
An Integrated Graphical User Interface for High Performance Distributed
Computing

Xiaohui Shen, Wei-keng Liao and Alok Choudhary
Center for Parallel and Distributed Computing

Department of Electrical and Computer Engineering
Northwestern University

Evanston, IL 60208
fxhshen,wkliao,choudharg@ece.nwu.edu

Abstract

It is very common that modern large-scale scientific ap-
plications employ multiple compute and storage resources
in a heterogeneously distributed environment. Working ef-
fectively and efficiently in such an environment is one of ma-
jor concerns for designing meta-data management systems.
In this paper, we present an integrated graphical user in-
terface (GUI) that makes the entire environment virtually
an easy-to-use control platform for managing complex pro-
grams and their large datasets. To hide the I/O latency
when the the user carries out interactive visualization, ag-
gressive prefetching and caching techniques are employed
in our GUI. The performance numbers show that the de-
sign of our Java GUI has achieved the goals of both high
performance and ease-of-use.

1 Introduction

Modern simulations not only generate huge amounts of
data, they also employ multiple techniques to process data
generated: these processes include data analysis, visualiza-
tion and so on. As data size for these applications is huge,
large hierarchical storage system is used as data repository.
In addition, databases are also introduced to make data man-
agement easily. Therefore, there are multiple resources in-
volved in a modern large-scale scientific environment and
these resources are heterogeneous and distributed. Without
designing an efficient integrated environment, users have to
deal with these resources manually and explicitly. In gen-
eral, the requirements for the systems to support modern
simulations are characterized as follows.

� High performance simulation For data intensive ap-
plications, state-of-the-art I/O optimizations such as
collective I/O, prefetch, prestage and so forth should
be employed to alleviate I/O problems of simulations.

� High performance post-processings If the user only
considers simulation alone, it may result in bad perfor-
mance when she carries out post-processings such as
visualization and data analysis etc because these post-
processings may not share the same access pattern with
the simulations . The user should be careful to arrange
the layouts of her datasets properly on storage systems.

� Easy-to-use Databases are employed to fulfill this pur-
pose. The database can maintain meta-data informa-
tion about the applications, datasets, storage systems
and so on and it also provides easy query capabilities.

� Integrated graphical environment If the user works
on an uniform platform rather than deal with dis-
tributed resources manually and explicitly, high effi-
ciency can be achieved. Java proves to be a powerful
language for such a task.

� Latency reducing in the integrated environment
Given the fact that the speed of networks does not
meet the user’s requirements, aggressive optimizations
such as prefetching and caching in a distributed envi-
ronment are required to hide the network latency and
reduce the probability of network failures.

A computational scientist would be overwhelmed in her
application development if she has to consider by herself all
these issues which are beyond her expertise. A lot of work
addressing the above issues has been done separately in lit-
erature, few of them have considered them in a completely
unified framework. Brown et al. [3] build a meta-data sys-
tem on top of HPSS using DB2 from IBM. The SRB [2]
and MCAT [12] provide a uniform interface for connecting
to heterogeneous data resources over a network. Three I/O-
intensive applications from the Scalable I/O Initiative Ap-
plication Suite are studied in [8]. But all these works only
address one aspect of the issues we discussed above. Our
previous work [6] is a first step toward considering mul-
tiple factors in a complete picture. We have designed an
active meta-data management system that takes advantage

1

Proceedings of the International Database Engineering and Applications Symposium (IDEAS’01)
1098-8068/01 $10.00 © 2001 IEEE

of state-of-the-art I/O optimizations as well as maintain-
ing ease-of-use features by employing relational database
techniques. In this paper, we present further considerations
about integrated environment and its optimizations in a dis-
tributed environment based on our previous work. We make
the following contributions:

� Present a high performance data management system
in which database performs an active role in making
I/O strategies, as well as managing huge amounts of
data easily.

� Present the design of an integrated graphical environ-
ment in Java for large-scale scientific applications in
a distributed environment. In our unified framework,
users work only on their local machines and our GUI
hides all the details of distributed resources. Users can
launch the parallel application, carry out data analy-
sis and visualization, query databases and browse the
tables in an uniform interface.

� Present an I/O latency reducing scheme which signifi-
cantly improves I/O response time when the user car-
ries interactive visualization.

