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Abstract—As the number of compute cores on modern parallel
machines increases to more than hundreds of thousands, scalable
and consistent I/O performance is becoming hard to obtain
due to fluctuating file system performance. This fluctuation is
often caused by rebuilding RAID disk from hardware failures
or concurrent jobs competing for I/O. We present a mechanism
that stripes across a dynamically-selected subset of I/O servers
with the lightest workload to achieve the best I/O bandwidth
available from the system. We implement this mechanism into
an I/O software layer that enables memory-to-file data layout
transformation and allows transparent file partitioning. File
partitioning is a technique that divides data among a set of files
and manages file access, making data appear as a single file to
users. Experimental results on NERSC’s Hopper indicate that
our approach effectively isolates I/O variation on shared systems
and improves overall I/O performance significantly.
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I. INTRODUCTION

Scientists and engineers are increasingly using highly par-
allel machines in order to run their large, often data-intensive
applications, such as thermonuclear reactions, combustion,
climate modeling, and so on [10], [28], [29], [30]. Scalable
parallel I/O libraries are one of the key components to scaling
those applications [6], [18]. The I/O requirements of such
applications can be staggering, ranging from terabytes to
petabytes, and managing such massive data sets presents a
significant bottleneck [8], [19].

There are many approaches proposed to coordinate I/O
requests from multiple processes, and collective I/O in MPI-
IO [27] has been widely used to allow collaboration among
participating processes and rearrange their I/O requests to
achieve high performance. There have been many optimiza-
tions to improve collective I/O performance [7], [33], [15],
[31], [22], [26], [23], [21], but even with these improvements,
collective I/O operations in large-scale are facing new chal-
lenges on modern parallel machines. As the size of parallel
machines grows, various access contentions can significantly
degrade the I/O performance, such as communication network
contention because of the high ratio of application processes
to file servers, and file locking contention among processes in
a single job because of the shared-file access.

Furthermore, despite the use of state-of-the-art techniques
described above, significant challenges still exist in achieving
scalable yet consistent I/O performance. The file servers often
exhibit unbalanced I/O load from various applications shar-
ing the storage resources, resulting in fluctuating file system
performance [5], [24], [34]. In petascale systems at scale, the
amount of I/O throughput available to any particular job can
fluctuate to a large extent based on the behaviors of other

running jobs accessing the shared file system. Another source
for this kind of fluctuation is a RAID rebuild from a hardware
failure. Since the performance of collective I/O is determined
by the slowest participating process, it is important to ensure
no process remarkably lags behind.

The study presented in this paper supports the view of
conventional collective I/O, yet provides more scalable I/O per-
formance in the presence of fluctuating file server performance.
We make the following main contributions:

• We demonstrate that I/O performance could suffer
from fluctuating file system behavior because of con-
tention on shared I/O resources.

• We propose a dynamic bandwidth monitoring to probe
the file servers and isolate the impact of accessing
slower I/O servers by excluding them from being used
for file striping.

• We propose a transparent file partitioning and data
layout transformation mechanism that divides the data
into a set of files, each of which is mapped and stored
onto a single I/O node.

We have implemented the proposed scheme into a high-
level I/O library, parallel netCDF [20], as a prototype. Our
experimental evaluations on NERSC’s Hopper [3] using sev-
eral benchmarks running up to 8,192 processes have shown
significant I/O performance improvements. We show that our
approach effectively isolates the impact of accessing slower
I/O nodes and reduces write I/O time significantly with less
variation. Since the partition is done at high-level I/O library
layer (PnetCDF), each file partition is also a self-describing
file. Maintaining portable data representation is important be-
cause it provides seamless access to data structures, and layouts
across all I/O software layers. Also, the richer information
available at high-level I/O library made much flexible partition-
ing like per-array partitioning or use of different dimension for
partitioning. Our evaluations with real I/O applications demon-
strate that our transparent file partitioning brings significant
I/O performance improvement in both write and read while
maintaining comparative number of partitioned files. We also
show that our one-to-one mapping between file partitions and
I/O nodes could maximize the benefit of prefetching, thereby
increasing read performance significantly.

The remainder of this paper is organized as follows. The
next section extends the discussion on our motivation. The
design of our approach and our enhancement to PnetCDF to
implement our idea are described in Section III. Section IV
presents our experimental evaluation results. We discuss re-
lated work in Section V. Finally, Section VI summarizes the
paper and discusses future work.
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Fig. 1: The write I/O time distribution among all I/O servers
(nodes) while the amount of bytes written to each I/O node
remain the same.

