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Abstract 

Effective high-level data management is becoming an important is- 
sue with more and more scientific applications manipulating huge 
amounts of secondary-storage and tertiary-storage data using par- 
allel processors. A major problem facing the current solutions to 
this data management problem is that these solutions either require 
a deep understanding of specific data storage architectures and file 
layouts to obtain the best performance. In this paper, we discuss 
the design, implementation, and evaluation of  a novel application 
development environment for scientific computations. This envi- 
ronment includes a number of components that make it easy for 
the programmers to code and run their applications without much 
programming effort, and at the same time, to harness the available 
computational and storage power on parallel architectures. Em- 
barking on this ambitious goal, we first present a performance- 
oriented meta-data management system that governs data flow be- 
tween storage devices and applications. Another component of our 
environment is a data analysis and visualization tool which has 
been integrated with the recta-data management system, storage 
subsystem, and user applications. We also present an automatic 
code generator component (ACG) to help users utilize the informa- 
tion in the meta-data management system when they are developing 
new applications. All these components are tied together using an 
integrated Java graphical user interface (IJ-GUI) through which the 
user can launch her applications, can query the meta-data manage- 
ment system to obtain accurate information about the datasets she is 
interested in and about the current state of the storage devices, and 
can carry out data analysis and visualization, all in a unified frame- 
work. Finally, we present performance numbers from our initial 
implementation. Our results demonstrate that our novel applica- 
tion development environment provides both ease-of-use and high 
performance for large-scale, I/O-intensive scientific applications. 

1 Introduction 

Effective data management is a crucial part of the design of large- 
scale scientific applications. An important subproblem in this do- 
main is to optimize the data flow between parallel processors and 
several types of storage devices residing in a storage hierarchy. 
While a knowledgeable user can manage this data flow by exert- 
ing a great effort, this process is time-consuming, error-prone, and 
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not portable. 
To illustrate the complexity of this problem, we consider a typi- 

cal computational science analysis cycle, shown in Figure 1. As can 
be seen easily, in this cycle, there are several steps involved. These 
include mesh generation, domain decomposition, simulation, visu- 
alization and interpretation of results, archiving of data and results 
for post-processing and check-pointing, and adjustment of param- 
eters. Consequently, it may not be sufficient to consider simulation 
alone when determining how to store or access datasets because 
these datasets are used in other steps as well. In addition, these 
steps may need to be performed in a heterogeneous distributed en- 
vironment and the datasets in question can be persistent on sec- 
ondary or tertiary storage. Among the important issues in this anal- 
ysis cycle are detection of I/O access patterns for data files, determi- 
nation of suitable data storage patterns, and effective data analysis 
and visualization. 

Obviously, designing effective I/O strategies in such an envi- 
ronment is not particularly suitable for a computational scientist. 
To address this issue, over the years, several solutions have been de- 
signed and implemented. While each of these solutions is quite suc- 
cessful for a class of applications, we feel that the growing demand 
for large-scale data management necessitates novel approaches that 
combine the best characteristics of current solutions in the market. 
For example, parallel file systems [10, 29, 8] might be effective 
for applications whose I/O access patterns fit a few specific forms. 
They achieve impressive performance for these applications by uti- 
lizing smart I/O optimization techniques such as prefetching [18], 
caching [23, 6], and parallel I/O [16, 11]. However, there are seri- 
ous obstacles preventing the parallel file systems from becoming a 
global solution to the data management problem. First of all, user 
interfaces of the file systems are in general low-level [21], allowing 
the users to express access patterns of their applications using only 
low-level structures such as file pointers and byte offsets. Second 
of all, nearly every file system has its own suite of I/O commands, 
rendering the process of porting a program from one machine to 
another a very difficult task. Third, the file system policies and 
optimization parameters are in general hard-coded within the file 
system and, consequently, work for only a small set of access pat- 
terns. While mntime systems and libraries like MPI-IO [9, 33] and 
others [35, 3, 7] present users with higher-level, more structured 
interfaces, the excessive number of calls to select from, each with 
several parameters, make the user's job very difficult. Also, the us- 
ability of these libraries depends largely on how well user's access 
patterns and library calls' functionality match [20]. 

An alternative to parallel file systems and runtime libraries is 
database management systems (DBMS). They present a high-level, 
easy-to-use interface to the user and are portable across a large 
number of systems including SMPs and clusters of workstations. 
In fact, with the advent of object-oriented and object-relational 
databases [31 ], they also have the capability of handling large datasets 
such as multidimensional arrays and image/video files [14]. A ma- 
jor obstacle in front of DBMS (as far as the effective high-level 
data management is concerned) is the lack of powerful I/O opti- 
mizations that can harness parallel I/O capabilities of current mul- 
tiprocessor architectures. In addition to that, the data consistence 
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Figure 1: A typical computational science analysis cycle. 
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Figure 2: Three-tiered architecture. 

and integrity semantics provided by almost all DBMS put an added 
obstacle to high performance. Finally, although hierarchical stor- 
age management systems (e.g., [36]) are effective in large-scale 
data transfers between storage devices in different levels of a stor- 
age hierarchy, they also, like parallel file systems and DBMS, lack 
application specific access pattern information, and consequently, 
their I/O access strategies and optimizations are targeted at only a 
few well-defined access and storage patterns. 

In this paper, we present a novel application development envi- 
ronment for large-scale scientific applications that manipulate see- 
ondary storage and tertiary storage resident datasets. Our primary 
objective is to combine the advantages of parallel file systems and 
DBMS without suffering from their disadvantages. To accomplish 
this objective, we designed and implemented a multi-component 
system that is capable of applying state-of-the-art FO optimizations 
without putting an excessive burden on users. Embarking on this 
ambitious goal, in this paper, we make the following contributions: 

We present a meta-data management system, called MDMS, 
that keeps track of I/O accesses and enables suitable I/O strate- 
gies and optimizations depending on the access pattern infor- 
mation. Unlike classical user-level and system-level meta- 
data systems [17, 27], the main reason for the existence of 
MDMS is to keep performance-oriented meta-data and uti- 
lize these meta-data in deciding suitable I/O strategies. 