The remainder of the paper is organized as follows. In
Section 2 we introduce an astrophysics application and a
parallel volume rendering application that we used in our
work. A shorthand notation is also introduced for conve-
nience. In Section 3 we give an overview of our design of
meta-data systems (MDMS). We present our design of the
integrated Java graphical environment for scientific simula-
tions in Section 4. The functions and the inner-mechanisms
that GUI provides are presented. In Section 5 we present
our I/O latency reducing techniques. Finally we conclude
our paper in Section 6.

2 Introduction to Applications

Our first application, called Astro-3D or astro3d [1]
henceforth, is a code for scalably parallel architectures to
solve the equations of compressible hydrodynamics for a
gas in which the thermal conductivity changes as a function
of temperature 1.

From computer system’s point of view, the application
just generates a sequence of data and dumps them on stor-
age. Later, the user may visualize the datasets in which she

1The code has been developed to study the highly turbulent convec-
tive envelopes of stars like the sun, but simple modifications make it suit-
able for a much wider class of problems in astrophysical fluid dynamics.
The algorithm consists of two components: (a) a finite difference higher-
order Godunov method for compressible hydrodynamics, and (b) a Crank-
Nicholson method based on nonlinear multigrid method to treat the nonlin-
ear thermal diffusion operator. These are combined together using a time
splitting formulation to solve the full set of equations

(MDMS)
O(R)DBMS

Hints (Collective I/O)
Schedule, Prefetch, Cache

Data

Query Input
Metadata

Performance Input

Hints, Directives

System Metadata

Parameters
Object IDs

for I/O

User Application

Simulation
Data Analysis
Visualization

Access Pattern, History
MPI-IO, PASSION
(Other Interfaces ...)

Metadata

Associations

(HSS)

Hierarchical
Storage System

I/O calls

Figure 1. Three-tiered architecture.

may be interested. In Astro-3D for example, it generates six
datasets such as temperature, pressure, etc. for each itera-
tion in one run. Each of these datasets is written in a single
file. Therefore, a data file is uniquely identified by dataset
name, run id and the iteration number. We make the fol-
lowing notations to express a data file by concatenating the
dataset name, run id and iteration number: dataset-runid-
iteration. For example, if the temperature is dumped at the
first iteration in the fifth run, it is notated as temperature-
5-1; if the pressure is dumped at the second iteration in the
sixth run, it is expressed as pressure-6-2 and so on.

Our second application is a parallel volume rendering
code (called volren henceforth). It generates a 2D image by
projection given a 3D input file. The algorithm is described
as follows: The data points of the input file are at the cor-
ners of cubic cells. The entire data volume is a rectangular
solid made up of these cells. An orthographic projection is
done through the volume parallel with one of its three axes.
One of the 2 faces of the data volume that are vertical to
the projection is used as the image. If there are M x N data
points in this face, there are (M-1) x (N-1) pixels in the im-
age. There is one line of projection per pixel. The densities
in the stack of cells along this line are added (until their sum
is 1.0), and the result becomes the alpha and grey value for
that pixel. The command-line arguments include number of
iterations per run, sizes of input files and so on.

From computer system’s point of view, again, volren just
reads a 3D input file and creates an 2D image file for each
iteration per run. For example, volren may generate four
image files (image-5-1, image-5-2, image-5-3, image-5-4)
given four input data files at the fifth run.

3 Design of Meta-data Management System
(MDMS)

Figure 1 shows a novel architecture we proposed in
[6]. The three-tiered architecture contains three key com-

2

Proceedings of the International Database Engineering and Applications Symposium (IDEAS’01)
1098-8068/01 $10.00 © 2001 IEEE

ponents: (1) parallel application, (2) meta-data manage-
ment system (MDMS), and (3) hierarchical storage system
(HSS). These three components can co-exist in the same site
or can be fully-distributed across distant sites. The MDMS
is an active part of the system: it is built around an OR-
DBMS [16, 15] and it mediates between the user program
and the HSS. The user program can send query requests to
MDMS to obtain information about data structures that will
be accessed. Then, the user can use this information in ac-
cessing the HSS in an optimal manner, taking advantage of
powerful I/O optimizations like collective I/O [17, 5, 11],
prefetching [10], prestaging [7], and so on. The user pro-
gram can also send access pattern hints to the MDMS and
let the MDMS to decide the best I/O strategy consider-
ing the storage layout of the data in question. These ac-
cess pattern hints span a wide spectrum that contains inter-
processors I/O access patterns, information about whether
the access type is read-only, write-only, or read/write, infor-
mation about the size (in bytes) of average I/O requests, and
so on. In this section, we give an overview of our MDMS
designs.