II. BACKGROUND

Collective I/O is an optimization in many MPI-IO imple-
mentations that improves the I/O performance to shared files.
In ROMIO, an implementation of MPI I/O functions adopted
by many MPI implementations, the choice of aggregators
depends on the file systems. For most file systems, one MPI
process per compute node is picked to serve as an aggregator.
In the systems containing multi-core CPUs in each node,
this strategy avoids the intra-node resource contention that
could be caused by two or more processors making I/O calls
concurrently. For the Lustre file system, the current implemen-
tation of ROMIO picks the number of aggregators equal to
the file striping count (or striping_factor). This design
produces an one-to-one mapping between the aggregators and
the file servers in order to eliminate the possible lock conflicts
on the servers [21], [35]. The striping count of a file is the
number of I/O servers, or Object Storage Targets (OSTs) for
Lustre, where a file is stored. Like all parallel file systems,
files are striped into fixed-length blocks, and they are stored
in the OSTs in a round-robin fashion.

While collective I/O often offers huge improvements for
I/O performance on shared files, recent studies revealed that it
continues to face significant challenges at scale [36], [24], [34],
[5] for several reasons. First, as demonstrated by several prior
studies, global synchronization cost and lock contention among
aggregators accessing the shared file within the assigned file
domain during collective I/O operations pose a limit to the I/O
performance. Similar observations have been made in recent
studies [36], [21], but the problem will only exacerbate as the
number of processes increases to thousands and more. More
importantly (especially in accessing shared storage systems),
there are higher levels of variability in I/O performance in
petascale machines. This variability is hard to avoid because
of the different ways applications access “shared” file systems.
For example, multiple applications running simultaneously on
the petascale machine use the file system at the same time.
Another example of such a case occurs when analysis code
is trying to read the data stored in the shared storage while
simulation code is writing their output data. This I/O variability
is a big barrier to achieve scalable collective I/O operations
because I/O performance is tied to the slowest storage nodes.
In other words, even if most storage nodes perform relatively
fast, the overall collective I/O time is determined by the slowest
nodes.

To quantify our hypothesis, we wrote a small program
where each process opens a file striped on a single I/O node
and writes 1GB of data on it. We have collected the write I/O
time observed at each I/O server. Details of our experimental
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Fig. 2: Distribution of write bandwidth observed for all 156
OSTs when 16MB of dummy data is written to each OST, and
the maximum achievable aggregate bandwidth. Each OST’s
measured bandwidth is sorted in descending order.

setup is given in Section IV. Figure 1 shows that, although
the amounts of bytes written to each I/O node are equal, a
couple of I/O nodes exhibit an excessively high write I/O time
relative to others. The slowest I/O node is in fact almost 9x
slower than most other I/O nodes. Such an imbalance is a
significant barrier to achieve scalable I/O performance if a file
is simply striped across over any of those slower I/O nodes.

III. DESIGN OF FILE PARTITIONING LAYER AT PNETCDF
A. Runtime Storage Nodes Selection

Our mechanism to isolate the impact of accessing imbal-
anced I/O nodes is to use a runtime bandwidth probing to
identify each I/O server’s load before the file striping layout is
determined. The goal of this step is twofold. First, we would
like to monitor each OST’s current bandwidth availability.
Because the I/O pattern in HPC systems is typically bursty,
we probe each I/O server’s bandwidth by writing a small
dummy dataset just before writing actual file. Second, once
the behaviors are identified, we would like to select the list of
OSTs that can be used for storing each partitioned file.

We consider two criteria when designing our runtime prob-
ing module. First, the impact of probing should be minimized
as it will not be part of the actual I/O. Second, the sampled
bandwidth should reflect the temporal behavior of each I/O
node. Combining these two, we determine each I/O node’s
bandwidth by writing 1% of dummy data out of the total data
I/O requests to each I/O server. We use POSIX I/O with the
O DIRECT flag because our probing module writes relatively
small files, so they could sit on clients’ buffer cache unless
we explicitly bypass them. We also have to make sure the
sampling data size we use is large enough to fill the RPC
buffer size; otherwise the data will sit on the client and will
not be transferred to the I/O server.

