
Design and Evaluation of Data Storage and Retrieval Strategies in a Distributed
Memory Continuous Media Server�

Chutimet Srinilta Divyesh Jadav
ECE Department

Syracuse University, Syracuse, NY 13244
fcsrinilt, divyeshg@cat.syr.edu

Alok Choudhary
ECE Department & Technological Institute

Northwestern University, Evanston, Illinois 60208
choudhar@ece.nwu.edu

Abstract

High performance servers and high-speed networks will
form the backbone of the infra-structure required for dis-
tributed multimedia information systems. Given that the
goal of such a server is to support hundreds of interactive
data streams simultaneously, various tradeoffs are possible
with respect to the storage of data on secondary memory,
and its retrieval therefrom. In this paper we identify and
evaluate these tradeoffs. We evaluate the effect of varying
the stripe factor and also the performance of batched re-
trieval of disk–resident data. We develop a methodology to
predict the stream capacity of such a server. The evaluation
is done for both uniform and skewed access patterns. Ex-
perimental results on the Intel Paragon computer are pre-
sented.

1 Introduction

Digitalization of traditionally analog data such as video
and audio, and the feasibility of obtaining networking band-
widths above the gigabit-per-second range are two key ad-
vances that have made possible the realization, in the near
future, of interactive distributed multimedia systems. Mul-
timedia data differs from unimedia data in the diversity of
data sizes and the need to provide real-time guarantees for
playback. On account of these differences, it is important
for a continuous media server to provide efficient data stor-
age and retrieval mechanisms.

1.1 Related Work

Researchers have proposed various approaches for the
storage and retrieval of multimedia data. [9] proposed a disk

�This work was supported in part by Intel Corporation, NSF Young
Investigator Award CCR-9357840 and NSF grant CCR-9509143. The au-
thors thank the Caltech CCSF facilities for providing access to the Intel
Paragon.

arm scheduling approach for multimedia data, and charac-
terized the disk-level tradeoffs in a multimedia server. [8]
proposed a model based on constrained block allocation.
[5] increased the effective retrieval bandwidth by striping
media data across several disks in a round robin fashion.
Various striping tradeoffs have been studied in [5, 1]. [4]
studied cost tradeoffs and scalability issues in high perfor-
mance media-on-demand (MOD) servers. Techniques for
improving reliability and availability of the storage subsys-
tem were studied in [2, 3].

1.2 Research Contributions

Due to the large size of multimedia objects , these ob-
jects must reside in secondary storage devices almost all
the time. Only the portion that is needed for the display
at a given point of time is retrieved from the disk. Because
disk accesses are involved throughout the playback duration
which is usually long, multimedia applications are consid-
ered I/O intensive. This paper focuses on storage and re-
trieval techniques to support real-time playback of continu-
ous media objects. We implemented a strategy to organize
objects across the disks and a strategy for their retrieval.
We identify the storage and retrieval parameters that affect
server performance and evaluate the effect of varying their
values. In [7] we considered a restricted retrieval strategy
whereby all the nodes across which a media file is striped
are accessed in a service round. In this paper we consider
a more generalized retrieval model calledbatch retrieval.
The performance metrics that we used are the number of
concurrent sessions supported by the server and the aver-
age storage node queuing delay. We derive bounds on the
retrieval capacity of a storage node. This leads to the de-
velopment of a methodology topredict the stream capacity
of a distributed memory media server. Due to the fact that
some objects, such as newly released movies, may be more
popular than others, the frequency of request to each object
is different. We studied the effect of storage and retrieval
parameters under various request patterns.

1063 7133/97 $10.00 © 1997 IEEE Proceedings of the 11th International Parallel Processing Symposium (IPPS '97)
1063-7133/97 $10.00 © 1997 IEEE

The rest of this paper is organized as follows. Section
2 explains the architecture of the server along with its data
storage, retrieval and buffering strategies. Section 3 outlines
the performance metrics. Section 4 discusses the effects of
parameters on server performance. The experimental model
and results as well as stream capacity prediction methodol-
ogy is presented in section 5. Section 6 concludes the paper.

2 The Server Model

A parallel machine is a good candidate for a server model
because of its ability to serve multiple clients simultane-
ously, its high disk and node memory, and the parallelism
of data retrieval that can be obtained by data striping. In this
model, we assume that

� The server is connected to clients by a high-speed
wide-area network which delivers data to clients re-
liably and at the required bandwidth.