Our MDMS tries to keep meta-data information summa-
rized as follows.

� It stores information about the abstract storage devices
(ASDs) that can be accessed by applications. By query-
ing the MDMS2 the applications can learn where in the
HSS their data reside (i.e., in what part of the storage hi-
erarchy) without the need of specifying file names. They
can also access the performance characteristics (e.g., speed)
of the ASDs and select a suitable ASD (e.g., a disk sub-
system consisting of eight separate disk arrays) to store their
datasets.

� It stores information about the storage patterns and ac-
cess patterns of data sets. For example, a specific multi-
dimensional array that is striped across four disk devices in
round-robin manner will have an entry in the MDMS. The
MDMS utilizes this information in a number of ways. The
most important usage of this information, however, is to de-
cide a parallel I/O method based on access patterns (hints)
provided by the application. By comparing the storage pat-
tern and access pattern of a dataset, the MDMS can, for
example, advise the HSS to perform collective I/O [9] or
prefetching [10] for this dataset.

� It keeps meta-data for specifying access history and
trail of navigation (not covered in this abstract).

Notice that the MDMS is not merely a data repository but
also an active component in the overall data management
process. It communicates with applications as well as the
HSS and can influence the decisions taken by the both.

Figure 2 shows the MDMS database tables and Figure 3

2These queries are performed using user-friendly constructs. It would
be very demanding to expect the user to know SQL [14] or any other query
language.

Figure 2. Internal representation in MDMS.

Figure 3. Selecting an I/O optimization.

shows the MDMS internal optimization mechnisms.

4 Design of Java Graphical User Interface

4.1 Architecture of Integrated Java GUI

As it is distributed in nature, our programming environ-
ment involves multiple resources across distant sites. Con-
sider our current working environment, we are working
on local HP or SUN workstations, the visualization tools
are installed on a Linux machine, our database (POST-
GRESQL) is located on another machine and our parallel
applications run on a 16 node IBM SP2. Although these ma-
chines are within our department, they could be distributed
across any places on Internet.

When a user starts to work in such a distributed environ-
ment, she needs to go through the following procedures:

(1) log on to SP2 and submit the parallel application.

(2) When the application is finished, she needs to log on
to the database host and use native SQL language to
inspect the database to find datasets she would be in-
terested in for visualization.

(3) When the user is interested in a particular dataset, she
would transfer the data file explicitly, for example us-

3

Proceedings of the International Database Engineering and Applications Symposium (IDEAS’01)
1098-8068/01 $10.00 © 2001 IEEE

Figure 4. Java GUI in overall system.

ing ftp, from SP2 where data are located to the visual-
ization host where visualization tools reside.

(4) Log on to the visualization host (DATA) and start the
visualization process.

(5) Repeat steps 2-4 as long as there exist datasets to be
visualized.

Obviously, these steps might be very time-consuming
and inconvenient for the users. To overcome this problem
(which is due to the distributed nature of the environment),
an integrated Java graphical user interface (GUI) is imple-
mented and integrated to our application development envi-
ronment. The goal of the GUI is to provide users with an
integrated graphical environment that hides all the details of
interaction among multiple distributed resources (including
storage hierarchies).

We use Java because Java itself proves to be a key
enabling access language and operating environment with
support for all of our platforms of interest, including IBM
AIX, Linux, Windows NT, Solaris, and others. Trans-
parency is made possible by the many platform indepen-
dent abstractions of Java, including process management
(a built-in class), multithreading (a language feature), net-
working and streams (built-in classes), GUI components
(the Abstract Windowing Toolkit), and database access
(JDBC). In this environment, the users need to work only
with GUI locally, rather than go to different sites to submit
parallel applications or to do file transfers explicitly. Fig-
ure 4 shows how GUI is related to other parts of our system.
It actively interacts with three major parts of our system:

� Interacts with parallel machines to launch parallel ap-
plications.