The bar graphs in Figure 2 show the distribution of
measured write bandwidth across all 156 I/O nodes (OSTs)
available on NERSC’s Hopper, sorted in descending order.
These bars indicate that certain OSTs exhibit relatively slower
bandwidth than the others. We again attribute this to an
inherent imbalance when accessing shared storage, as exten-
sively discussed in recent studies [24], [34], [5]. Given these
observed I/O bandwidths, we use the following algorithm to
select the I/O nodes for file striping. Assuming Bi to be
the sorted bandwidth observed for each I/O server, i, we
denote the aggregate I/O bandwidth, Bi, using i OSTs by
Bi = i × Bi, where 1 ≤ i ≤ 156. The linepoints in
Figure 2 show the estimated maximum achievable aggregate
I/O bandwidth based on this formula. As we can see, the
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Fig. 3: Overview of our file partitioning mechanism. In our
approach, each array is internally divided into K file partitions,
each of which is stored in a single I/O node, that is, there is
“1-to-1 mapping” between each partition and I/O node. All
files (both master and partitioned files) are in self-describing
file format.

aggregate bandwidth gradually increases as more I/O nodes
are added, but eventually saturates and then declines because
the aggregate bandwidth is confined to the slowest node. To
select the maximum number of I/O nodes that provide us the
best achievable bandwidth, we calculate the derivative of Bi,
which represents the slope of Bi at each value of i. Since our
goal here is to maximize the number of I/O nodes, we select
i when B′i is negative and is less than a certain threshold,
δ. The threshold value is basically meant for capturing the
degree of slowness in the aggregate bandwidth when a certain
probed bandwidth is added. In our implementation, we used
the δ value of -15%. Using the results shown in Figure 2, our
algorithm excludes 12 OSTs with less than 50MB/s for striping
partitioned files. The aggregate bandwidth was estimated to
peak when the first 128 OSTs were added, but the significant
bandwidth drop occurs when 145th OST is added. We note that
if all probed bandwidth values are similar to each other, our
algorithm will end up selecting most of the available OSTs.

We note that the probing happens only once at the file
create time, once for each new file creation. The overhead
of probing is less than 1% of the total I/O time. This cost
is included in the timings reported in this paper. We also
note that there exist chances where two jobs running probing
simultaneously. We however speculate that such chances are
slim because probing happens only once, at creating a file. If
two probes did occur concurrently, the bandwidths obtained
should be halved. However, this also means two jobs are most
likely competing for the file system. Hence, lower I/O perfor-
mances are expected for both jobs. An ideal solution should
be at system-level to monitor individual server workload, but
ours is a user-level solution that makes best use of available
information to try produce maximum achievable performance.

B. Mapping Arrays to File Partitions
When the subset of OSTs that are more efficient than

others has been isolated, the ideal solution would be to
stripe files across those OSTs. However, on Lustre, users
have no way to stripe files across a set of specific OSTs.
This leads to our partitioning solution where each partitioned

file is stored on only one OST (i.e., stripe count of 1).
Lustre does allow users to select the starting OST for a file.
Figure 3 gives an overview of our file partitioning scheme.
The basic concept of our scheme is that, from an application’s
perspective, partitioning is transparent; that is, all processes
open and access a single file throughout program execution.
Then, our partitioning mechanism internally splits application
processes into set of subprocesses, each of which creates its
own file partition collectively. The file partition created by each
subprocess group is accessed solely by that group.

We perform partitioning when array definition is finished
and the data in memory is ready for write/read. We choose this
time because each array’s shape (number of dimensions, length
of each dimension, and datatype of each element) is finalized
at this point. The header information is also written at the end
of file partition. In order to convey the users’ intention of their
file partitioning policy, we use the MPI hint mechanism.

The default partitioning policy is along the most significant
dimension. For example, an array of Z-Y -X dimension, each
with the same length will be partitioned along the dimension Z.
There are however certain applications that prevent applying
the default policy. For instance, in the S3D I/O application,
the dataset called u is a 4D array with the most significant
dimension has length 3. Such a small dimension length limits
the number of file partitions, preventing the application from
exploiting potential benefits of partitioning in larger partition
counts. In this case, we partition the arrays along the second
most significant dimension.