We explain how the MDMS interacts with parallel applica- 
tions and hierarchical storage systems (HSS), relieving the 
users from the low-level management of data flow across 
multiple storage devices. In this respect, the MDMS plays 
the role of an easy-to-use interface between applications and 
HSS. 

We present a tape device-oriented optimization technique, 
called subfiling, that enables fast access to small portions of 
tape-resident datasets and show how it fits in the overall ap- 
plication development environment. 

• We illustrate h o t  data analysis and visualization tools can be 
inte~ated in our mavironrncnt. 

• We propose an automatic code generator component (ACG) 
to help users utilize the recta-data management system when 
they are developing new a~plieatirns. 

• We present an integrated Java graphical user interface (IJ- 
GUI) that makes the entircenvironment virtually an easy- 
to-use control platform for ~ i n g  complex programs and 
their large datasets. : :'~; 

• We presentpeirfomaance numbers from our initial implemen- 
tation using four I/O-intensive scientific applications. 

The core part of our'environment is a three-tiered architecture 
shown in Figure ~ In this environment, there are three key Compo- 
nents: (1) parallel application, (2) recta-data management system 
(MDMS), and (3) hierarchical storage system (HSS). These three 
components can co-exist in the same site or can be fully-distributed 
across distant sites. The MDMS is an active part of the system: 
it is built around an OR-DBMS [32, 31] and it mediates between 
the user program and the HSS. The user program can send query 
requests to MDMS to obtain information about data structures that 
will be accessed. Then, the user can use this information in access- 
ing the HSS in an optimal manner, taking advantage of powerful 
I/O optimizations like collective I/O [34, 7, 22], prefetching [18], 
prestaging [13], and so on. The user program can also send access 
pattern hints to the MDMS and let the MDMS to decide the best 
I/O strategy considering the storage layout of the data in question. 
These access pattern hints span a wide spectrum that contains inter- 
processors I/O access patterns, information about whether the ac- 
cess type is read-only, write-only, or read/write, information about 
the size (in bytes) of average I/O requests, and so on. We believe 
that this is one of the first studies evaluating the usefulness of pass- 
ing large number of user-specified hints to the underlying I/O soft- 
ware layers. In this paper; we focus on the design of MDMS, in- 
cluding the design of database schema and MDMS library (user 
interface), the optimizations for tape-resident datasets, and an in- 
tegrated Java graphical ~ e r  interface (IJ-GUI) to help users effi- 
ciently work in our d i s a b l e d  programming environment. Our en- 
vironment is different from previous platforms (e.g., [24, 2, 1, 5]) 
in that it provides intelligent data access methods for disk and tape- 
resident datasets. 

The remainder of the paper is organized as follows. In Sec- 
tion 2, we present the design details of recta-data management sys- 
tem including design of database tables and high-level MDMS li- 
brary (user API). In Section 3, an optimization method to access 
tape-resident datasets is presented. In Section 4, we present an in- 
tegrated Java graphical user interface (IJ-GUI) to assist users in dis- 
tributed environments. In Section 5, our initial performance results 
are presented. In Section 6, we review the previous work on I/O 
optimizations. Finally, we conclude the paper and briefly discuss 
ongoing and future work in Section 7. 

2 Design of Meta-data Management System (MDMS) 

The meta-data management system is an active middle-ware built at 
Northwestern Um'versity with the aim of providing a uniform inter- 
face to data-intensive applications and hierarchical storage systems. 
Applications can communicate with the MDMS to exploit the high 
performance I/O capabilities of the underlying parallel architecture. 
The main functions fulfilled by the MDMS can be summarized as 
follows. 

• It stores information about the abstract storage devices (ASDs) 
that can be accessed by applications. By querying the MDMS,1 

1These queries arc peffomled using user-friendly constnJcts, it would be very de- 
manding to expect the user to know SQL or any other query language. 
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the applications can learn where in the HSS their datasets re- 
side (i.e., in what parts of the storage hierarchy) without the 
need of specifying file names. They can also access the per- 
formance characteristics (e.g., speed, capacity, bandwidth) of 
the ASDs and select a suitable ASD (e.g., a disk sub-system 
consisting of eight separate disk arrays or a robotic tape de- 
vice) to store their datasets. Internal data strueturres used in 
the MDMS map ASDs to physical, storage devices (PSDs) 
available in the storage.hierarchy: 

* It stores information about the storage patterns (storage lay- 
outs) of data sets. For example, a specific multidimensional 
array that is striped across four disk devices in round-robin 
manner will have an entry in the MDMS indicating its stor- 
age pattern. The MDMS utilizes this information in a num- 
ber of ways. The most important usage of this informatioh, 
however, is to decide a parallel'l/O method based on access 
patterns (hints) provided by the application. By comparing 
the storage pattern and access pattern ofa  dataset, the MDMS 
can, for example, advise the HSS to perform collective I/O 
[15] or prefetching [18] for this dataset. 

* It stores information about the pending access patterns. It 
utilizes this information in taking some global data move- 
ment decisions (e.g., file migration [36, 13] and prestaging 
[36, 13]), possibly involving datasets from multiple applica-. 
tions. 

• It keeps recta-data for specifying access history and trail of 
navigation. This information can then be utilized in selecting 
appropriate optimization policies in successive runs. 

Overall, the MDMS keeps vital information about the datasets 
and the storage devices in the HSS. Note that the MDMS is not 
merely a data repository but also an active component in the overall 
data management process. It communicates with applications as 
well as the HSS and can influence the decisions taken by both. 

The MDMS design consists of the design of database tables 
and the design of a high-level MDMS API. The database tables 
keep the meta-data that will be utilized in performance-oriented 
I/O optimizations. The MDMS API, on the other hand, presents 
an interface to the clients of the MDMS. They are described in the 
subsequent subsections. 

2.1 MDMS Tables 

We have decided that, to achieve effective I/O optimizations auto- 
matically, the MDMS should keep five (database) tables for each 
application. These are run table, storage pattern table, access pat- 
tern table, dataset table, and execution table. Since, in our environ- 
ment, a single user might have multiple applications running, shar- 
ing tables among different applications would not be a good imple- 
mentation choice because it might slow down the query speed when 
tables become large. In our implementation, we construct a ta- 
ble name by concatenating the application name and a fixed, table- 
specific name. Consequently, each application has its own suite of 
tables. For example, in an astrophysics application (called astro3d 
henceforth), the table names are astro3d-run-table, astro3d-access- 
pattern-table, and so on, while in a parallel volume rendering appli- 
cation (called volren henceforth), they are volren-run-table, volren- 
access-pattern-table, and s o forth. The tables with same fixed table 
name (e.g., dataset table) have the same attributes for different ap- 
plications except the run table, which is application specific: the 
user needs to specify interesting attributes (fields) for a particular 
application in the run table. For example, in astrod3d, the run table 
may contain the number of dimensions and the dimension sizes of 
each array, the total number of iterations, the frequency of dumping 
for data analysis, the frequency of check-point dumping, and so on. 
The functionality of each table is briefly summarized in Table 1. 

A p p l ~ t i o l t  t a b l e  

. ~¢mllom I*I~ I pattern ~ b l e  
. . . . .  J . . . . . . . . .  I .r I 

1 ~ Z 0 001. 1 ~ 4  . 

/ *  I ~ ) ~ q o ,~:~md,.,w'o3,t~z.oOs ~,"r ' 

Figure 3: Internal representation in MDMS. 

Note that, among these tables, the execution table is the most fre- 
quently updated one. It is typically updated whenever the applica- 
tion in question dumps data on disk/tape for visualization and data 
analysis purposes. The run table, on the other hand, is updated once 
for each run (assigning a new run-id to each run). The dataset table 
keeps the relevant information about datasets in the application, the 
access pattern table maintains the access pattern information and 
the storage pattern table keeps information about storage layouts of 
the datasets. An advantage of using an OR-DBMS [32] in build- 
ing the MDMS is being able to use pointers that minimize meta- 
data replication, thereby keeping the database tables in manageable 
sizes. The MDMS also has a number of global (inter-application) 
tables to manage all applications, such as application table, which 
records all the application names, their host machines, and so on 
in the system, visualization table, where location of visualization 
tools can be found, and storage devices table, which maps ASDs to 
PSDs. An example use of our five database tables is illustrated in 
Figure 3. 

2.2 MDMS API 

The MDMS API, which consists of a number of MDMS functions, 
is in the center of our programming environment. Through this 
API, the programs can interact with the database tables without 
getting involved with low-level SQL-like commands. Our MDMS 
library is built on top of MPI-I/O [9], the emerging parallel I/O 
standard. MPI-I/O provides many I/O optimization methods such 
as collective I/O, data sieving, asynchronous I/O, and so forth. But 
for most computational scientists with little knowledge of FO op- 
timizations and storage devices, it is very hard to choose the ap- 
propriate I/O routines from among numerous complicated MPI-FO 
functions. Our MDMS API helps users choose the most suitable 
I/O functions according to user-specified data access pattern in- 
formation. In this environment, an access pattern for a dataset 
is specified by indicating how the dataset is to be shared and ac- 
cessed by parallel processors. For example, an access pattern such 
as ( B l o c k ,  *) says that the two-dimensional dataset in question 
is divided (logically) into groups of rows and each group of rows 
will be accessed by a single processor. These patterns are also 
used as storage patterns. As an example, for a two-dimensional 
disk-resident array, a ( B l o c k ,  *) storage pattern corresponds to 
row-major storage layout (as in C), a (*,  B l o c k )  storage pattern 
corresponds to column-major storage layout (as in Fortran), and a 
(Block, Block) storage pattern corresponds to blocked storage 
layout which might be very useful for large-scale linear algebra ap- 
plications whose datasets are amenable to blocking [35]. Our expe- 
rience with large-scale, I/O-intensive codes indicates that, usually, 
the users know how their datasets will be used by parallel proces- 
sors; that is, they have sufficient information to specify suitable 
access patterns for the datasets in their applications. Note that con- 
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Table Name Run table 
Dataset table 
Access pattern table 
Storage pattern table 
Execution table 

' ' ~an~onalit~ .... 
Records each run of the applieati6n with '-~ 
uSer-specified attributes 
Keeps information about the datasets used each tun 
Keeps the access pattern specified by user for 
each dataset 

information on how data stored for each datasci ' Keeps 
Records ~0 activities of the run, 
including file path and name, offset, etc. 

run id + association id 
run id + damset name I 

~ eataset name 
run id + data.set + ite~ratiota 
number 

Table I: F u n c t i o n a l i t y  o f  database tables maintained in  the MDMS. 

User specified ~ Data Storage Acce~ Pattern ~ Pattern 
~ ~ ~ 1  ~ I / O  Optimhations 

Figure 4: S e l e c t i n g  a n  I/O optimization. 

veying an access pattern to the MDMS can be quite useful, as the 
MDMS can compare this access pattern with the storage pattern 
of the dataset (which is kept in the storage pattern table), and can 
decide an optimal I/O access strategy. 

For instance, an example use of this information might occur 
in the following way. If the user is going to access a dataset in a 
( B l o c k ,  B l o c k )  fashion while the dataset is stored, say in a file 
on disk, as (Block, *), the MDMS will automatically choose the 
MPI-I/O collective I/O function to achieve better performance. Our 
library also provides other !/O optimization methods that are not 
found in MPI-I/O but can be built on top of MPI-IO using the ac- 
cess pattern information such as data prefetching (from disk or tape 
to memory), data prestaging (from tape to disk) and subfiling (for 
tape-resident data) [25]. For example, when the user is going to ac- 
cess a sequence of datasets and perform some computation on them 
sequentially, our library can overlap the I/O access and computation 
by prefetching or prestaging the next dataset while the computation 
on the current dataset continues. As another example, if the user 
will access a small chunk of data from a large tape-resident dataset, 
our tape library, APRIL [25], will be called to achieve low latency 
in tape accesses. Another feature of the MDMS is that we provide 
mechanisms to locate the data by dataset names, such as tempera- 
ture or pressure rather than using file name and offset. The user can 
also query the MDMS to locate datasets in which she has particu- 
lar interest and to devise application-specific access strategies for 
these datasets. Figure 4 depicts a sketch of how an I/O optimiza- 
tion decision is made. In short, comparing the access pattern and 
storage pattern, and having access to the information about the lo- 
cation of the dataset in the storage hierarchy, the MDMS can decide 
a suitable I/O optimization. 

Note that, in our environment, the users' task is to convey the 
access pattern information to the MDMS and let the MDMS se- 
lect a suitable I/O strategy for her. In addition to inter-processor 
access pattern information (hin0, the MDMS also accepts infor- 
mation about, for example, whether the dataset will be accessed 
sequentially, whether it is read-only for the entire duration of the 
program, and whether it will be accessed only once or repeatedly. 
An important problem now is in what part of the program the user 
should convey this information (hints). While one might think that 
such user-specified hints should be placed at the earliest point in 
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Figure 5: A typical MDMS e x e c u t i o n  f low.  

the program to give the MDMS maximum time to develop a corre- 
sponding I/O optimization strategy, this may also hurt performance. 
For example, in receiving a hint, the MDMS can choose to act upon 
it, an activity that may lead to suboptimal FO strategies had we 
considered the next hint. Therefore, sometimes delaying hints and 
issuing them to MDMS collectively might be a better choice. Of 
course, only the correlated hints must be issued together. While 
passing (access pattern) hints to file systems and runtime systems 
was proposed by other researchers [26, 23, 28], we believe that 
this is the first study that considers a large spectrum (variety) of 
performance-oriented hints in a unified framework. 

The functions used by the MDMS to manipulate the database 
tables are given in Table 2. Figure 5, on the other hand, shows a 
typical flow of calls using the MDIdS. These routines are meant to 
substitute the traditional Unix I/O functions or MPI-IO calls that 
may be used by the programmers when they want to read or dump 
data. They look very similar to typical Unix I/O functions in ap- 
pearance, so the users do not have to change their programming 
practices radically to take advantage of state-of-the-art I/O opti- 
rnlzations. The flow of these functions can be described as follows. 

(1) Initialization The MDMS flow starts with a call to the ini- 
tialization0 routine. 

(2) Write The write operations start with create-association0 
that creates an association for the datasets that can be grouped 
together for manipulation. The create-association0 returns 
an association-id that can be Used later for collectively ma- 
nipulating all the associated datasets. The subsequent func- 
tion for the write operations is the save-initial0 routine. This 
can be thought of as 'file open' command in Unix-like I/O. 
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Name 
initialization() 
create-association() 

get-associat£on|) 

s e t - z x m - e a b Z e ( )  ~= 
load-initial()~. 

load() 

load-final() 
save-initial() 

save() 

save-final() 

Functionality " :~'-" 
Initializes theMDMS environment 
Creates an association for :~, 
the damsets with same bei~vlor 
Obtains the association for . ,~ 
the damsels 

:~hdd~; a row i,aale nm ~bie . . . .  
, Deteflnines the file name and offset 
of the damset; Opens tim-Hie.; . 
Determines I/0 optimization method 
Determines whether p~fetching 
should be performed; 
Performs I/0 (read) 
Closes the files involved 
Generates file names; Opens 
files for write; Determines I/0 
optimization method such as 
collective I/O, data sieving 
Writes dataset 

Closes the files involved 

, , u r  , ¢  11 , 

lmperUmt Parameters 
Application name 
Damset nlane, 
~ s s  ~ ,u, ern 

amsct nine.  "~ 
a c ~ s  p aUcrn ..... 

i i i  

Association handle 

Association handle 

Association handle 
Association handle 

Dataset, 
Association handle 
Association handle 

Tables Involved 
Application table 
Data~t table 

Run table 
Execution table, 
Access pattern table, 
Stork, e pattern table 
None 

None 
Execution table, 
Access pattern 
table, Storage 
pattema table 
None 

Table 2: Functions used i n  t h e  MDMS. 

(3) 

Then, the user can use the save() function to perform data 
write operations to the storage hierarchy. Note that in tradi- 
tional Unix-like I/O, each dataset needs a 'tile open', while 
in the MDMS library, there is only one 'open': the save- 
initial() routine collectively opens all the associated datasets. 
The write operations are ended with save-final0 that corre- 
sponds to a 'file dose' operation in Unix-like I/O. 

R e a d  The read operations start with the get-association0 rou- 
tine that obtains an association handle generated by the create- 
association() routine during a previous write operation. The 
next function to continue the read operations is load-initial0 
which, again, corresponds to 'file-open' in Unix I/O. Then, 
the user can use the load() routine to perform read operations. 
The read operations are completed by the load-final0 func- 
tion. Note that the read and write operations can, of course, 
interleave. 

(4) Finalization The MDMS flow is ended with the finaliza- 
tion() routine. 

As stated earlier, the MDMS library provides transparent access 
to the database tables, thus users do not need to deal with thes¢ 
tables explicitly. The actions taken by the MDMS for a typical run 
session are as follows. 

(1) 

(2) 

A row is added to the run table by set-run-table0 to record the 
user-specified information about this run. Users can search 
this table by date and time to find information pertaining to a 
particular run. 

For the datasets having Similar characteristics such as the 
same dimension sizes, access pattern and so on, an asso- 
ciation is reared by create-association(). Each association 
with one or several datasets is inserted into the dataset ta- 
ble. The access pattern table and storage pattern table are 
also accessed by the create-association(): the access pattern 
and storage pattern of each dataset are inserted into these two 
tables, respectively. We expect the user to at least specify the 
access pattern for each dataset. Note that, depending on the 
program structure, a dataset might have multiple access pat- 
tems in different parts of the code. The MDMS also accepts 
user-specified storage pattern hints, If no storage pattern hint 
is given, the MDMS selects row-major layout (for C pro- 
grams) or column-major layout (for Fortran programs). 

(3) In load-init0, the file names, offsets, iteration number, etc. 
of a particular dataset are searched from the execution table. 

(4) In save-init0, the execution table may be searched to find out 
the file name for check-pointing. In save(), a row is inserted 
into execution table to record the current I/O activity. 

(5) Steps 3-.4 are repeated until the main loop where the I/O ac- 
tivity occurs is finished. 

3 Hierarchical Storage System 

The datasets that are generated by large-scale scientific applications 
might be too large to be held on the secondary storage devices per- 
manently: thus they have to be stored on tertiary storage devices 
(e.g., robotictape) depending on their access profile. In many tape- 
based storage systems, the access granularity is a whole file [36]. 
Consequently, even if the program tries to access only a section of 
the tape-resident file, the entire file must be transferred from the 
tape to the upper level storage media (e.g., magnetic disk). This 
can result in poor I/O performance for many access patterns. The 
main optimization schemes in the MDMS we have presented so far, 
such as collective I/O, prefetching and prestaging, could not help 
much when the user accesses only a small portion in a huge tape- 
resident dataset as the tape access times would dominate. In this 
section, we present an optimization technique called subfiling that 
can significantly reduce the I/O latencies in accessing tape-resident 
datasets. 

3.1 Subfil ing 

We have developed and integrated into the MDMS a parallel run- 
time library (called APRIL) for accessing tape-resident datasets ef- 
ficiently. At the heart of the library lies an optimization scheme 
called subfiling. In subfiling, instead of storing each tape-resident 
dataset as a single large file, we store it as a collection of small 
subtiles. In other words, the original large dataset is divided into 
uniform chunks, each of which can be stored independently in the 
storage hierarchy as a subtile. This storage strategy however, is 
totally transparent to the user who might assume that the dataset 
is stored in a single (logical) file. For read or write operations to 
the tape-resident dataset, the start and end coordinates should be 
supplied by the user. The MDMS, in turn, determines the set of 
subfiles that collectively contain the required data segment delim- 
ited by the start and end coordinates. These subfiles are brought 
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Figure 6: (a) Interaction between the library calls, MPI-IO, and 
HPSS. (b) Prefetching, prestaging, and migration. 

(using the APRIL API) from the tape to the appropriate storage de- 
vice and the required data segment is extracted from them and re- 
tunaed to the user buffer supplied in the I/O call. The programmer 
is not aware of the subfiles used to satisfy the request. This pro- 
vides a low-overhead (almost) random access for the tape-resident 
data with an easy-to-use interface. 

The interaction between the library calls and the I/O software 
layers is depicted in Figure 6(a). Our current access to a storage 
hierarchy that involves tape devices is through HPSS (High Perfor- 
mance Storage System) [13]. The required subfiles are transferred 
(in a user-transparent manner) using the HPSS calls from the tape 
device to the disk device and then our usual MDMS calls (built on 
top of MPI-IO) are used to extract the required subregions from 
each subtile. Figure 6(b) shows some of the potential I/O optimiza- 
tions between different layers. 

3.2 Experiments with APRIL 

We have conducted several experiments using the APRIL library 
API from within the MDMS. During our experiments, we have 
used the HPSS at the San Diego Supercomputing Center (SDSC). 
We have used the low-level routines of the SDSC Storage Resource 
Broker (SRB) [2] to access the HPSS files. Table 3 shows the ac- 
cess patterns that we have experimented with (A through H). It also 
gives the start and end coordinates of the access patterns as well 
as the total number of elements requested by each access. In all 
these experiments, the global tile was a two-dimensional matrix 
with 50000×50000 floating-point elements. The chunk (subtile) 
size was set to 2000x2000 (small chunks) and 4000×4000 (large 
chunks) floating-point elements. 

The results from our experiments are summarized in Table 4. 
The table gives the response times (in seconds) of the naive scheme 
(i.e., without subtiling) and the percentage gains achieved by our li- 
brary using two subtile sizes (as given above) over the naive scheme. 
The results show that the library can, in general, bring about sub- 
stantial improvements over the naive scheme for both read and 
write operations. The performance degradations in some patterns 
are due to the fact that in those cases the original tile storage pat- 
terns (i.e., without subtiling) were very suitable for the access pat- 
terns and the subtiling caused extra file seek operations. We plan to 
eliminate these problems by developing techniques that help to se- 
lect optimal subtile shapes given a set of potential access patterns. 
Our initial observation is that the techniques proposed by Sarawagi 
[30] might be quite useful for this problem. 

4 Design of the Integrated Java Graphical User Interface 

As it is distributed in nature, our application development environ- 
ment involves multiple resources across distant sites. For example, 

Access 
PaUern 

A 

B 

C 

D 

E 

F 

G 

H 

Start 
Coordinate 

(0 ,  O) 

(o, o) 

End 
Coord ina te  

nsIffJlllffsI~ 

( 0 , 0 )  ( 2 4 0 0 0 , 1 0 0 0 )  

(5000,5000) (6000,6000) 
(o,o) (50000,80) 
(0,0) 
(o,o) 

( 6 0 0 0 , 6 0 0 0 )  

(80,50000) 
(looo,4ooo) 

Num of Float ing  
Point Elements  

1 * 10  ~ 

4 * 10  ~ 

24 * 10  ~ 

1 * 10  ~ 

4 * 10 ~ 

4 * 10  ~ 
4 * 10  v 

4 * 10  ~ 

Table 3: Access patterns used in the experiments. Each access 
pattern is delimited by a start coordinate and an end coordinate 
and contains all the data points in the rectangular region. 

let us consider our current working environment that consists of dif- 
ferent platforms and tools. We do program development using local 
HP or SUN workstations, the visualization tools used are installed 
on a Linux machine, our MDMS (database tables built on top of 
the Postgres DBMS) is located on another machine, and our paral- 
lel applications currently run on a 16-node IBM SP-2 distributed- 
memory message-passing architecture. Although these machines 
are within our department, they could be distributed across differ- 
ent locations in the Internet. 

When the user starts to work on such a distributed environment 
without the help of our application development system, she nor- 
mally needs to go through several steps that can be summarized as 
follows. 

(1) 

(2) 

Log on to IBM SP2 and submit the parallel application. 

When the execution of the application is complete, log on 
to the database host and use native SQL dialect to find the 
dataset that would be needed for visualization. 

(3) 

(4) 

(5) 

Once the required dataset has been found, transfer the as- 
sociated fie(s) manually, for example using ftp, from SP2 
(where data are located) to the visualization host (where vi- 
sualization tools reside). 

Log on to the visualization host (Linux machine) and start 
the visualization process. 

Repeat the steps 2-4 as long as there exist datasets to be vi- 
sualized. 

Obviously, these steps might be very time-consuming and in- 
convenient for the users. To overcome this problem (which is due 
to the distributed nature of the environment), an integrated Java 
graphical user interface (IJ-GUI) is implemented and integrated to 
our application development environment. The goal of the IJ-GUI 
is to provide users with an integrated graphical environment that 
hides all the details of interaction among multiple distributed re- 
sources (including storage hierarchies). We use Java because Java 
is becoming a major language in distributed systems and it is easy 
to integrate Java in a web-based environment. Java also provides 
the tools for a complete framework that addresses all aspects of 
managing the process of application development: processes and 
threads, database access, networking, and portability. In this envi- 
ronment, the users need to work only with IJ-GUI locally, rather 
than go to different sites to submit parallel applications or to do file 
transfers explicitly. Figure 7 shows how IJ-GUI is related to other 
parts of our system. It actively interacts with three major parts of 
our system: with parallel machines to launch parallel applications, 
with the MDMS through JDBC to help users query recta-data from 
databases, and with visualization tools. The main functions that 
IJ-GUI provides can be summarized as follows. 
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Access Times 
Pattern w/o 

chunking 
' ' A  2774.0  

B 2805.9  
c 296o.3 
D 3321.2  
E 151.7  
F 138723.3  
G 11096.3 
H 5095 .2  

~Vrite Operalions 
Small Large 

Chtmk Chunk 
Gain  (%) Gain (%) 

96.1 94.5  
83 .8  84.9  

8.8 37.9 
96.7  95.4  

- -3525.1  - -2437 .6  
96 .0  97.2 
95.9  96.4  
91.2 96.5 

Willies 
w/o 

chunking 
784.7 
810.1 
793.3 
798 .4  
165.2  

39214.1  
3242.9  
1612.9 

Small Large  
Chunk Chunk 

~ ~a5.2 i 77.1 
43.2 55.~ 

" - -240 .5  - -172 .4  
84.1 79 .7  

- -3229 .3  - -2623 .9  
85.9 88.~ 
88.3 88.~ 
76.6 89.9 

Table 4: Execution times and percentage gains for write and read operations. The second and the fifth columns give the times for the 
naive I/O (without subfiling) in seconds. The remaining columns (except the first one) show the percentage improvements over the 
naive I/O method when subfiling is used. 

Figure 7: Java GUI and the overall system. 

• Registering new applications To start a new application, the 
user needs to create a new suite of tables for the new ap- 
plication. Using the IJ-GUI, the user needs only to specify 
attributes (fields) of the run table and all other tables (e.g., 
storage pattern table, execution table, etc.) will be created 
automatically using the information provided in the run ta- 
ble. 

• Running applications remotely The applications typically 
run on some form of parallel architecture such as IBM SP2 
that can be specified by the user when she registers a new 
application. Therefore, a remote shell command is used in 
IJ-GUI to launch the job on remote parallel machines. The 
user can also specify command line arguments in the small 
text fields. Defaults are provided and the user can change 
them as needed. The running results will be returned in the 
large text area. 

• Data Analysis and Visualization Users can also carry out 
data analysis and visualization through the IJ-GUI. In gen- 
eral, data analysis is very application-specific and may come 
in a variety of flavors. For some applications, data analysis 
may simply calculate the maximum, minimum, or average 
value of a given dataset whereas, for some others, it may be 
plugged into the application and calculate the difference be- 
tween two datasets and decide whether the datasets should be 
dumped now or later. The current approach to the data anal- 
ysis in our environment is to calculate the maximum, mini- 
mum, and arithmetic means of each dataset generated. From 
the IJ-GUIs point of view, this process is no different than 

submitting a remote job. Visualization, on the other hand, is 
an important tool in large-scale scientific simulation, help- 
ing the users to inspect the inside nature of datasets. It is in 
general slightly more complicated than data analysis. First 
of all, the users' interests in a particular data set may be very 
arbitrary. Our approach is to list all the candidate datasets by 
searching the database using the user-specified characteris- 
tics such as maximum, minimum, means, iteration numbers, 
pattern, mode, and so on. Then, the candidates are presented 
in a radio box for the user so that she can select the dataset 
she wants. Second, the datasets are created by parallel ma- 
chines, and they are located on parallel machines or stored in 
hierarchical storage systems. But our visualization tools are 
installed in different locations. Therefore, inside IJ-GUI, we 
transparently copy the data from the remote parallel machine 
or hierarchical storage systems to the visualization host and 
then start the visualization process. The user does not need 
to check the MDMS tables explicitly for interesting datasets 
or perform data transfers manually. The only thing that she 
needs to do is to check-mark the radio box for interesting 
datasets, select a visualization tool (vtk, xv, etc.), and finally, 
click the visualization button to start the process. The cur- 
rent visualization tools supported in our environment include 
Visualization Toolkit (vtk), Java 3D, and xv. Figure 8 shows 
how the user visualizes datasets through vtk and xv. 

Table browsing and searching Advanced users may want 
to search the MDMS tables to find the datasets of particular 
interest. Therefore, the table browsing and searching func- 
tions are provided in the IJ-GUI. The user can just move the 
mouse and pick a table to browse and search the data without 
logging on to a database host and typing native SQL script. 

Automatic Code Generator Our IJ-GUI relieves users great 
burden of working in a distributed system with multiple re- 
sources. For an application that has already been developed, 
the user would find it very easy to run her application with 
any parameters she wants: she can also easily carries out data 
analysis and visualization, search the database and browse 
the tables. For a new application to be developed, however, 
although our high-level MDMS API is easy to learn and use, 
the user may need to make some efforts to deal with data 
structure, memory allocations and argument selections for 
the MDMS functions. Although these tasks may be consid- 
ered routine, we also want to reduce them to almost zero by 
designing an Automatic Code Generator (ACG) for MDMS 
API. The idea is that given a specific MDMS function and 
other high-level information such as the access pattern of 
a dataset, ACG will automatically generate a code segment 
that includes variable declarations, memory allocations, vari- 
able assignments and identifications of as many of the argu- 
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Figure 8: A visualization example. The upper window shows 
the datasets along with their characteristics such as data sizes, 
iteration number (in which they are dumped), offset, pattern, 
and so on. These datasets are chosen by the user for visualiza- 
tion. The lower windows show the visualization results for two 
different datasets, each using a different visualization tool. 

Table 5: Total I/O times (in seconds) for astro2d application (Data 
set size is 256 MB). 

II 113'-I--I O r i g i n a l  23.46 39.67 
Opt imized  14.05 11.23 

ments of that API as possible. The most significant feature 
of ACG is that it does not just works like a MACRO which is 
substituted for real codes: it may also consult databases for 
advanced information if necessary. For example, to gener- 
ate a code segment for set-run-table(), which is to insert one 
row into the run table to record this run with user-specified 
attributes, our ACG would first search the database and re- 
turn these attributes, then, it uses these attributes to fill out 
a pre-defined data structure as an argument in function set- 
run-table0. Without consulting the database, the user has tO 
deal with these attributes by hand. Our ACG is integrated 
within our IJ-GUI as part of its functions. The user can sim- 
ply copy the code segment generated and paste them in her 
own program. 

Currently, the IJ-GUI is implemented as a stand-alone system, 
we are in the process of embedding it into the web environment, 
so the user can work in our integrated environment through a web 
browser. 

5 Experiments 

In this section, we present some performance numbers from our 
current MDMS and IJ-GUI implementations. The experiments were 

Table 6: Total I/O times (in seconds) for astro3d application (Data 
set size is 8 MB). 

Original 109.93 211.47 
optimized 3.33 3.51 

Table 7: Total I/O times (in seconds) for the unstructured code 
(Data set size is 64 MB). 

ii ¸ O r i g i n a l  II ~7.61 I 488.13 
, O~ t im, i=ea .  1 : l . Z t l ,  z13 

run on an IBM SP-2 at Argonne National Lab. Each node of the 
SP-2 is RS/6000 Model 390 processor with 256 megabytes mem- 
ory and has an gO subsystem containing four 9 gigabytes SSA 
disks attached to it. 

We used four different applications: three of them are used to 
measure the benefits of collective I/O for disk-resident datasets; the 
last one is used to see how prestagiug (i.e., staging data from tape 
to disk before they are needed) performs for tape-resident data and 
how prefetching (i.e., fetching data from disk to memory before 
they are needed) performs data already on disks. The current im- 
plementation of the APRIL library uses HPSS [13] as its main HSS 
interface to tape devices. I-IPSSis a scalable, next-generation stor- 
age system that provides standard interfaces (including an API) for 
communication between parallel processors and mass storage de- 
vices. Its architecture is based on the IEEE Mass Storage Refer- 
ence Model Version 5 [12]. Through its parallel storage support by 
data striping, HPSS can scale upward as additional storage devices 
are added. 

Table 5 shows the total I/O times for a two-dimensional astro- 
physics template (a~ro2dynn the IBM SP-2. Here, O r i g i n a l  
refers to the code without collective I/O, and O p t i m i z e d  denotes 
the code with collective I/O. In all cases, the MDMS is run at North- 
western University. The important point here is that, in both the 
O r i g i n a l  and the O p t i m i z e d  versions, the user code is essen- 
tially the same; the only difference is that the O p t i m i z e d  ver- 
sion contains access pattern hints and I/O read/write calls to the 
MDMS. The MDMS automatically determines that, for the best 
performance, collective I/O needs to be performed. As a result, 
impressive reductions in I/O times are observed. Since the num- 
ber of I/O nodes are fixed on the SP-2, increasing the number of 
processors may cause (for some codes) an increase in the I/O time. 

Tables 6 and 7 report similar results for a three-dimensional 
astrophysics code (astro3d) and for an unstructured (irregular data 
access pattern) code, respectively. The results indicate two orders 
of magnitude improvement if collective I/O is used. 

Note that an experience d programmer who is familiar with file 
layouts and storage architectures can obtain the same results by 
manually optimizing these three applications using collective I/O. 
This requires, however, significant programming time and effort 
on the programmers' part. Our work and results show that such 
improvements can also be possible using a smart recta-data man- 
agement system and requiring users to indicate only access pattern 
information. 

Our next example is a parallel volume rendering application 
(volren). As in previous experiments, the MDMS is run at North- 
western University. The application itself, on the other hand, is 
executed at Argonne National Lab's SP-2 and the HPSS at San 
Diego Supereomputer Center (SDSC) is used as the HSS. In the 
O r i g i n a l  code, four data files are opened and parallel volume 
rendering is performed. In the O p t i m i z e d  code, the four datasets 
(corresponding to four data files) are associated with each other, 
and prestaging (from tape to disk) is applied for these datasets. Ta- 
bles 8 and 9 give the total read times for each of the four files for 
the Original and Optimized codes for 4 and 8 processor case, 
respectively. The results reveal that, for both 4 and 8 processor 
cases, prestaging reduces the I/O times significantly. We need to 
mention that, in every application we experimented with in our en- 
vironment, the time spent by the application in negotiating with the 
MDMS was less than 1 second. When considering the significant 
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Table 8: Total I/O times (in seconds) for volren on 4 processors 
(Data set size is 64 MB). 

I1 111 .Optimized i |  !1.90 ! 11.74 [ 20.10 1S.38 

Table 9: Total I/O times (in seconds) for volren on 8 processors 
(Data set size is 64 MB). 

I[ File No-+ 
Original 
Optimized II I I 1"4 ° II 10.74 6.23 4.49 6.42 

runtime improvements provided by I/O optimizations, we believe 
that this overhead in not great. 

Finally, we also measure the benefits of prefetching in vol- 
ren. We assume the datasets are stored on local SP-2 disks. In 
the Original code, four data files are opened and computations 
are performed sequentially. In the O p t i m i z e d  code, prefetch- 
ing (from disk to memory) is applied to the next data file when 
each processor is doing computation on the current data file. Con- 
sequently, the I/O time and computation time are overlapped. Ta- 
ble 10 shows the average read times for the four files for the O r i g i n a l  
and O p t i m i z e d  codes for 4 and 8 processor case, respectively. 
The results demonstrate that, for both 4 and 8 processor eases, 
prefetching decreases the I/O time by 15%. Actually, prefetching 
and prestaging are complementary optimizations. Our environment 
is able to take advantage of overlapping prestaging, prefetching, 
and computation, thereby maximizing the I/O performance. 

6 Related Work 

Numerous techniques for optimizing I/O accesses have been pro- 
posed in literature. These techniques can be ~lassified into three 
categories: the parallel file system and ran-time system optimiza- 
tions [21, 7, 9, 18, 20, 15], compiler optimizations [4, 19, 16], and 
application analysis and optimization [19, 6, 28, 16]. Brown et 
al. [5] proposed a meta-data system on top of HPSS using DB2 
DBMS. Our work, in contrast, focuses more on utilizing state-of- 
the-art I/O optimizations with minimal programming effort. Addi- 
tionally, the design flexibility of our system allows us to easily ex- 
periment with other hierarchical storage systems as well. The use 
of high-level unified interfaces to data stored on file systems and 
DBMS is investigated by Baru et al. [2]. Their system maintains 
recta-data for datasets, resources, users, and methods (access func- 
tions) and provides the ability to create, update, store, and query 
this recta-data. While the type of meta-data maintained by them is 
an extension of recta-data maintained by a typical operating sys- 
tem, our meta-data involves performance-related meta-data as well 
which enables automatic high-level I/O optimizations as explained 
in this paper. 

Table 10: Average I/O times (in seconds) for volren (Data set size 
is 2 MB). 

Original 2.27 1.34 
Optimized 1.91 i.15 

7 Conclusions 

This paper has presented a novel application development environ- 
ment for large-scale scientific computations. At the core of our 
framework is the M~adata Database Management System (MDMS) 
frameworh which~ases relational database technology in a novel 
way to support the computational science analysis cycle described 
at the beginning of this paper in Figure 1. A unique feature of our 
MDMS is that it relieves users from choosing best I/O optimiza- 
tions such as collective I/O, prefetching, prestaging, and so on that 
may typically exceed the capabilities of a computational scientist 
who manipulates large datasets. The MDMS itself is made useful 
by the presence of a C applicationprogramming interface (API) as 
well as an integrated Java Graphical User Interface (IJ-GUI), which 
eliminates the need for computational scientists to work with com- 
plex database programming interfaces such as SQL and its embed- 
ded forms, which typically varies from vendor to vendor. The IJ- 
GUI itself is a key component of the system that allows us to trans- 
parently make use of heterogeneously distributed resources without 
regard to platform. We also presented an optimization for tape- 
resident datasets, called subfiling, that aims at minimizing the I/O 
latencies during data transfers between secondary storage and ter- 
tiary storage. Our performance results demonstrated that our novel 
programming environment provided both ease-of-use and high per- 
forrnance. 

We are currently investigating other tape-related optimizations 
and trying to fully-integrate MDMS with hierarchical storage sys- 
tems such as HPSS. We are also examining other optimizations that 
can be utilized in our distributed environment when the user carries 
out visualization. Overall, the work presented in this paper is a first 
attempt to unify the best characteristics of databases, parallel file 
systems, hierarchical storage systems, Java, and the web to enable 
effective high-level data management in scientific computations. 
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