� Clients have limited storage space andhard deadlines
i.e. they cannot tolerate jitter in delivered data. Con-
sequently, the server must retrieve and supply data at
almost the same rate as their consumption by clients.

� Objects are stored at the server in compressed digital
form. The decompression is done at client site.

� No caching is performed at any node.

The architecture of the proposed server model is based
on a shared-nothing model [11], where each of the com-
puting nodes in the system has private memory and periph-
eral storage. Communication between nodes is achieved by
passing messages through the interconnection network. The
logical configuration of the server model is shown in Fig-
ure 1. The lines between nodes represent data transfer, and
the arrows indicate the transfer direction.

The physical server nodes can be classified into three
groups, based on their functionality: the object manager
node (O), the interface nodes (I) and the storage nodes (S).
The object manager receives all incoming requests for ob-
jects from clients and delegates the responsibility of serv-
ing a request to one of the interface nodes. The interface
nodes are responsible for scheduling and serving requests.
Their main function is to request data packets from storage
nodes, order the packets received, and send the packets to
the clients. Storage nodes store multimedia objects on their
secondary storage devices. They retrieve and transmit data
packets to interface nodes upon request.

2.1 Storage Strategy

Efficient I/O operations are the key to improving the per-
formance of the system as a whole. The way objects are

.

.

.

.

.

O

I

I

S

S

S

S

S

I
.

.

.

High

WAN
Speed

O I

S

object manager
node

interface node

storage node storage device

Figure 1. Logical configuration

organized over the storage nodes is important because the
time to retrieve an object depends primarily on the load on
the disk(s), which is proportional to the load on the storage
node(s) where the object is stored.

Striping is used in the server model. Each object is
striped and stored across a group of storage nodes. Strip-
ing helps distribute the load on the storage nodes as well as
the network. Hot-spots and network congestion are avoided,
and higher effective bandwidth from parallel data retrieval
is obtained. The number of storage nodes across which an
object is striped is called the stripe factor (S) of the object.

The stripe factor of an object can be any number from
one to the total number of storage nodes in the system, but
the bandwidth ofSstorage nodes altogether must be at least
equal to the playback bandwidth requirement of the object.

Each object is broken down into a sequence of equal size
fragments. If the first fragment of an object is stored on
nodej, then theith fragment of an object will be stored at
the((j +((i� 1) mod S)) mod N)th storage node, where
N is the total number of storage nodes.

2.2 Buffer Space Management

At an interface node, there is a fixed size buffer assigned
to each playback session. The size of the buffer is important
because it defines the session startup latency as the play-
back cannot begin until a certain amount of the buffer is
filled. Moreover, it also determines the refilling period of
the buffer. By using a multi-section buffer, the deadlines
can be deferred [10]. All sections in a buffer are used cir-
cularly. A 2-sided buffer, where one side is for incoming
packets and the other side is for outgoing packets , is used

Proceedings of the 11th International Parallel Processing Symposium (IPPS '97)
1063-7133/97 $10.00 © 1997 IEEE

in the model. An interface node manages the buffer in such
a way that the refilling and the consuming rates are equal.
Thus, the two sides can be used interchangeably.

As data are taken from a buffer at a constant rate—the
playback bandwidth of a session—the buffer needs to be
refilled at the same rate in order to provide enough data and,
at the same time, not overflow the buffer.

2.3 Retrieval Strategy

For each playback session, there are some related terms
which are defined below:

i-packet Unit of data transfer from an I node (Pi bytes).
s-packetUnit of data transfer from an S node (Ps bytes).
delivering period (Td) The time interval between the re-

lease of successive i-packets.
refilling period (Tr) The time interval that an interface

node requests for data from storage node(s).
round-trip delay (Trt) The time interval between the is-

suing of a refilling request and the arrival of the correspond-
ing s-packet.

Three retrieval parameters are defined for each playback
session:

session buffer size (b) The size of buffer space allocated
for a playback session at an interface node.

batch size (B) The number of requests that an interface
node issues in each refilling period.

s-packet size (Ps) The size of one s-packet.
Batch size (B) and s-packet size (Ps) have to be chosen in

such a way that the data retrieved in each refilling period fit
in the buffer space allowed (b). B can be any number from
one toS(stripe factor of an object), but the total bandwidth
from B storage nodes has to be at least equal to the required
playback bandwidth.