The details of the file creation are as follows. It first obtains
users’ intention of partitioning through MPI_Info_get().
We store acquired information as a metadata in both master
and the partitioned file’s header information. If no hints were
provided regarding file partitions, the normal procedure will be
executed; it creates a single file without partitions. Otherwise,
it splits the communicator because each process is divided
into a subprocess group. The split processes then collectively
create their own file partition using a dataset function provided
in the high-level I/O library, for instance, ncmpi_create
in PnetCDF. After creating a partitioned file, our algorithm
traverses each defined array in the original definition and
determines which dimension ID it needs to use for partitioning.
It calculates a new dimension length for each partition. Note
that only the partitioning dimension will be affected; all the
remaining dimensions will have the same length as the original.
Once a new dimension length is determined, we define a new
dimension for the partitioned file and create an array with the
new dimension lists. If the array is partitioned, we update the
original array definition in the master file with a scalar value.
In other words, the master file does not have a physical space
allocated for the partitioned array as the actual data will be
stored in the partitioned files. We repeat these procedures until
all arrays in the original file are processed.

Figure 4 shows a typical example of PnetCDF code that
includes the sequence of dimension and array (variable) defi-
nition followed by the code to write data on it. In PnetCDF,
all processes in the communicator must make an explicit call
(ncmpi_enddef) at the end of the define mode in order
to verify that the values passed in by all processes match.
From our design viewpoint, this is the time when all shapes of
arrays are known, therefore, our array partitioning is internally



MPI_Info_set (info, "nc_partitioning_enabled", "true");
ncmpi_create(comm, ..., info, &ncid);
...
/* dimension definition */
ncmpi_def_dim(ncid, "z", 100L, &cube_dim[0]);
ncmpi_def_dim(ncid, "y", 100L, &cube_dim[1]);
ncmpi_def_dim(ncid, "x", 100L, &cube_dim[2]);
...
/* variable (array) definition */
ncmpi_def_var(ncid, "cube", NC_INT, 3, cube_dim, &cube_id);
...
ncmpi_enddef();
...
/* perform I/O */
ncmpi_put_vara_all(ncid, cube_id, start[], count[], buf,

bufcount, MPI_INT);
...

Fig. 4: A PnetCDF example code that creates a file with
partitioning enabled set to true. The number of file partitions
is determined through the profiling mechanism explained in
Section III-A. This example creates a variable named “cube” of
Z-Y -X dimension, each with 100 length. From an application
writer’s viewpoint, it only requires adding a hint to specify the
intention of partitioning to store a variable.

netcdf test {
dimensions:
z = 100;
y = 100;
x = 100;

variables:
double cube (z, y, x);

// global attributes:
data:
cube = ...... ;

}

netcdf test {
dimensions:
z = 100;
y = 100;
x = 100;

variables:
double cube;
cube: num_partitions = 2;
cube: ndims_org = 3;

// global attributes:
:partition 0: "test.0";
:partition 1: "test.1";

data:
cube = 0;

}

(a) (b)
netcdf test.0 {
dimensions:
z.cube = 50;
y.cube = 100;
x.cube = 100;

variables:
double cube(z.cube,

y.cube,
x.cube);

cube: range(z) = 0,49;
// global attributes:

:partition_index = 0;
data:

cube = ...... ;
}

netcdf test.1 {
dimensions:
z.cube = 50;
y.cube = 100;
x.cube = 100;

variables:
double cube(z.cube,

y.cube,
x.cube);

cube: range(z) = 50,99;
// global attributes:
:partition_index = 1;

data:
cube = ...... ;

}

(c) (d)

Fig. 5: NetCDF file header information by ncmpidump when
the file is divided into 2. (a) Original NetCDF file (i.e., non-
partitioned case). (b) The master NetCDF file after partition.
Note that the data section is 0, meaning empty. (c) First
partitioned NetCDF file. (d) Second partitioned NetCDF file.

executed at the end of this call.
The NetCDF header information for this example of par-

titioning case is given in Figure 5. Note that, after partition-
ing, both master and partitioned files have more additional
attributes than the original file. For instance, the master file
(Figure 5(b)) has global attributes that indicate the file name
for each partitioned file, the number of partitions, and the
original dimension size for a variable, “cube”. The partitioned
file header, on the other hand, has attributes for describing the
range of partitioned dimension as well as the partition index.

…… Application 

processes!

…… 

Partition1 Partition2 PartitionK 

Processes for 

partitioned files!
"!"! "!

…… 

Fig. 6: Any I/O requests from applications belonging to a
file partition owned by other processes need to communi-
cate among processes before going to I/O servers. The data
exchange between application and partitioned file processes
can be all-to-all personalized. The local-to-global partitioning
information is kept in each file’s metadata.