� Interacts with databases through JDBC to help users
query meta-data from databases.

� Interacts with visualization tools to carry out visualiza-
tion process.

4.2 Main functions of GUI

The main functions that GUI provides are described as
follows:

� Registering new applications To start a new applica-
tion, the user needs to create a new suite of tables for
the new application. By GUI, the user needs only to
specify attributes of run table that she would be inter-
ested in, and all the other tables will be created auto-
matically with run table.

� Running applications remotely The applications are
usually running somewhere on parallel machines such
as SP2, which are specified by the user when she reg-
isters a new application. Therefore, remote shell com-
mand is used in GUI to launch the job on remote paral-
lel machines. The user can also specify command line
arguments in the small text fields. Defaults are pro-
vided and the user can change them as needed. The
running results will be returned in the large text area.
application: four processors are used and the sizes of
datasets are 16*16*16.

� Data Analysis and Visualization Users can also carry
out data analysis and visualization through our GUI.
Data Analysis may come in a variety of flavors, it
is quite application specific. For some applications,
data analysis may simply calculate the maximum, min-
imum or average value of a given dataset, for some
others, it may be plugged into the application and cal-
culate the difference between two datasets and decide
whether the dataset should be dumped now or later.
Our system’s current method of data analysis is to cal-
culate the maximum, minimum and means of each
dataset generated. From the GUIs point of view, it is
no different than just submitting a remote job. Visu-
alization is becoming an important approach in large-
scale scientific simulation to inspect the inside nature
of datasets. It is often a little more complicated than
data analysis: first of all, the users’ interest in a par-
ticular data set may be very arbitrary. Our approach
is to list all the candidate datasets by searching the
database by user-specified characteristics such as max-
imum, minimum, means, iteration numbers, pattern,
mode and so on. Then the candidates are presented
in radio box for user to choose easily. Second, the
datasets that are created by parallel machines, are lo-
cated either at parallel machines or stored in hierar-
chical storage systems. But our visualization tools are
installed at other places. Therefore, inside GUI, we
transparently transfer the data from the remote parallel
machine or hierarchical storage systems to the visual-
ization host’s local disks and then start the visualiza-
tion process. This is implemented by having a server

4

Proceedings of the International Database Engineering and Applications Symposium (IDEAS’01)
1098-8068/01 $10.00 © 2001 IEEE

program written in C running on the storage side and
the GUI (in Java) serves as the client. The user does
not need to check the database for interesting datasets
or do data transfer explicitly. Our current visualiza-
tion tools include Visualization Toolkit (VTK), Java
3D, XV etc.

� Table browsing and searching Advanced users may
want to search the database to find datasets of particu-
lar interest. So the table browsing and searching func-
tions are provided in our GUI. The user can just move
the mouse and pick a table to browse and search the
data without logging on to a database host and typing
native SQL script.

5 I/O Latency Reducing for Interactive Visu-
alization

Our GUI can help the user work at a single site with-
out consulting a variety of distributed components explic-
itly. A potential problem in this environment, however, is
the I/O response time when the user carries out interactive
visualization (VTK) on a sequence of datasets. Note that
visualization tools such as VTK etc are usually installed
on sequential workstations, while the datasets generated by
parallel applications may be stored on the disks of paral-
lel computing systems or on a remote storage system such
as tertiary storage systems like HPSS [7]. Therefore, these
datasets need to be first transfered to the local site from re-
mote storage. As the data size could be large and the phys-
ical distance could be long, the I/O response time is sig-
nificant. It is quite annoying that the user has to wait for
tens of seconds for the availability of the data after she has
launched the visualization process on a dataset. To reduce
the I/O latency, a naive approach is that the user explicitly
transfers all the data to the local disks first and then starts
visualization process. The problems of this approach, how-
ever, are three-fold. First, the user has to deal with specific
file names and locations manually which are very inconve-
nient; second, the user may not be sure what datasets she
might use in the future and finally, the overall time is still
long since the I/O time is not overlapped with the visualiza-
tion process.