During a playback session, amongSstorage nodes con-
taining the object, a set ofB nodes takes turns retrieving
data in every refilling period.B refilling requests are sent
to B storage nodes everyTr units of time. In response to
these requests,B s-packets are retrieved and sent back to
the requesting interface node.

Having batch size less than stripe factor enables the mul-
tiplexed storage node access in which different sets of stor-
age nodes are accessed during successive refilling periods.
Only one set will be active at any given time; thus the in-
active sets can service other sessions. This helps avoid a
group of storage nodes containing frequently requested ob-
jects from becoming bottlenecks of the system.

2.3.1 Deadlines

For each playback session,Td is equal to Pi
Rpl

. Rpl is the
playback bandwidth requirement of an object. Thus, for
a session buffer ofb bytes, the full outgoing half will last

b�Td
2�Pi

units of time, which, in turn, isTr. Within Tr units of
time after requesting for s-packets, an interface node must
receive them in its buffer.

In other words,Td andTr define deadlines by which i-
packet and s-packet must arrive at the client and the inter-
face node, respectively. The deadlines defined byTd are
called delivering deadlines, and those defined byTr are
calledrefilling deadlines. Figure 2 shows a timing diagram
for a playback session.Trt of every s-packet must not ex-
ceedTr.

Tr

Td

Trt

refilling requestsB B s-packetsreceive

time

issue B
refilling requests

issue

deliver i-packets

Figure 2. Timing diagram at an I node

2.4 Servicing Multiple Playback Sessions

Due to the periodic nature of media retrieval, the server
services multiple sessions by proceeding in service rounds.
Each session takes turns getting service according to its
deadlines. The time left after taking care of these deadlines
is used for receiving s-packets from storage nodes.

3 Performance Metrics

3.1 Maximum Number of Concurrent Sessions

Each session requires a certain I/O bandwidth for contin-
uous playback. Assuming that the interconnection network
of the server, and the wide-area network for data delivery
are not performance bottlenecks, disk bandwidth limits the
number of concurrent sessions that a storage node, and con-
sequently the system, can support.

On average, the effective bandwidth (Beff) of a storage
node in retrieving one s-packet is Ps

�seekavg +�rotavg +�tr
.

The aggregate bandwidth (Btot) provided is equal to
(number of storage nodes) �Beff .

Assuming that the load is balanced among the storage
nodes in the system, at a steady state when every storage
node provides service at its maximum capability, the ideal
maximum number of concurrent sessions that all storage
nodes can support (MAXses) is Btot

Rpl

:However, after taking

Proceedings of the 11th International Parallel Processing Symposium (IPPS '97)
1063-7133/97 $10.00 © 1997 IEEE

into account the communication time between interface and
storage nodes, and the overhead at both interface and stor-
age nodes, the actual number of concurrent sessions that the
server model can support will be lower.

The other factor that limits the number of concurrent ses-
sions is the deadlines, both delivering and refilling. The
ability to maintain the deadlines depends on activities at
both interface and storage nodes. The upper bound for the
round-trip delay isTr. Tr is composed of two major parts:
time spent at a storage node (Ts) and time spent on the net-
work (Tn). LetTsmax

denote the maximum time allowed to
spend at a storage node. This includes waiting time and disk
service time. Considering the average situation, the number
of outstanding refilling requests (the request being serviced
and the requests waiting in the queue) that a storage node
carries must not exceedMAXref at all times,

MAXref =
Tsmax

�seekavg + �rotavg + �tr
: (1)

In case batch size is less than stripe factor, two successive
batches of refilling requests will not address the same set of
storage nodes. LetC denotecycle, which is the number of
refilling periods between two successive batches of refilling
requests (of the same session) addressing the same storage
node.C is simply calculated by

C =
S

B
: (2)

Since every object has the sameB and S, all requests
arriving at a storage node in one cycle belong to different
sessions. Their service time altogether cannot exceed the
duration of a cycle itself which isC refilling periods. Hence,
the maximum number of client requests that a storage node
can handle (MAXreq) is determined by

MAXreq =
C � Tr

�seekavg + �rotavg + �tr
: (3)

In summary, there are two constraints at the storage
nodes. Each storage node can handle at mostMAXreq

client requests, and the number of outstanding refilling re-
quests must not exceedMAXref requests at any time.

3.2 Storage Node Queuing Delay

The process of retrieving an s-packet from a storage node
is made up of a number of activities. Round-trip delay is
composed of disk queuing time, disk service time and net-
work communication time.