C. Memory-to-File Layout Transformation
Once a file is partitioned, we need to provide a transparent

way to access those partitioned files. Note that, from an
application’s viewpoint, all I/O accesses still go through the
master file as it has sufficient information about how each array
is partitioned in each file. In other words, there is no change in
user’s I/O routines. We also note that reading datasets already
stored in partitioned files can be performed transparently using
the same metadata retrieval process.

Figure 6 shows an overview of the memory-to-file layout
transformation mechanism. The transformation mechanism to
partitioned files is mainly composed of two steps: i) calculating
each process’s requests to partitioned files and exchanging it
among all processes; ii) exchanging requests among processes
in each split communicator and issues I/O requests using I/O
calls (either synchronous or asynchronous ones). We note that,
since our partitioning is done at the higher-level I/O library
layer, all user’s array partitioning is represented as start, count,
and stride offset list for each dimension.

In the first step, each process calculates the list of start
and count offsets to each file partition, dividing the data in
memory among the processes who own the partitions. This
is done by (logically) dividing the start and count offset,
denoted as my req[], into file partitions, each of which can be
directly accessed by the processes within a sub-communicator.
In our implementation, we do not restrict the number of
such delegate processes in each subprocess groups. In fact,
any process can be a delegate so that we do not make load
imbalance at an application layer by selecting limited number
of delegates because non-delegate processes do not read/write
files directly. This phase requires one MPI_Allreduce()
among all processes.

The second step is based on everyone’s my req, and
calculates what requests of other processes lie in this process’s
file partitions. others req[i].{start,count} indicates how many
noncontiguous requests of process i accessing this process’s
file partition. All these incur an MPI_Alltoall and many
isend/irecv/wait all. This step ensures delegates collect the
request information from all other processes.

Then each process sends requests to the appropriate remote
delegate. Only delegates may have multiple I/O requests. Non-
delegate processes will not participate in this loop, but will call
to the data exchange routine if they have certain requests to
delegates. Delegate processes iterate until they receive requests



from all other processes, and issue a non-blocking I/O. Each
iteration goes through all others req[*] and continues until all
requests are processed. We ensure they are all processed by
calling wait all() at the I/O library layer.

We illustrate how I/O requests to the partitioned files are
processed using the example code in Figure 4. Let us assume
there are 4 processes to access this array and the number of
file partitions is 2. Each I/O request is composed mainly of
start offset, count and stride for each dimension. Since our
example dataset is 3 dimensional, we have start[3], count[3],
and stride[3]. For illustrative purposes, let us assume that
stride count is 1, meaning all array elements are accessed
contiguously. Given this, one partition (50 by 100 by 100)
is owned by P0 and P1 whereas the other partition (50 by
100 by 100) is owned by P2 and P3. Assuming a block-
block access pattern and user’s file partition, we calculate
each process’s request to each file partition. For instance, P0’s
original request, denoted as start{0,0,0} and count{100,50,50},
is now divided into two portions: a portion belonging to its own
file partition (denoted as start{0,0,0} and count{50,50,50}) and
the other (denoted as start{50,0,0} and count{50,50,50}) to be
sent to the remote process that owns that file partition. Once
all this information is obtained, all processes now exchange
information (using alltoall) in order to figure out which process
has a portion of the data not belonging to its own partition.
Afterwards, all processes know which sub-I/Os they need
to handle by themselves. The code then communicates the
corresponding buffers and issues all those received I/O requests
using PnetCDF’s nonblocking I/O calls. The I/O to partitioned
files returns when all the issued nonblocking I/O calls are
completed.

IV. EXPERIMENTAL EVALUATIONS

All our experiments are performed on the Cray XE6
machine, Hopper, at NERSC. Hopper has a peak performance
of 1.28 Petaflops/sec, 153,216 processors cores for running
scientific applications, 212 TB of memory, and 2 Petabytes
of online disk storage. The Hopper system has two locally
attached high-performance scratch disk spaces, /scratch
and /scratch2, each of 1 PB capacity. They both have the
same configuration: 26 OSSs (Object Storage Servers), each
of which hosts 6 OSTs (Object Storage Target), making a total
of 156 OSTs. The parallel file system deployed in Hopper is
Lustre [2] mounted as both scratch disk spaces. When a file
is created in /scratch, it is striped across two OSTs by default.
Lustre provides users with a tunable striping configuration for
a directory and files; both directory and files have the same
striping configuration. In our experiment, we use all available
OSTs for striping and 1 MB as default stripe sizes.

