� p � s�� l� � ov�� p � u� � ov�� p � s��� where p is the processor number

and ov	� ov� are some constants� The amount of overlap can be changed by varying ov	 and ov��

For example� the notation 	�	���	� 	�	�p�	���	�p�	� in case I of Table � represents a group of

		

Table 	� Comparison of direct method and extended two�phase method static and dynamic par�

titioning� for reading common sections� Array size �K � �K real numbers single precision�� 	�

processors� time in seconds�

No� Array Section Direct Extended Two�Phase
Read Static Dynamic

I 	�	���	� 	�	���	� 	���� 	���� ����	
II ��������	� ��������	� 	���� ����� �����
III ��������	� ��������	� ����� ����� 	����
IV ������	� 	���	����	� ����� ����� 	��	�
V 	�	��	� 	������	� ����� ����	 ����	
VI 	������	� 	�	��	� 	��	� ����� �����

(III)(I) (II)

(IV) (V) (VI)

Figure �� The common sections listed in Table 	 not to scale�

	�

overlapping sections with processor � requesting section 	�	���	� 	�	���	�� processor 	 requesting

section 	�	���	� 		�		��	�� processor � requesting section 	�	���	� �	�	���	�� and so on�

The extended two�phase method with dynamic partitioning performed the best in all cases�

The sections in cases I and II were of the same size� but they di
ered in the amount of overlap�

the sections in case I had more overlap than those in case II� Since the total number of columns of

the out�of�core array spanned by the sections in case I was less than that by the sections in case

II� it took less time to read the sections in case I� The sections in cases IV� V� and VI spanned

only a few columns� For these cases� the direct method performed better than the extended two�

phase method with static partitioning� because static partitioning resulted in only a few processors

performing I�O� The extended two�phase method with dynamic partitioning� however� performed

better than the direct method� since the I�O workload was better distributed� The worst case for

the direct method was case VII� which spanned all columns of the array� The sections in case VIII

were overlapping in both dimensions� and again the extended two�phase method with dynamic

partitioning took the least time�

����� Reading Distinct Sections

Table � shows the time taken for reading distinct sections� Figure � illustrates the approximate

location of these sections in the array� We use the same notation as above� l��ov	�p � u��ov	�p �

s�� l� � ov�� p � u� � ov�� p � s��� for representing distinct sections� The overlap factors ov	 and

ov� must be large enough to ensure that the sections are distinct�

In case I� the requests of di
erent processors were situated in separate locations in the �le�

because the sections requested were located along rows� As a result� I�O in the extended two�phase

method with dynamic partitioning was identical to that in the direct method� and they took the

same time� The extended two�phase method with static partitioning took longer than the direct

method� because only a few processors performed I�O� The sections in cases II�IV were located

along columns� and the requests of di
erent processors were interleaved in the �le� The extended

two�phase method therefore performed considerably better for these cases� Static partitioning did

not perform well for the sections in case II� because they spanned only a few columns� The best

case for the extended two�phase method was case IV� since the sections spanned all columns� The

sections in cases V and VI were partly interleaved in the �le� and even for these cases� the extended

two�phase method performed the best�

	�

Table �� Comparison of direct method and extended two�phase method static and dynamic par�

titioning� for reading overlapping sections� Array size �K � �K real numbers single precision�� 	�

processors� time in seconds�

No Array Section Direct Extended Two�Phase
�p � processor number� Read Static Dynamic

I ��������� ����p�������p��� ���� ���� ����
II ��������� ����p�������p��� ���
 ���� ��
�
III ����������� �������p��������p��� ���
 ���� ��

IV ���������� ���p�����p��� ���� ��
� ����
V �����p�������p��� �������� ��
� ���� ����
VI ��������p��������p��� ����������
��� ���� ����
VII ����p�����p��� ��������� ���� ���� ����
VIII ��������p��������p��� �������p��������p��	 ���� ���� �
��

overlap

(I) (II) (III) (IV)