Although a storage node serves many sessions simulta-
neously, disk access can be performed only for one session
at any given time. Refilling requests entering a storage node
when it is busy servicing another request will be queued up.

The time that a request must wait in the queue is equal to the
disk service time of all the requests arriving before it. Thus,
it is proportional to the number of the requests arriving ear-
lier and the total amount of data that those requests are ask-
ing for. As storage and retrieval strategies determine fre-
quency of refilling requests as well as the amount of data to
be retrieved, they directly affect the queuing delay. There-
fore, we chose storage node queuing delay to evaluate the
effect of our storage and retrieval strategies.

4 Parameters Affecting Performance

4.1 Storage Parameter

When the access pattern is uniform, the load on storage
nodes roughly balances itself out. For non-uniform access
patterns, the stripe factor helps balance the load on storage
nodes as it defines the distribution of objects in the system.

The effect of the stripe factor is more significant under
non-uniform access patterns. However, striping an object
across large number of disks also has a disadvantage in
terms of system reliability [2, 3].

4.2 Retrieval Parameters

The three retrieval parameters are dependent. As data are
consumed from the buffer at a constant rate, data in a larger
buffer will last longer. Hence, the frequency of requests to
storage nodes is less, which means that the refilling period is
longer. As a consequence, the upper bound forTrt is higher.
SinceTr is longer, according to equation 3, a storage node
can handle a greater number of sessions.

With the same stripe factor and buffer space, small batch
size yields longer cycle. According to equation 3, as long
as the number of outstanding refilling requests is less than
MAXref (from equation 1), a storage node supports more
client requests when batch size is small.

Even though a smaller batch size yields a greater effec-
tive bandwidth, it may cause higher queuing delay, espe-
cially when the load on a storage node is high. This is sim-
ply because the service time of each s-packet is higher, and
thus a refilling request will have to wait longer in the queue.

The load on interface nodes also varies according to the
retrieval parameters. With smallerPs (largerB), each in-
terface node sends out more refilling requests as well as re-
ceives more s-packets. This increases the load, and thus
increases the probability of missing deadlines.

4.3 Access Patterns

In a non-uniform access pattern, some objects are re-
quested more often than others. For a popular object, a
large number of requests will arrive at the group of disks

Proceedings of the 11th International Parallel Processing Symposium (IPPS '97)
1063-7133/97 $10.00 © 1997 IEEE

that the object is striped across. The increase in popularity
of an object basically means that there will be more refilling
requests arriving at the disks containing that object.

The interval between two client requests asking for an
object is shorter when its popularity is higher. This directly
affects the number of requests in the queues. When object
is highly popular, the effect of the queuing delay is more
pronounced. Moreover, the number of outstanding refilling
requests is higher and may exceed the limit (MAXref) de-
fined by equation 1.

5 Performance Evaluation

5.1 Experimental Model

storage node

object manager
node

interface node

x

y

Figure 3. Physical configuration

The server model was implemented on the Intel Paragon
parallel computer. A packet is routed from one node to
another by traversing in the x-direction and then the y-
direction. The experimental model consisted of 40 com-
puting nodes (Figure 3). They were configured as 1 object
manager node, 8 interface nodes and 31 storage nodes. The
object manager node was placed in the middle of the config-
uration. The interface nodes were scattered throughout the
system in a diagonal shape. The rest of the nodes were as-
signed as storage nodes. According to the routing scheme,
this configuration tended to provide reasonable load distri-
bution on the links. The same configuration was used in
every experiment.

5.2 Assumptions

In the experiments, we assumed that all the objects be-
longed to a single media type, video, with a constant band-
width requirement of 1.5 Mbits/s (MPEG-1). Every object
was assumed to have the same storage and retrieval param-
eters. Disk access operations were simulated. The disk seek
time and rotational latency were generated at run-time using
a random number generator. The disk transfer time varied

according to the s-packet size. Then, the total disk service
time was simulated by elapsing the system timer.

5.3 Experiments

The main objective is to study the effect of storage and
retrieval parameters under various access patterns. The
combinations of storage and retrieval parameters used in the
experiments are shown in Table 1.

Tab le 1. Storage and retrieval parameters
(x is the combination under which an experiment was conducted)

Set Storage Parameter:
No. Retrieval Parameters: S

b B, Ps 1 4 16 31

1 2MB 1, 1MB x x x x
2 2, 512KB x x x
3 4, 256KB x x x
4 1MB 1, 512KB x x x x
5 2, 256KB x x x
6 4, 128KB x x x

The values of the fixed parameters used in the experi-
ments are shown in Table 2.