In this section, we present a scheme to address the prob-
lems of naive approach. By using prefetching and caching
techniques, our approach can effectively hide the I/O la-
tency, improving overall visualization performance in GUI.
The basic idea of our approach is that when the user is work-
ing on a dataset (visualization), we make a prediction on
what the next dataset that might be accessed, then spawn
another thread to perform remote I/O and caches it on the
local disks. Since visualization process with human inter-
action is slow, there is ample time to overlap prefetching.

In addition, the I/O response time for the next dataset can
be significantly reduced when the required dataset can be
serviced on local disk cache.

We use database to keep track of data locations and ac-
cess history. Two tables are created in the database. One
table is called data-access-trace, whose attributes (fields)
include application name, dataset name, iteration num-
ber, date and time, run id etc. This table keeps all the
datasets visualized by the user. Another table is called data-
cache, whose attributes (fields) include, application name,
dataset name, iteration number, local directory and refer-
ence counter. It keeps information about what datasets are
currently cached on the local disks and how many times
they are accessed by the user.

The key issue for prefetching is to decide which dataset
should be fetched. In Section 2 we introduced an astro-
physics application which is a representative of many sci-
entific applications. We can see that many scientific appli-
cations generate time-serial datasets (each dataset is stored
in a separate file) and these datasets will also be accessed by
visualization tools one by one in time order. For example,
by visualizing datasets ‘temperature’ from time step 0 to 20,
the user can know how temperature changes as simulation
goes on. This characteristic is good for prediction, because
the next time step dataset is the best candidate for prefetch-
ing. Figure 5 (column 1,2) shows the results of prefetching.
The I/O response time can be reduced significantly.

As some applications may take many time steps and the
user may not always visualize all of them. For example, to
have a quick view of how dataset ‘temperature’ changes as
simulation goes on, the user may only pick part of data files
in a strided manner such as temperature-9-0, temperature-
9-2, temperature-9-4, etc. In this case, the naive prefetch-
ing would not help. To address this problem, we proposed
an ‘adaptive stride’ scheme. In this approach, the previous
stride is used to predict next dataset. For example, after
datasets temperature-9-0 and temperature-9-2 are accessed,
we predict the next dataset should be temperature-9-4 since
the last stride is 2. Figure 5 (column 3,4,5) shows the re-
sults. The adaptive approach dramatically reduces I/O la-
tency. For some cases, the user may be interested in multi-
ple datasets. For example, the changes of temperature and
pressure may influence with each other, so the user may in-
spect temperature and pressure datasets alternatively. The
adaptive stride prefetching can still deliver significant per-
formance improvement in Figure 5 (column 6,7,8).

Another scenario could happen is that the datasets to be
visualized may not have fixed stride. By checking the data
access history in table data-access-trace of previous runs,
we can still make a good prediction since the user may
change run-time parameters for each run and may still in-
terested in the same set of datasets. Figure 5 (column 9, 10)
shows the results.

5

Proceedings of the International Database Engineering and Applications Symposium (IDEAS’01)
1098-8068/01 $10.00 © 2001 IEEE

Figure 5. I/O Latency Reducing by Prefetching
for Astrophysics data visualization. The data
is located at disks of SP2 and visualization
tool (VTK) is installed on a Linux machine.
The size of each dataset is 8MB. The average
visualization time on a dataset is about 10s.
(1) No prefetch, Input A; (2) Prefetch, Input
A; (3) No prefetch, Input B; (4) Prefetch (fixed
stride), Input B; (5) Prefetch (adaptive stride),
Input B; (6) No prefetch, Input C; (7) Prefetch
(fixed stride), Input C; (8) Prefetch (adaptive
stride), Input C; (9) No prefetch, Input D; (10)
Prefetch (according to previous runs), Input
E. Input A = (temp-9-0, temp-9-1,temp-9-2, ..., temp-
9-20), B = (temp-9-0, temp-9-2, temp-9-4, ..., temp-
9-20), C = (temp-9-0,press-9-0, temp-9-2, press-9-2,
..., temp-9-20, press-9-20); D = (temp-9-1, temp-9-5,
temp-9-4, temp-9-5, temp-9-10, ...), E = (temp-10-1,
temp-10-5, temp-10-4, temp-10-5, temp-10-10, ...).