(VI)(V) (VII) (VIII)

overlap

overlap
overlap

overlap

overlap

overlap

overlap

Figure �� The overlapping sections listed in Table � not to scale�

	�

Table �� Comparison of direct method and extended two�phase method static and dynamic par�

titioning� for reading distinct sections� Array size �K � �K real numbers single precision�� 	�

processors� time in seconds�

No Array Section Direct Extended Two�Phase
�p � processor number� Read Static Dynamic

I ��������� �����p��������p��� ��
� ���� ��
�
II ������p��������p��� �������� ���� ���� ����
III ��������p��������p��� ����������� ���� ���� �
��
IV �����p������p��� ��������� ���� ���� ����
V ��������p��������p��� �����p�
������p��	 ���� ���� ����
VI �����p������p��� �����p���������p��	 ���� ���� ��
�

(III)(I) (II)

(IV) (V) (VI)

Figure �� The distinct sections listed in Table � not to scale�

	�

Table �� Comparison of direct method and extended two�phase method static and dynamic par�

titioning� for writing distinct sections� Array size �K � �K real numbers single precision�� 	�

processors� time in seconds�

No Array Section Direct Extended Two�Phase
�p � processor number� Write Static Dynamic

I ��������� �����p��������p��� ���� ���� ����
II ������p��������p��� �������� ���� ���� ����
III ��������p��������p��� ����������� ���� ���� ����
IV �����p������p��� ��������� ���� ���� ����
V ��������p��������p��� �����p�
������p��	 ���� ���� ����
VI �����p������p��� �����p���������p��	 ���� ���� ��
�

����� Writing Distinct Sections

We considered only the case where each processor writes a distinct section to the �le� because other

cases� such as writing overlapping or common sections� are unlikely to occur� Table � shows the

time taken for writing distinct sections� The sections chosen were the same as those for reading

Table �� Figure ��� As for reading distinct sections� the direct method and the extended two�

phase method with dynamic partitioning took the same time for writing the sections in case I�

whereas the extended two�phase method with static partitioning took longer� In the other cases�

the extended two�phase method with dynamic partitioning performed considerably better than the

direct method�

����� Accessing Sections with Non�Unit Strides

We also tested the performance for accessing sections with non�unit strides� When an array section

has a non�unit stride� each element requested is strided in the �le� The only way of reading such

array sections using a direct method is to seek explicitly to each individual element and read only

that element� This results in very low granularity of data transfer� which is very expensive� The

extended two�phase method overcomes this drawback of the direct method by reordering requests

and using data sieving for larger granularity accesses�

Table � shows the performance for reading sections with non�unit strides� The sections in

case I spanned almost the entire array� with stride equal to the number of processors� As a result�

static and dynamic partitioning took the same time� The sections in cases II and III were located

diagonally across the out�of�core array� The sections in case IV were located along columns� and

the sections in case V were located along rows� In all cases� the extended two�phase method was

more than �� times faster than the direct method� Table � shows the performance of the extended

	�

Table �� Comparison of direct method and extended two�phase method static and dynamic par�

titioning� for reading sections with non�unit strides� Array size �K � �K real numbers single

precision�� 	� processors� time in seconds�

No Array Section Direct Extended Two�Phase
�p � processor number� Read Static Dynamic

I �p��������nprocs� p��������nprocs� ���� ���� ����
II ����
�p��
���
�p��� ���
�p��
���
�p��	 ���� ���� ����
III ������p�
������p��� �����p�
������p��	 �
�� ���� ���

IV �����p������p��� ����������� ���� �
�� ����
V ������������ ����p������p��� ���
 ��
� ����

Table �� Comparison of direct method and extended two�phase method static and dynamic par�

titioning� for writing sections with non�unit strides� Array size �K � �K real numbers single

precision�� 	� processors� time in seconds�

No Array Section Direct Extended Two�Phase
�p � processor number� Write Static Dynamic

I �p��������nprocs� p��������nprocs� ���� ��

 ��

II ����
�p��
���
�p��� ���
�p��
���
�p��	 ���� ���� �

�
III ������p�
������p��� �����p�
������p��	 ���� ����
���
IV �����p������p��� �����������
��� ����
�
�
V ������������ ����p������p���
���

�� ����

two�phase method for writing sections with non�unit strides� The sections chosen were the same as

in Table �� Even for writing sections� the extended two�phase method improved I�O performance

considerably�

����� Scalability

We also studied the scalability of the extended two�phase method for large number of processors�

large array sections� and large out�of�core arrays� Since dynamic partitioning always performed

better than� or at least as well as static partitioning� we considered only dynamic partitioning

for the scalability experiments� Table � shows the timings obtained by varying the number of

processors requesting array sections from � to 	��� for both reading and writing� We selected a few

sections in each category�common� overlapping� distinct� and non�unit strides� Note that� as the

number of processors was increased� the total amount of I�O performed also increased�

The extended two�phase method scaled well with the number of processors� In many cases�

	�

Table �� Scalability of the extended two�phase method� The number of processors accessing sections

was varied from � to 	��� Array size �K � �K real numbers single precision�� time in seconds�

DR � Direct Read� ETP � extended two�phase method with dynamic partitioning� DW � direct

write�

I � ����������� ����������� Figure ��III�

II � �������� ���������� Figure ��V�

III � ����������� ������p�������p���� Figure
�III�

IV � ����p�����p��� ���������� Figure
�VII�

V � �����p������p��� ���������� Figure ��IV�

VI � �����p������p��� ����p��������p���� Figure ��VI�

VII � �p��������nprocs� p��������nprocs�

VIII � ������������ ����p������p���

READING COMMON SECTIONS
Sec� Procs�� Procs� Procs��� Procs��� Procs��� Procs���
tion DR ETP DR ETP DR ETP DR ETP DR ETP DR ETP
I ����� ���� ���� ����� ����� ���
� ���� ����� ���� ����� ����� �����
II ����� ����
 ����
 ����� ����
 ����� ����� ����� ����� ����� ����� �����

READING OVERLAPPING SECTIONS
Sec� Procs�� Procs� Procs��� Procs��� Procs��� Procs���
tion DR ETP DR ETP DR ETP DR ETP DR ETP DR ETP
III ����� ����
��� ����� ��
� ����� ����� ���� ���� ���� ����
 �����
IV ����
 ���
� ����� ����� ����� ����� ����� ����� ���
 ����� ��
�� �����

READING DISTINCT SECTIONS
Sec� Procs�� Procs� Procs��� Procs��� Procs��� Procs���
tion DR ETP DR ETP DR ETP DR ETP DR ETP DR ETP
V ����� ����� ���
� ����� ����� ����� ���� ����� ����� �����
��� ����
VI ����� ���� ����� ��

 ����
 ���� ���� ���� ����� ����� ����� �����

WRITING DISTINCT SECTIONS
Sec� Procs�� Procs� Procs��� Procs��� Procs��� Procs���
tion DW ETP DW ETP DW ETP DW ETP DW ETP DW ETP
V ����� ����� ����� ���� ����
 �

� ���
� ����� ����� ��
�
���� �����
VI ���� ����� ���� ���� ���
� ���
 �����
��� ����� ����� ����� �����

READING SECTIONS WITH NON�UNIT STRIDES
Sec� Procs�� Procs� Procs��� Procs��� Procs��� Procs���
tion DR ETP DR ETP DR ETP DR ETP DR ETP DR ETP
VII ����� ���� ����� �
�� ���� ����� ����� ����
���� ����
���� ���
�
VIII
���� ����� ���� ����� ��� ���� ����� ����� ����

���� ���� �����

WRITING SECTIONS WITH NON�UNIT STRIDES
Sec� Procs�� Procs� Procs��� Procs��� Procs��� Procs���
tion DW ETP DW ETP DW ETP DW ETP DW ETP DW ETP
VII ���� ����
 ����� ����� ��
� ����� ���
� ����� �
��
 ����
��� �����
VIII ����� ����� ��� ����� �
��� ����� �
��
 ���� ����� ����
 ���� ����

	�

the time taken increased only slightly as the number of processors was increased� indicating that

we obtained higher I�O throughput by increasing the number of processors� For example� for the

sections in case I� the time taken increased from 	���� sec� to only ��	�� sec� when the number of

processors was increased from � to 	��� In some cases� such as case II� the time taken even decreased�

The direct method performed quite poorly when the number of processors was increased� especially

for cases II� IV� and VIII� The extended two�phase method also scaled well for writing sections�

For small number of processors� the extended two�phase method took longer for writing� because

of the extra read before each write� For large number of processors � 	��� however� the extended

two�phase method performed better than the direct method in spite of the extra read� For sections

with non�unit strides� the extended two�phase method performed considerably better than the

direct method�

Table � shows the performance for accessing large sections of a large out�of�core array of size

	�K � 	�K single precision real numbers �le size 	Gbyte�� Figure � shows the approximate

location of these sections in the array� We considered common� overlapping� and distinct sections

for reading and distinct sections for writing� The trend in the results was the same as for a

�K � �K array Table ��� The direct method performed much worse for accessing large sections

than for small sections� whereas the extended two�phase method performed consistently well for

sections of any size� Figures 	� and 		 compare the relative performance of the two methods for

reading and writing the sections in case VI of Table ��

��� Real Applications

We also studied the performance of the extended two�phase method with dynamic partitioning

versus the direct method� for two real out�of�core parallel applications�matrix multiplication and

a Laplace�s equation solver�

����� Matrix Multiplication

Table � shows the I�O time for out�of�core matrix multiplication for di
erent array sizes and number

of processors� The I�O time was calculated as the maximum of the time taken by all processors� for

all I�O reading and writing� required in the out�of�core matrix multiplication algorithm described

in Section �� Note that in the extended two�phase method� the I�O time includes the time for data

communication� In all cases� the extended two�phase method performed better than the direct

method� Figure 	� shows that the percentage improvement in I�O time provided by the extended

two�phase method over the direct method varied from ��� to ����

	�

Table �� Scalability of the extended two�phase method for large requests� Array size 	�K � 	�K

real numbers single precision�� 	 Gbyte �le� The number of processors accessing sections was varied

from � to 	��� DR � direct read� ETP � extended two�phase method with dynamic partitioning�

DW � direct write� Time in seconds�

I � �������������������������

II � ������p��������p���������������

III � ������p��������p����������p��������p���

IV � ����������������p����p���

V � ������p��������p��� �����p���������p���

VI � �����p������p����������������

READING SECTIONS
Sec� Procs�� Procs� Procs��� Procs��� Procs��� Procs���
tion DR ETP DR ETP DR ETP DR ETP DR ETP DR ETP
I ����
 ��� ����� ����
 ���� ����
 �
��� ���
 ����� ���� ��
�� ����
II
���� ���
� ����� ���� ����� ��
� �
��� ����� ����� ����� ����
���
III �����
���� ����� ���� ����� ����� ���� ���
� ���� ����� ����� �����
IV ���� ����� ���� ����� ����� ����� ���� ����� ����� ��
� ��� �����
V �����
��� ����� ���
 ���
� ���
 �
��� �����
��� ����� ����� �����
VI
���� ����� ����
 ����
 ����� ��� ����
����
���� ����� ����� ���

WRITING SECTIONS
Sec� Procs�� Procs� Procs��� Procs��� Procs��� Procs���
tion DW ETP DW ETP DW ETP DW ETP DW ETP DW ETP
V ���� ����� �
��� ��� ����� ����� �
��� �����
���� �
��� ���� ���
�
VI ���
 ���� ���

���� �
��� ����� ���� �����
��� ����� ����� �����

(I) (II) (III)

(VI)(V)(IV)

overlap

overlap overlap

Figure �� The sections listed in Table � not to scale�

��

4 8 16 32 64 128
Processors

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0
Tim

e (
se

c.)
Direct Read
Ext. Two-Phase

Figure 	�� Scalability results� 	�K � 	�K array� time for reading sections in case VI of Table �

4 8 16 32 64 128
Processors

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

Tim
e (

se
c.)