Tab le 2. Fixed parameters

Description Value

Required playback rate (Rpl) 1.5 Mbits/s
Size of an interface node packet (Pi) 64 Kbytes
Maximum seek time (�seekmax

) 10 ms
Average seek time (�seekavg) 6.97 ms
Maximum rotational latency (�rotmax

) 15 ms
Disk data transfer rate (�tr) 10 Mbytes/s

Four access patterns were given to each set: one uniform
access pattern (pattern A) and three non-uniform access pat-
terns (patterns B, C and D). In pattern A, each object was
equally likely to be requested. 10, 50 and 60 percent of the
client requests in patterns B, C and D, respectively, were for
a single object. The load on the server model was varied by
increasing the number of sessions from 80 to the maximum
that the server could support.

The playback duration of a session varied between four
to five minutes, depending on its starting time.

The performance metrics are the number of concurrent
sessions supported by the server model and the average stor-
age node queuing delay.

5.4 Methodology for Predicting Stream Capacity

In every experiment, storage nodes that have a high pos-
sibility of becoming overloaded are those containing the

Proceedings of the 11th International Parallel Processing Symposium (IPPS '97)
1063-7133/97 $10.00 © 1997 IEEE

popular object. These nodes are referred to aspopular
nodes.

For non-uniform access patterns, both popular object re-
quests as well as regular object requests may request objects
residing at the popular nodes. The number of client requests
asking for objects residing at the popular node (Rpop) is de-
termined by

Rpop = reqpop +
S

s nodes
� reqreg

= pop � reqtot +
S

s nodes
� reqreg (4)

where,reqpop is the number of popular requests,
reqreg is the number of regular requests,
reqtot is the total number of clients’ requests, and
pop is percentage of popular requests.

Table 3 shows the number of client requests addressed to
popular node under access patterns B.

Tab le 3.Rpop under access pattern B

reqtot reqpop Requests to a Popular Node (Rpop)
S = 1 S = 4 S = 16 S = 31

80 8 10.32 17.29 45.16 80
320 32 41.29 69.16 180.65 320
560 56 72.26 121.03 316.13 560
800 80 103.23 172.90 451.61 800

1040 104 134.19 224.77 587.10 1040

The maximum numbers of s-packets that a storage node
can retrieve in a refilling period (MAXpkt) under various
Ps’s are shown in Table 4.

Tab le 4.MAXpkt in one refilling period

session Tr MAXpkt atPs (in KB)
buffer (ms) 128 256 512 1024

1 MB 2796.2 99.86 69.90 43.02 24.32
2 MB 5592.4 199.73 139.81 86.04 48.63

For the given storage and retrieval parameters, and ac-
cess pattern, the maximum number of sessions supported
by the server model can be estimated as follows:

1. Find the correspondingMAXpkt from Table 4.
2. Multiply MAXpkt with the cycle (C), which is deter-

mined from equation 2 to obtainMAXreq.
3. Find the closest match betweenMAXreq and the val-

ues in the access pattern table (Table 3 for pattern B) under
the corresponding stripe factor.

4. The total number of requests in the row where the
match is found is the estimated maximum number of ses-
sions that the system can support.

For example, under the configuration whereS = 4, b =
2 MB, B = 2, and access pattern B,Ps is 512 KB andC is
2. From Table 4,MAXpkt is 86.04.MAXreq is 172.08
(2*86.04) which is close to the value in the fourth column
of the fourth row in Table 3. Thus, the given configuration
should be able to handle about 800 concurrent sessions.

5.5 Experimental Results

Figure 4 shows the maximum number of concurrent ses-
sions that the experimental model supported under various
storage/retrieval parameters and selected access patterns.

Configurations with either smaller batch sizes or larger
stripe factors generally support more concurrent sessions.
However, there is an exception under access pattern D
where session buffer is 2MB and stripe factors are 16 and
31. Configurations with batch size of 1 handle fewer ses-
sions compared to those with batch sizes of 2 and 4. This is
the effect of access pattern that the number of outstanding
refilling requests exceeds the limit when batch size is small
and popularity of the object is high.

Situations where batch size or stripe factor does not sig-
nificantly effect the number of concurrent sessions sup-
ported occur when the access patterns are originally uni-
form or made uniform by using high stripe factors. The
maximum number of concurrent sessions supported are
960-1040 sessions, independent of batch sizes and stripe
factors. In addition, these values are lower than the esti-
mated values. This means that the storage nodes did not
reach their limits. One reason could be that the interface
nodes could be overloaded. Another reason is that, we have
not considered the performance limitations imposed by traf-
fic load on the interconnection network and the overhead of
scheduling at the interface nodes.

When other parameters are the same, configurations with
larger session buffers generally support more concurrent
sessions under every access pattern.

With the same storage and retrieval parameters, the
model supports more sessions when access pattern is more
uniform. The result is significant when stripe factor is 4.

When storage and retrieval strategies are not applied, i.e.,
when stripe factor is 1 or when batch size is equal to stripe
factor, the model supports fewer concurrent sessions. This
is more noticeable when the access pattern is less uniform.

For a session buffer of 2MB, the average storage node
queuing delay per s-packet under various retrieval/storage
parameters and selected access patterns is shown in Fig-
ure 5.

Under every access pattern, the average storage node
queuing delay increases as the number of playback sessions
increases. It is interesting that under non-uniform access
patterns while the number of sessions is increasing, at some
points (referred to asknee points), the delay suddenly jumps

Proceedings of the 11th International Parallel Processing Symposium (IPPS '97)
1063-7133/97 $10.00 © 1997 IEEE

batch 1 batch 2 batch 4
batch size

0

80

160

240

320

400

480

560

640

720

800

880

960

1040

Nu
m

be
r o

f S
es

sio
ns

Access Pattern A
session buffer 1 MB and 2 MB

stripe 1, 1MB
stripe 4, 1MB
stripe 16, 1MB
stripe 31, 1MB
stripe 1, 2MB
stripe 4, 2MB
stripe 16, 2MB
stripe 31, 2MB

batch 1 batch 2 batch 4
batch size

0

80

160

240

320

400

480

560

640

720

800

880

960

1040

Nu
m

be
r o

f S
es

sio
ns

Access Pattern B
session buffer 1 MB and 2 MB

batch 1 batch 2 batch 4
batch size

0

80

160

240

320

400

480

560

640

720

800

880

960

1040

Nu
m

be
r o

f S
es

sio
ns

Access Pattern D
session buffer 1 MB and 2 MB

Figure 4. Maximum number of concurrent

sessions supported by the server model

to a very high value. This is because the number of sessions
currently supported by a storage node is reaching the max-
imum allowable value. Under the same access pattern, be-
fore theknee points, the average storage node queuing delay
is almost the same for all the combinations of storage and
retrieval parameters.

Under different access patterns where other parameters
remain the same,knee pointsoccur at a lower number of
sessions when the access pattern is less uniform. This is
because less uniform access patterns put more refilling re-
quests in the queues at popular nodes , and thus the average
waiting time is higher.

The effect of the stripe factor is prominent under non-
uniform access patterns. With the same batch size and ac-
cess pattern, configurations with larger stripe factors gener-
ally yield lower queuing delay under the same total number
of sessions. In addition, under the same non-uniform access
patterns,knee pointsoccur at a lower number of sessions for
the configurations with smaller stripe factors. This is be-
cause objects are not distributed enough when stripe factors
are small. Configurations with larger stripe factors tolerate
higher skewed (less uniform) access pattern.

With any given stripe factor, configurations with smaller
batch sizes yield lower queuing delay under access patterns
A and B. For the other patterns, whenS is equal to 16 and
31, the queuing delay whenB = 1 is higher than whenB = 2
and 4. This clearly shows the effect of access pattern. The
effect is more noticeable whenB is 1 because at this value of
B, Ps is large; therefore, the service time for each s-packet
is long. As a consequence, s-packets spend a longer time
waiting in the queue.

Under the same batch size and access pattern, the aver-
age storage node queuing delay for configurations with ses-
sion buffer of 1MB is generally lower than that of configu-
rations with session buffer of 2MB. This happens because
with the same batch size,Ps is higher when session buffer
is larger. Therefore, the disk service time for one s-packet
is longer, resulting in a longer queuing delay. With session
buffer of 1MB, the delay changes similarly to that of con-
figurations with buffer of 2MB.