We implemented our proposed approach into the parallel
netCDF 1.3.1. Our feature added approximately 1,500 lines of
new code to PnetCDF. Our implementation is configured to
link with Cray’s xt-mpich2 version 5.6.0. We used a separate
ROMIO module described in [21] as a standalone library,
which is then linked with the native MPI library. Our previous
experience indicates this optimized ROMIO is about 30%
faster than the system’s default one. In other words, our
base collective I/O performance is already optimized for our
evaluation platform. All applications including benchmarks
and our modified PnetCDF are compiled using PGI compiler
version 12.9.0 with the “-fast” compilation flag.
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Fig. 7: Balanced write I/O time observed when only subset of
I/O nodes that were detected through our dynamic bandwidth
probing.
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We evaluate our file partitioning scheme against the base
scheme, where all arrays are stored in a normal file (non-
partitioned) striped across all available OSTs. Because users
have no way to stripe files across a set of specific OSTs on
Lustre, we cannot provide the case of non-partitioned files with
selected OST in the experiments. To show the effectiveness
of our dynamic bandwidth probing, we ran two schemes of
our partitioning cases: striped over all OSTs and striped over
selected OSTs. While there are several other techniques whose
goals are similar to ours like PLFS [4] and ADIOS [25],
we do not compare our approach against them because fair
comparison is hard to make; they do not preserve canonical
order of the original dataset whereas all partitioned files in our
approach are stored in portable NetCDF format. Furthermore,
both PLFS and ADIOS lack the ability to map the file partition
and underlying I/O nodes selectively.

Our evaluation is conducted using up to 8,192 processes
because our solution is designed to deal with I/O systems with
fluctuating performance due to multiple jobs competing for
shared I/O resource. If we ran bigger jobs that use most of the
available compute nodes, the opportunity of seeing such I/O
competition shall decrease. For large-scale runs, we anticipate
all available OSTs be selected to serve the I/O.

A. Collective I/O Performance Benchmark
Before presenting our evaluation with the collective I/O

performance benchmark, we first show how our approach
effectively isolates slower I/O nodes. In order to do this, we
wrote a small test case that writes 1GB of data to an individual
I/O node selected by our dynamic probing module. Figure 7
shows the write I/O time, collected using the TAU profiling
tool [32], observed at each I/O node that was selected by our
sampling module. In this example, 134 out of 156 OSTs were
selected for writing. As compared with Figure 1, it clearly
demonstrates more balanced write I/O time across all selected
OSTs.

To understand the performance of our approach against the
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Fig. 10: Read throughput results for coll perf.

base case, we ran a collective I/O test program, coll perf,
originally from ROMIO test suite, that writes and reads the
three-dimensional arrays, all in a block-partitioned manner. We
made it write/read four 3D variables. The data partitioning is
done by assigning a number of processes to each Cartesian
dimension. In our experiments, we set the subarray size in each
process to 128×128×128 of 4-byte integers, corresponding to
8MB. All data is written to a single file for the base case
(non-partition). For our partitioning case, all four variables are
partitioned along the most significant dimension.

Figure 8 shows the write throughput of coll perf with and
without our file partitioning schemes. The results indicate that
writing data into a single file does not scale with larger number
of processes; the write throughput actually went up and down
when the number of processes are increased. On the other
hand, our partitioning schemes improve the write throughput
significantly by 12%–94% when used with all 156 OSTs and
36%–137% when used with selected OSTs, respectively.

To understand the performance improvement obtained by
our approach, we have collected the performance breakdown
of coll perf during collective I/O using the TAU profiling
tool [32]. Figure 9 shows that the time spent in POSIX write()
time by each aggregator process gradually increases as the
number of processes increase. This is because the amount
of data written increases with larger number of processes.
An important observation we made here is that writing to
partitioned files using either all OSTs or selected OSTs reduces
the write I/O time significantly, about 70% on average. This
indicates that writing to partitioned files clearly lessens the
contention on the file server. Another important insight from
this graph is the high variations on the write I/O time when
all OSTs are used, and the variations increased with larger
process counts. The partitioned files with selected OSTs show
low deviation from average mainly because relatively slower
OSTs were eliminated before the time of writing.

In our next experiments, we would like to understand

how the read from partitioned files behaves. To do this, we
perform the same weak scalability tests on the read case,
each case collectively reads the entire files in a block-block
partitioned manner. Since partitioning on selected OSTs does
not have fixed the number of OSTs per run, we evaluate only
reading from all OSTs for a fair comparison. To ensure data
is read from the storage nodes, all caches are flushed before
each run. Figure 10 shows that the non-partitioned file case
is not scalable while our partitioning scheme shows much
higher performance improvement than the write case. Also,
the observed read throughput is about 30% lower than that
of the write throughput. Our TAU profiling result indicates a
notable increase in read I/O time; reading from the normal
(i.e., non-partitioned) is about 6x slower than reading from
partitioned files. We attribute this to the pretty aggressive
readahead mechanism used in Lustre file system. In the case
of reading from non-partitioned files on all OSTs and given
the default stripe size of 1MB, the majority of prefetched data
by an aggregator is irrelevant parts of the data, thus slowing
down the overall performance. In our partitioned file case, the
readahead mechanism is entirely reading from a single OST,
so the benefit of readahead is maximized.

Our partitioning approach introduces additional commu-
nication during memory-to-file layout transformation time:
MPI_Isend, MPI_Irecv(), MPI_Alltoall(), and
MPI_wait(). In order to quantify this overhead, we have
measured time spent on those additional communication costs
using TAU. The results indicate that the coordination overhead
incurred by the additional communication is negligible; the
extra communication overhead accounts for less than 1% of
the collective I/O operations. The time spent on the all-to-all
communication is small because, during that phase, we only
exchange each process’s requests to each file partition. The
buffer exchange phase also does not incur much overhead be-
cause only participating process pairs exchange small amount
of buffer. Since our algorithm selects the delegation process
in other subprocess groups in a balanced manner, the pairwise
communication is also mostly balanced.

B. FLASH I/O Benchmark
The FLASH I/O benchmark [38], [19] is the I/O kernel

of a block-structured adaptive mesh hydrodynamics code that
solves the compressible Euler equations on a block struc-
tured adaptive mesh and incorporates the necessary physics
to describe the environment, including the equation of state,
reaction network, and diffusion [10]. We use a FLASH I/O
format where all mesh variables (including density, pressure
and temperature) are written to the same dataset (variable) in
the output file. Both checkpointing and plot files are written
in this file format. In case of checkpoint files, among 24
variables defined in FLASH, only 10 variables correspond to
those mesh variables, each of which is a four-dimensional (4D)
array of double-precision typed data. All unknown variables
are defined as a 5D array, the first dimension being the number
of unknown variables. Since this dimension length is only 10,
we partition these unknown variables along the second most
significant dimension. We partition only unknown variables in
our approach; All other variables are stored in the master file
without partitioning. The plot files have three mesh variables
and we again applied partitioning for the unknown variables.

Figure 11 shows the I/O bandwidth of FLASH for the
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Fig. 11: FLASH I/O write throughput.
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Fig. 12: S3D I/O write throughput.

non-partitioned case and our two approaches. Using a non-
partitioned file did not scale well even with increased process
counts. The maximum I/O bandwidth observed with 8,192
processes is about 8 GB/s. This is significantly below the
maximum I/O bandwidth on Hopper. The partitioned files with
all OSTs slightly outperform the non-partitioned file case, by
28% on average, but there is higher variation with larger
process counts. Overall, the partitioned files with selected
OSTs can achieve about 70% I/O bandwidth improvement than
the non-partitioned case.

C. S3D I/O Benchmark
The S3D application [29] simulates turbulent combustion

using direct numerical simulation of a comprehensive Navier-
Stokes flow. The domain is decomposed among processes in
3D. All processes periodically participate in writing out a
restart file. This file can be used both as a mechanism to
resume computation and as an input for visualization and post-
simulation analysis. We used 50×50×50 fixed subarrays.

The checkpoint files consist of four global arrays: two 3-
dimensional, temp (z, y, x) and pressure (z, y, x) in double
precision, and two 4-dimensional arrays (double yspecies (nsc,
z, y, x) and double u (three, z, y, x)). Since the length of
the most significant dimension in 4D variables are relatively
small, 3 and 11 for three and nsc respectively, we partition
these variables along z-dimension, that is, the second most
significant dimension.

Figure 12 shows the I/O bandwidth of S3D for all three
cases we evaluated. We have observed that the non-partitioned
file case is marginally scalable. The partitioned files using
all OSTs can achieve higher performance improvement than
the non-partitioned file case up to 2,048 processes, but only
marginal improvement beyond that point. The partitioned files
case with selected OSTs consistently outperforms than the non-
partitioned file case, by 60% on average.