6 Conclusions

In this paper, we presented an integrated Java graphical
user interface (GUI) to efficiently help users work on an
environment that is characterized by distributed and hetero-
geneous natures. Our GUI provides users an unified inter-
face to all the resources and platforms presented to large-
scale scientific applications. In addition, an I/O response
time reducing technique has been integrated into our GUI
to hide I/O latency for interactive visualization. All these
works take advantage of Java’s powerful features such as
platform independence, portability, process management,
multithreading, networking and streams. The database is
also plays an important role which makes the whole frame-
work complete. In the future, we would investigate other
optimizations in our environment, such as subfiling [13].
The relationship between prefetch and caching [4] in our
context will also be studied.

References

[1] A. Malagoli, A. Dubey, and F. Cattaneo. A Portable and
Efficient Parallel Code for Astrophysical Fluid Dynamics.
http://astro.uchicago.edu/Computing/On-Line/cfd95/camelse.html

[2] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC storage re-
source broker. In Proc. CASCON’98 Conference, Dec 1998, Toronto,
Canada.

[3] P. Brown, R. Troy, D. Fisher, S. Louis, J. R. McGraw, and R. Musick.
Meta-data sharing for balanced performance. In Proc. the First IEEE
Meta-data Conference, Silver Spring, Maryland, 1996.

[4] P. Cao, E. Felten, and K. Li. Application-controlled file caching
policies. In Proc. the 1994 Summer USENIX Technical Conference,
pages 171–182, June 1994.

[5] A. Choudhary, R. Bordawekar, M. Harry, R. Krishnaiyer, R. Pon-
nusamy, T. Singh, and R. Thakur. PASSION: parallel and scalable
software for input-output. NPAC Technical Report SCCS-636, Sept
1994.

[6] A. Choudhary, M. Kandemir, H. Nagesh, J. No, X. Shen, V. Taylor,
S. More, and R. Thakur. Data management for large-scale scientific
computations in high performance distributed systems, In Proc. the
8th IEEE International Symposium on High Performance Distributed
Computing (HPDC’99), August 3-6, 1999, Redondo Beach, Califor-
nia.

[7] R. A. Coyne, H. Hulen, and R. Watson. The high performance stor-
age system. In Proc. Supercomputing 93, Portland, OR, November
1993.

[8] P. E. Crandall, R. A. Aydt, A. A. Chien, and D. A. Reed. Input/output
characteristics of scalable parallel applications. In Proceedings of Su-
percomputing’95.

[9] J. del Rosario, R. Bordawekar, and A. Choudhary. Improved parallel
I/O via a two-phase run-time access strategy. In Proc. the 1993 IPPS
Workshop on Input/Output in Parallel Computer Systems , April
1993.

[10] C. S. Ellis and D. Kotz. Prefetching in file systems for MIMD mul-
tiprocessors. In Proc. the 1989 International Conference on Parallel
Processing, pages I:306–314, St. Charles, IL, August 1989. Pennsyl-
vania State Univ. Press.

[11] D. Kotz. Disk-directed I/O for MIMD multiprocessors. In Proc. the
1994 Symposium on Operating Systems Design and Implementation,
pages 61–74. USENIX Association, Nov 1994.

[12] MCAT http://www.npaci.edu/DICE/SRB/mcat.html.

[13] G. Memik, M. Kandemir, A. Choudhary, Valerie E. Taylor. APRIL:
A Run-Time Library for Tape Resident Data. To appear in the 17th
IEEE Symposium on Mass Storage Systems, March 2000.

[14] R. Ramakrishnan. Database Management Systems, The McGraw-
Hill Companies, Inc., 1998.

[15] M. Stonebraker. Object-Relational DBMSs : Tracking the Next Great
Wave. Morgan Kaufman Publishers, ISBN: 1558604529, 1998.

[16] M. Stonebraker and L. A. Rowe. The design of Postgres. In Proc.
the ACM SIGMOD’86 International Conference on Management of
Data, Washington, DC, USA, May 1986, pp. 340–355.

[17] R. Thakur, W. Gropp, and E. Lusk. Data sieving and collective I/O in
ROMIO. To appear in Proc. the 7th Symposium on the Frontiers of
Massively Parallel Computation, February 1999.

[18] UniTree User Guide. Release 2.0, UniTree Software, Inc., 1998.

6

Proceedings of the International Database Engineering and Applications Symposium (IDEAS’01)
1098-8068/01 $10.00 © 2001 IEEE