6 Conclusions and Future Work

The experimental results show that with the proposed
storage and retrieval strategies, the system handles a large
number of concurrent sessions under all access patterns.
The configurations with high stripe factor and low batch
size supported the highest number of sessions over a wide
range of other parameter values. Various combinations of
retrieval parameters can be set; the combinations with either
higher buffer sizes or smaller batch sizes (larger s-packet
sizes) generally yield lower storage node queuing delay and
support more concurrent sessions.

Proceedings of the 11th International Parallel Processing Symposium (IPPS '97)
1063-7133/97 $10.00 © 1997 IEEE

0 80 160 240 320 400 480 560 640 720 800 880 960
Number of Sessions

0

500

1000

1500

2000

Ti
m

e
(m

s)

Access Pattern A
batch size 1 and 4, session buffer 2MB

stripe 1, batch 1
stripe 4, batch 1
stripe 16, batch 1
stripe 31, batch 1
stripe 4, batch 4
stripe 16, batch 4
stripe 31, batch 4

0 80 160 240 320 400 480 560 640 720 800 880 960
Number of Sessions

0

500

1000

1500

2000

Ti
m

e
(m

s)

Access Pattern B
batch size 1 and 4, session buffer 2MB

0 80 160 240 320 400 480 560 640 720 800 880 960
Number of Sessions

0

500

1000

1500

2000

Ti
m

e
(m

s)

Access Pattern D
batch size 1 and 4, session buffer 2MB

Figure 5.Avera ge stora ge node queuing delay

per s-packet

The access pattern also affects the storage node queu-
ing delay and the maximum number of concurrent sessions
supported. When the pattern is more skewed, the system in-
curs higher queuing delay and handles fewer sessions. This
effect is significant when the stripe factor is small.

We developed a methodology to predict the maximum
number of concurrent streams that the server model can sup-
port. In many cases, the observed stream capacity is less
than the predicted stream capacity. One of the reasons for
this discrepancy is that in the derivation of the aggregate
server stream capacity, we did not consider the dynamic
load on the interconnection network of the distributed mem-
ory computer. This issue was addressed in [6], and we in-
tend to combine the algorithms developed therein with the
lessons learned from this paper to develop a more accurate
server stream capacity prediction methodology.

References

[1] S. Berson, S. Ghandeharizadeh, R. Muntz, and X. Ju. Stag-
gered striping in multimedia information systems. InPro-
ceedings of the 1994 ACM SIGMOD International Confer-
ence on Management, volume 23, June 1994.

[2] S. Berson, L. Golubchik, and R. R. Muntz. Fault tolerant
design of multimedia servers.Proceedings of the ACM 1995
Intl. Conference on the Management of Data, pages 364–
375, May 1995.

[3] A. Dan, M. Kienzle, and D. Sitaram. A dynamic policy of
segment replication for load balancing in video-on-demand
servers. ACM Multimedia Systems Journal, 3(3):93–103,
1995.

[4] C. S. Freedman and D. J. DeWitt. The spiffi scalable video-
on-demand system.Proceedings of the ACM 1995 Intl. Con-
ference on the Management of Data, pages 352–363, May
1995.

[5] S. Ghandeharizadeh and L. Ramos. Continuous retrieval of
multimedia data using parallelism.IEEE Trans. on Knowl-
edge and Data Engineering, 5(4), August 1993.

[6] D. Jadav, A. Choudhary, and P. B. Berra. Techniques for
increasing the stream capacity of a multimedia server. In
Proc. of Multimedia Storage and Archiving Systems : SPIE’s
Intl. Symposium on Voice, Video and Data Communications,
Boston, November 1996.

[7] D. Jadav, A. Choudhary, P. B. Berra, and C. Srinilta. An
evaluation of design tradeoffs in a high performance media-
on-demand server.ACM Multimedia Systems Journal, Jan-
uary 1997.

[8] P. V. Rangan and H. M. Vin. Efficient storage techniques for
digital continuous media.IEEE Trans. on Knowledge and
Data Engineering, 5(6), August 1993.

[9] A. L. N. Reddy and J. Wyllie. Disk-scheduling in a multime-
dia i/o system.Proceedings of the 1st ACM Intl. Conference
on Multimedia, August 1993.

[10] A. L. N. Reddy and J. Wyllie. I/o issues in a multimedia
system.IEEE Computer, March 1994.

[11] M. Stonebraker. The case for shared nothing.Database
Engineering, 9(1), 1986.

Proceedings of the 11th International Parallel Processing Symposium (IPPS '97)
1063-7133/97 $10.00 © 1997 IEEE