V. RELATED WORK

PLFS [4] introduced a virtual layer that remaps an ap-
plication’s preferred data layout into one optimized for the

underlying parallel file system. Like PLFS, Yu et al. [37] also
use a library approach to reduce contention from concurrent
access at runtime. However, the split files are merged at close
time, preventing later accesses from leveraging the benefits
of partitioned files. It also requires application modification.
Yu and Vetter proposed an augmented collective I/O, called
ParColl, with file area partitioning and I/O aggregator distri-
bution [36]. PIDX [17], [16] is a parallelization of IDX data
format, and uses a novel aggregation technique to improve
its scalability. Dickens and Logan [8] proposed an approach,
called Y-Lib, to collective I/O in Lustre, which improves
performance by reducing contention among processes par-
ticipating in collective operations. SIONlib [9] provides a
transparent mapping of a large number of task-local files onto
a small number of files, but it again requires internal metadata
handling and block alignment, and is required to use a set of
their new APIs.

Our earlier study by Gao et al. [13] is similar to our
approach, but it requires user intervention of how each subfile
is partitioned using a set of new APIs. Also, it only allows
partitioning along the most significant dimensions of an array,
and does not support record variables. In our new design and
implementation, we remove these restrictions to enable any
further layout transformation between memory and partitioned
files. All these data transformations would require all-to-all
personalized communications among application and subfile
processes, which does not occur in the subfiling. Further,
unlike the subfiling, our approach gives more flexibility by
allowing application writers to specify per-variable partition-
ing. A similar idea of subfiling is also provided in the ADIOS
BP file format [25]. However, ADIOS has limited flexibility
in selecting how the data is stored across subfiles, and also it
does not store arrays in canonical order. Fu et al. [12], [11]
proposed an application-level two-phase I/O, called reduced-
blocking I/O (rbIO), and demonstrated that rbIO performs
better than the n to n approach. rbIO is similar to our approach
in that it reduces conflicts using the partitioned files and
application 2-phase I/O. However, the partition in rbIO is
done by the application writers, and the coordination does not
cross the partitioned process group. Kendall et al. also used an
application-level 2-phase I/O in order to organize I/O requests
to multiple-file dataset [14]. Their optimization, however, is
targeted mainly for visualization workloads, and application
writers manually provide the list of starts and sizes of a block
that each process needs to read or write.

Many recent studies have identified that staggering file
servers are one of the main reasons of inconsistent I/O per-
formance in large petascale and beyond systems [24], [34],
[5]. [34] characterizes the I/O bottlenecks in supercomputers,
and it demonstrates that slower I/O servers limit the aggregate
and striping bandwidth and reduce the parallelism. Also, due
to locking protocols, lower bandwidths are observed while
writing to a shared file. In [24], it is shown that the I/O
load variation on I/O servers leads to performance degradation,
and adaptive I/O methods are proposed using a grouping
approach to balance the workload; i.e., for a group of writer
processes, assign a sub-coordinator to each group, and assign
a coordinator for all the sub-coordinators. In a recent study
on Hopper [5], it is shown that once the I/O stragglers are
isolated from the I/O, and using one file for all processes,
the performance can be significantly improved. Our approach



does take the slower I/O servers into account and dynamically
isolates these servers from the collective I/O operation. Using
one partition per file server can potentially achieve better
performance by minimizing file system locking contention.

VI. CONCLUSION AND FUTURE WORK

This paper has proposed a transparent file partitioning
mechanism to provide scalable collective I/O performance
while keeping a conventional view of large multi-dimensional
arrays to a user. We use a dynamic bandwidth probing to detect
slower I/O nodes and isolate the impact of these slower I/O
nodes. Our implementation is incorporated into PnetCDF, a
high-level I/O library, and we evaluate its performance using a
set of I/O benchmarks on NERSC’s Hopper. Our experimental
results demonstrate that our partitioning scheme consistently
improves the performance of collective I/O significantly by
reducing write I/O time with less variation. We also show
that storing each partition onto a single I/O node could
maximize the effect of the read-ahead mechanism, resulting
in significantly improved read I/O performance.

We will continue to evaluate our approach on other plat-
forms like Intrepid, IBM Blue Gene/P, at Argonne National
Laboratory [1], and other high-level I/O libraries. Future
research will focus on investigating how the data exchange
mechanism we proposed in this paper can be applied on more
general layout transformation techniques like transposing array
dimensions.
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