Direct Write
Ext. Two-Phase

Figure 		� Scalability results� 	�K � 	�K array� time for writing sections in case VI of Table �

�	

Table �� I�O time in seconds for out�of�core matrix multiplication using direct method and extended

two�phase method with dynamic partitioning ETP�

	K � 	K array �K � �K array �K � �K array
Procs� Direct ETP Direct ETP Direct ETP

� ����� ����� 	���� ����� ����� �	���
	� ����� ����� ����� ����� ����� �����
�� ����� 	���� 	���� ����� ����� �����
�� ����� 	���� 	���� 	���� �	��� ��	�	
	�� 	�	�� ����� ����	 �	��	 	��� �����

8 16 32 64 128
Processors

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

Pe
rce

nta
ge

 Im
pro

ve
me

nt

1K x 1K array
2K x 2K array
4K x 4K array

Figure 	�� Percentage improvement in I�O time of out�of�core matrix multiplication by using

extended two�phase method versus direct method

��

Table 	�� I�O time in seconds for an out�of�core Laplace�s equation solver using direct method and

extended two�phase method with dynamic partitioning ETP��

	K � 	K array �K � �K array �K � �K array
Procs� Direct ETP Direct ETP Direct ETP

� ���	� ����� ����� ����� ����	 �����
	� 	���� 	���� �	��� ����� ����� �����
�� 	���� 	���� ����� ����� ����� �����
�� 	���� 	���� ���	� ����� ����� �����
	�� �	��� 	��	� ����� ���	� ����� �����

����� Laplace�s Equation Solver

Table 	� shows the I�O time for an out�of�core Laplace�s equation solver for di
erent array sizes

and number of processors� The I�O time is the maximum of the time taken by all processors for all

I�O reading and writing� required in the out�of�core Laplace�s equation solver algorithm described

in Section �� As in the case of matrix multiplication� the extended two�phase method performed

better than the direct method� The percentage improvement in I�O time provided by the extended

two�phase method over the direct method is shown in Figure 	�� The percentage improvement

was lower than in the case of matrix multiplication� possibly because of the di
erence in the I�O

access patterns of the two applications� Recall that in out�of�core matrix multiplication� matrix

B is accessed in blocks along columns� The results with synthetic access patterns in Section ��	

indicate that the extended two�phase method performs very well for such accesses�

� Conclusions

The extended two�phase method is clearly superior to a direct method for accessing sections of

out�of�core arrays� In our experiments with real applications as well as several synthetic access

patterns� the extended two�phase method outperformed the direct method signi�cantly�

The extended two�phase method also provides much �exibility in partitioning the I�O workload

among processors� We have described one dynamic partitioning scheme that performed signi�cantly

better than a static partitioning scheme� but it may be possible to do even better� For example�

instead of dividing the bounding section among processors in a column�block fashion� it could be

divided in a block�cyclic fashion� so that if the bounding section includes some unwanted columns�

they are evenly distributed� Another approach is to divide I�O among processors in such a way

that the I�O requests from di
erent processors go to di
erent disks or I�O nodes� Furthermore�

��

8 16 32 64 128
Processors

0.0

10.0

20.0

30.0

40.0

50.0

Pe
rce

nta
ge

 Im
pro

ve
me

nt

1K x 1K array
2K x 2K array
4K x 4K array

Figure 	�� Percentage improvement in I�O time of out�of�core Laplace�s equation solver by using

extended two�phase method versus direct method

if the ratio of processors to disks on the machine is very high� it is possible to have only a few

processors perform I�O� thereby reducing contention for the I�O system�

The extended two�phase method can be used for accessing arrays with any number of dimensions

and any storage order� For the dynamic partitioning scheme we have proposed� the �le domains

for an n�dimensional array can be obtained by �rst calculating the n�dimensional bounding section

of all requests� and then dividing it among processors such that the �le domain of each processor

is located contiguously in the �le�

Array sections other than those that can be represented by a lower�bound� upper bound� and

stride in each dimension� for example� sections with non�uniform strides� can also be accessed by

using the extended two�phase method� This requires a more general notation for representing such

sections� The data structures� such as FAD and FDAT� must be modi�ed to handle such requests�

but the basic idea remains the same�

It is not necessary that all processors running the application must call the extended two�

phase read�write routine� Even a subset of processors may call the routine and participate in the

two�phase process� The I�O workload can be divided among the processors in this subset�

The extended two�phase method is not speci�c to any particular machine� �le system� or ar�

chitecture� it can be easily implemented by using any �le�system interface� or by using portable

interfaces� such as MPI�IO �	��� resulting in portable implementations� It can also be easily modi�

�ed and tuned for any particular system�by de�ning �le domains appropriately and possibly using

��

a di
erent algorithm for interprocessor communication�

The best way to use the extended two�phase method is to implement it as a library routine that

can be called from an application program� We have implemented it in the PASSION runtime li�

brary �	��� which is available on the World�Wide Web at http���www�cat�syr�edu�passion�html�

References

�	� Applications Working Group of the Scalable I�O Initiative� Preliminary Survey of I�O Intensive

Applications� Scalable I�O Initiative Working Paper Number 	� On the World�Wide Web at

http���www�ccsf�caltech�edu�SIO�SIO apps�ps� 	����

��� R� Bordawekar� A� Choudhary� and J� del Rosario� An Experimental Performance Evaluation

of Touchstone Delta Concurrent File System� In Proceedings of the �th ACM International

Conference on Supercomputing� pages �������� July 	����

��� R� Bordawekar� A� Choudhary� and R� Thakur� Data Access Reorganizations in Compil�

ing Out�of�Core Data Parallel Programs on Distributed Memory Machines� Technical Re�

port SCCS����� NPAC� Syracuse University� September 	���� On the World�Wide Web at

ftp���erc�cat�syr�edu�ece�choudhary�PASSION�access reorg�ps�Z�

��� R� Bordawekar� J� del Rosario� and A� Choudhary� Design and Evaluation of Primitives for

Parallel I�O� In Proceedings of Supercomputing ���� pages ������	� November 	����

��� P� Corbett� D� Feitelson� J� Prost� and S� Baylor� Parallel Access to Files in the Vesta File

System� In Proceedings of Supercomputing ���� pages ������	� November 	����

��� E� DeBenedictis and J� del Rosario� nCUBE Parallel I�O Software� In Proceedings of 		th

International Phoenix Conference on Computers and Communications� pages 		��	��� April

	����

��� J� del Rosario� R� Bordawekar� and A� Choudhary� Improved Parallel I�O via a Two�Phase

Runtime Access Strategy� In Proceedings of the Workshop on I�O in Parallel Computer Sys�

tems at IPPS ���� pages ������ April 	����

��� J� del Rosario and A� Choudhary� High Performance I�O for Parallel Computers� Problems

and Prospects� IEEE Computer� pages ������ March 	����

��� IBM Corp� IBM AIX Parallel I�O File System� Installation� Administration� and Use� Docu�

ment Number SH���������	� August 	����

��

�	�� K� Klimkowski and R� van de Geijn� Anatomy of an Out�of�Core Dense Linear Solver� In

Proceedings of the ���� International Conference on Parallel Processing� pages III����III�

��� August 	����

�		� D� Kotz� Disk�directed I�O for MIMD Multiprocessors� In Proceedings of the ���	 Symposium

on Operating Systems Design and Implementation� pages �	���� November 	���� Updated as

Technical Report PCS�TR������� Dept� of Computer Science� Dartmouth College�

�	�� K� Seamons� Y� Chen� P� Jones� J� Jozwiak� and M� Winslett� Server�Directed Collective I�O

in Panda� In Proceedings of Supercomputing ���� December 	����

�	�� R� Thakur� Runtime Support for In�Core and Out�of�Core Data�Parallel Programs� PhD thesis�

Dept� of Electrical and Computer Engineering� Syracuse University� May 	����

�	�� R� Thakur� R� Bordawekar� A� Choudhary� R� Ponnusamy� and T� Singh� PASSION Runtime

Library for Parallel I�O� In Proceedings of the Scalable Parallel Libraries Conference� pages

		��	��� October 	����

�	�� R� Thakur� A� Choudhary� R� Bordawekar� S� More� and S� Kuditipudi� Passion� Optimized

I�O for Parallel Applications� IEEE Computer� ����������� June 	����

�	�� The MPI�IO Committee� MPI�IO� A Parallel File I�O Interface for MPI� Version ���� World�

Wide Web http���lovelace�nas�nasa�gov�MPI�IO� April 	����

��

