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Abstract

More and more parallel applications are running in a
distributed environment to take advantage of easily avail-
able and inexpensive commodity resources. For data in-
tensive applications, employing multiple distributed storage
resources has many advantages. In this paper, we present
a Multi-Storage I/O System (MS-I/O) that can not only ef-
fectively manage various distributed storage resources in
the system, but also provide novel high performance stor-
age access schemes. MS-I/O employs many state-of-the-art
I/O optimizations such as collective I/O, asynchronous I/O
etc. and a number of new techniques such as data location,
data replication, subfile, superfile and data access history.
In addition, many MS-I/O optimization schemes can work
simultaneously within a single data access session, greatly
improving the performance.

Although I/O optimization techniques can help improve
performance, it also complicates I/O system. In addition,
most optimization techniques have their limitations. There-
fore, selecting accurate optimization policies requires ex-
pert knowledge which is not suitable for end users who may
have little knowledge of I/O techniques. So the task of I/O
optimization decision should be left to the I/O system itself,
that is, automatic from user’s point of view. We present a
User Access Pattern data structure which is associated with
each dataset that can help MS-I/O easily make accurate I/O
optimization decisions.

1 Introduction

Data intensive applications have presented challenging
problems to computational scientists. A major problem is
the I/O performance when many datasets are stored and
frequently accessed. Over the years, scientists have de-
veloped techniques for I/O optimizations such as collective
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I/O [12, 33, 21, 8], prefetching [13, 11], data sieving [33, 8],
caching [6] and so on. But the performance problem still
persists because data intensive applications are generating
more data and the usage of these datasets is more frequent
than ever. In addition, the advantages of distributed sys-
tems have changed the traditional parallel computing en-
vironment toward employing multiple distributed compute
resources over the network [1, 16, 15, 14]. As far as I/O sys-
tem is concerned, employing multiple inexpensive and eas-
ily available storage resources in I/O system is a natural step
toward a distributed environment for data intensive comput-
ing. We have proposed a Multi-Storage Resource Architec-
ture in [28]. To fully take advantage of this novel architec-
ture, an I/O system should provide first an efficient way to
manage various local and remote resources in the system;
Second, an easy-to-use interface that observes user’s pro-
gramming practice; and finally and the most importantly,
high performance. User’s requirements may vary greatly
from application to application which demands the I/O sys-
tem be flexible enough to handle all the situations. Incor-
porating I/O optimization schemes already been developed
and finding new opportunities are important tasks for such
I/O systems.

Another important issue is how to make an accurate de-
cision among various I/O optimization candidates. It is not
that simple to achieve performance gain by turning on all
the optimization schemes and simply putting them together.
For example, if the application’s compute part is insignif-
icant, aggressive prefetching may not improve the perfor-
mance since there is little chance to overlap I/O and com-
putation. Another example is that if user’s access pattern
conforms to the data’s layout on storage, collective I/O may
incur extra internal communication overhead, so it is better
not to use collective I/O. In addition, we believe making an
I/O optimization decision should not be the task of the ap-
plication developers because first of all, user’s focus is the
application itself, she should not be diverted to the perfor-
mance problems of her applications; second, making deci-
sions among various optimization candidates requires ex-
pert knowledge, and therefore, it is not a trivial task. Unfor-
tunately, the existing I/O systems do require users with such
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kind of expertise. For instance, the MPI-IO [33, 32] pro-
vides more than 30 I/O functions, how to choose a suitable
function among them is not an easy task. Therefore, the de-
cision of I/O optimizations should be left to the I/O system
itself. On the other hand, the user has the best knowledge
of how her dataset will be stored and accessed, so user’s in-
volvement in decision making is very important. The key
here is that user’s involvement should be high-level, con-
cerning no underlying optimization techniques and specific
I/O functions.

Embarking on the ambitious goals stated above, we
make the following contributions in this paper:

� Present a Multi-Storage I/O System (MS-I/O) architec-
ture in a multiple storage resource environment.

� Present MS-I/O API and its meta-data management
mechanisms.

� Present a User Access Pattern structure to help MS-
I/O automatically make accurate I/O optimization de-
cisions.

The remainder of the paper is organized as follows. In
Section 2 we introduce the system architecture of our Multi-
Storage I/O system. We first present the reasons for incor-
porating multiple storage resources in I/O system, followed
by describing each component of MS-I/O architecture. In
Section 3 we introduce the database tables which is one
of important parts in MS-I/O and user programming inter-
face. In Section 4 we present the user access pattern struc-
ture and various optimization candidates. How these op-
timizations are selected according to user’s access pattern
are also presented. The performance numbers are presented
in Section 5. We first introduce our experimental environ-
ment, followed by experiment results for a number of exper-
iments. In Section 6, the related work is presented. Finally
we conclude the paper in Section 7.

2 System Architecture of MS-I/O

2.1 Advantages of Multiple Storage Resource Ar-
chitecture

In a traditional computing environment, the compute re-
source is tightly coupled with local file systems, i.e. us-
ing local disks as data storage. As data intensive appli-
cations, especially large-scale scientific applications may
have very large storage space requirement, people have to
employ large storage system such as tertiary storage sys-
tems (HPSS[11, 18], UniTree[35]) and large database sys-
tems (Oracle). In addition, these large storage resources
may no long tightly coupled with local compute resource:

they could be distributed over wide area network. A ma-
jor concern of accessing these storage resources is perfor-
mance. I/O (remote I/O) evaluation and optimizations are
more important than ever in such an environment. Both tra-
ditional I/O optimizations and new I/O techniques should be
employed. We have built a run-time library (SRB-OL)[29]
that provides a variety of state-of-the-art optimizations for
tertiary storage access (HPSS). Although these optimiza-
tions can significantly improve the performance compared
to naive approaches, further improvement is impeded by the
physical nature of storage media. For example, the tape
system such as HPSS requires a minimum of 20 to 40 sec-
onds to be ready to move the data and data transfer rate is
very slow compared to disks. The popular I/O optimiza-
tions such as collective I/O, data sieving and so on can not
eliminate this overhead when the data resides on tapes. In
general, the remote large storage archival systems suffer
from large data access latency, while, on the other hand,
the local fast storage systems suffer from limited storage
capacity. So the users have to satisfy the capacity require-
ment at the cost of loss of performance requirement. We
think this dilemma is rooted in the traditional single storage
resource architecture. In this architecture, the application
has only one storage resource available for storing user’s
data. The performance improvement would saturate even if
many state-of-the-art optimizations are applied. We believe
incorporating multiple storage resources in an I/O system
is a promising solution to address the tough performance
problems discussed above. We proposed a Multi-Strorage
Resource Architecture in [28] to tackle this problem. The
main advantages of this architecture are:

� First of all, it increases the logical storage capacity of
the system.

� Second, multi-storage resource system provides a
more flexible and reliable computing environment.

� Finally, as far as the performance is concerned, a multi-
storage resource system can provide new opportunities
for further performance improvement.

2.2 MS-I/O Architecture

The main task to exploit multiple storage resources dis-
cussed previously is to build a Multi-Storage I/O system
(MS-I/O). This I/O system should provide an easy-to-use
and uniform user interface, as well as storage selection
transparency. The design and implementation of our Multi-
Storage I/O system observe these requirements. Figure 1
shows the architecture of Multi-Storage I/O system. On the
top is the user application. At the bottom are various storage
resources such as local disks, remote disks, remote tapes
and so on. MS I/O, which sits between user application and
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storage resources, is a middleware that optimizes the data
flow between user application and storage resources. MS-
I/O consists of four components: Basic I/O routines, Opti-
mization Candidates, Databases and Optimization Decision
Maker. The functions of these components are described as
follows.

� (1) Basic I/O routines It provides basic and native I/O
interfaces to various storages. For example, the I/O
interface to local disks is usually UNIX I/O routines,
access to the remote disks is via Storage Resource Bro-
ker (SRB) [4, 3]. For the remote tape systems such as
HPSS, the interface could be HPSS API or SRB. These
native interfaces to storage access are not optimized for
parallel and distributed data access.

� (2) Optimization Candidates This layer provides
many state-of-the-art optimization schemes including
new techniques we developed recently. These opti-
mizations include collective I/O, prefetching, subfile,
superfile, asynchronous I/O, data location selection,
data replication, data access history and so on. One or

several schemes together can be applied to a data ac-
cess. The decision is made by Optimization Decision
Maker.

� (3) Optimization Decision Maker (ODM) The task
of decision maker is to make decisions on which op-
timization candidate/candidates should be utilized for
a data access. It is possible that multiple optimization
schemes can be applied simultaneously to a single data
access. The decision correctness is important since a
wrong decision may actually hurt the performance. To
make an accurate decision, ODM needs more infor-
mation about user’s usage of her datasets. These infor-
mation could come from two sources in our MS-I/O:
(1) user’s access pattern (Section 4) which describes
data’s current and future usage, and (2) database which
keeps the data’s access history. Knowing the past,
present and future of a data’s access, MS-IO is able
to make I/O optimization decision accurately and au-
tomatically. While in other I/O systems, the user has
to deal with optimization manually. This not only adds
extra burden to the user and even worse, user’s deci-
sion may not be accurate due to lack of knowledge.

� (4) Databases Incorporating database in I/O systems
has many advantages. First of all, it provides an easy
way to use and manage multiple resources in the sys-
tem. For example, large-scale scientific applications
may generate huge number of data files, effectively
managing file names and locations are a hard task.
By keeping these information in database, the user
can simply specify a dataset name which is convenient
and natural to her, and let the I/O system searches the
database to find file names, locations and paths etc.
Second, as far as performance is concerned, database
keeps user’s data access history and this information
can help make an optimization decision.

3 Database Tables and MS-I/O Routines

The main tables in MS-I/O database include run table,
shared data attribute table, dataset table, execution table and
performance table. Their functions are summarized as fol-
lows.

� Run table Records basic information of each run of
the application. The information includes location
(compute) of the experiment, problem size, I/O fre-
quency, date and time when the experiment starts and
so forth.

� Dataset table Keeps dataset names involved each run.
It also has an attribute to store the encoded user access
pattern for each dataset.
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� Shared data attribute table Keeps shared data at-
tributes for the datasets with the same association.
These data attributes include data dimension, data size,
I/O mode (read/write), data types and so on.

� Execution table Records I/O activities of the exper-
iment. For each I/O activity, records the storage lo-
cation of the I/O, file name, path, offset, optimization
policy used and so on.

� Performance table Records the timings of the exper-
iment, including total execution time, total I/O time,
total compute time. As we are more interested in the
I/O performance, the breakup of the total I/O time ac-
cording to storage resources is also provided: they are
local disk I/O time, remote disk I/O time and remote
tape I/O time. So after experiment, the performance
statics are automatically been collected. By inspecting
the performance table, the user can easily find where
the performance bottleneck is.

Figure 2 shows the basic MS-I/O flow. MS-I/O is easy to
learn and use because first of all, the design and implemen-
tation of MS-I/O observes UNIX programming convention,
the user does not need to change her programming prac-
tice; second, a MS-I/O routine may involve database ac-
cess, but it is transparent to the user; finally, it presents users
with a uniform interface although various I/O optimization
schemes are employed in the system. While in other I/O
systems such as MPI-IO, users have to explicitly choose dif-
ferent I/O routines to achieve high performance data access.
The functions of MS-I/O routines and their relationship to
databases are summarized as follows.

(1) MSIO-Init Initialize the global environment. It also
fills out run table when the experiment starts.

(2) MSIO-Create-Association For those datasets sharing
the same attributes such as data size, dimension, I/O
mode(read/write) and data types etc, create an associa-
tion id for them, insert a row into shared data attribute
table. Meanwhile, records each associated dataset in
dataset table.

(3) MSIO-Get-Association Get the shared data attribute
information before a read operation.

(4) MSIO-Open Open a MS-I/O object. The optimization
decisions are also made here. The decisions include
which storage resource should be responsible for the
data access, whether collective I/O, asynchronous I/O
etc. should be used or not. If the open is for read, the
execution table will be consulted to find the file name,
path, location and so on.

(5) MSIO-Write and MSIO-Read Perform actual I/O
operation to the selected storage resource. Each I/O
operation is recorded in the execution table.

(6) MSIO-Close Close the opened MS-I/O object.

(7) MSIO-Final Terminate a MS-I/O session. Put the per-
formance numbers in the performance table.

4 User Access Pattern for Optimization Deci-
sions

4.1 User Access Pattern

One of major tasks of MS-I/O is to automatically select
I/O strategies. On the other hand, user’s involvement in de-
cision making is crucial since only the user has the com-
plete picture of how and when her data will be stored and
accessed. But user’s involvement should be high-level, that
is, she only describes the features of her data usage, con-
cerning no low-level details of optimizations.

We developed a data structure called User Access Pattern
to help users provide data usage hint. The user access pat-
tern is associated with each dataset and is passed to MS-I/O
which then makes optimization decisions.

The key for MS-I/O to obtain a better picture of the usage
of a dataset is that the user provides the information of her
data usage as early as when the data is created. This can
help MS-I/O place the data on a better storage and in a better
way for future access. So the user access pattern includes
access patterns for both write and read operations. Table 1
shows the MS-I/O access pattern and its influence on the
optimization decisions.

Note that all the fields in Table 1 are natural to the user:
it only concerns the usage of the data, so it does not require
users any I/O optimization knowledge. One feature of this
write access pattern is that it includes user’s future usage in-
formation such as when the data will be used (WhenAccess),
how frequently it will be used (AccessFrequency) and how
large of it will be used (FutureReadSize). Providing this
kind of information can greatly help MS-I/O better place
the data favoring future usage (read)1.

4.2 Optimization Decision Making

The optimization schemes employed by MS-I/O include
some new approaches developed in MS-I/O such as data

1One question may arise for this user access pattern: how to define
large, small for data size and frequent or seldom for data use frequency
etc. We believe that there should be no absolute values to differentiate
them. Just like in natural language, the user decides these values according
to her own usage of data. Different users may specify different values
even for the same application with the same problem size, but that is fine
because the key of these hints is to make ‘hot’ data on a faster storage no
matter what the real size and use frequency are.
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Table 1. User Access Pattern Data Structure for Read and Write Operation.
Field R/W Description Values Influence

DataPartition R+W How the data is partitioned among processors. A BBB means BBB, B** collective I/O
the data is partitioned in a (Block, Block, Block) way BB, B*
among processors for a three dimensional array. etc.

WriteSize W How large the dataset will be generated. huge,large data location,
medium, small subfile,superfile

WriteSequence W Whether there are a sequence of data files (time yes/no superfile,
steps) for this dataset will be generated. asyn I/O

WhenAccess W When this dataset will be used (read). soon,long, data location,
never data duplication

AccessFrequency R+W How often this dataset will be accessed. frequent, data location
seldom,never data duplication

ComputeTime R+W Whether the compute time is a significant part. large, small asyn I/O
FutureReadSize W How large of the dataset will be accessed. whole/partial subfile
FutureReadSequence W Will a sequence of data files will be accessed. yes/no asyn I/O superfile
ReadSize R How large of the dataset will be accessed. whole/partial subfile
ReadSequence R Will a sequence of data files will be accessed. yes/no asyn I/O

superfile

Table 2. Decision Making Strategies.
Optimizations Conditions

Collective I/O DataPartition <>‘B**’
Data Location L = S +W + F

Asynchronous I/O ComputeT ime =‘large’
Subfile WriteSize =‘huge’ and

FutureReadSize =‘partial’
Superfile WriteSize =‘small’ and

WriteSequence =‘yes’
Data Replication Data Location is ‘remote disks’

or ‘remote tapes’, and current
AccessFreqency =‘frequent’

Data Access History Depending on access history,
an optimization may be applied

location, subfile[25], superfile2 and so on, as well as power-
ful well-known optimizations such as collective I/O, asyn-
chronous I/O etc. MS-I/O tries to combine multiple I/O
optimizations in a single I/O session automatically. In
this sub-section, we present how optimization decisions are
made by MS-I/O according to user’s access patterns.

For most optimization candidates, the decision is
straightforward. For example, to decide whether collective
I/O should be used, MS-I/O needs only to check whether
the data partition is consistent with the data’s storage lay-

2Due to the relative high overhead of creating/opening files in remote
storage systems such as remote disks and remote tapes, they are not suit-
able for storing large amount of small files typically found in digital library
systems. We created Superfile concept to handle this type of limitation.
The basic idea is that when these small files are created, we transparently
concatenate these small files into one large superfile. Later on, when the
user accesses these small files, the first read call will bring the whole large
superfile into main memory, so the subsequent read requests to other files
can be served directly from main memory, eliminating multiple remote
data accesses.

out: if not, the collective I/O is applied. Table 2 shows the
conditions to turn on an optimization candidate. The only
complicated decision is from data location, which decides
a storage resource responsible for storing a dataset, since
the decision is influenced by quite a few factors such as
WriteSize, WhenAccess and AccessFrequency, which
may suggest conflicting results. For example, a small
WriteSize may suggest a local disk; but if it will not be
accessed frequently, a remote storage resource such as a
remote disk or a remote tape would be more appropriate.
To make a reasonable trade-off among conflicting access
pattern fields, we developed a linear algorithm by properly
assigning positive and negative numbers to access pattern
fields. For example, the data location L can be given by

1. L = S +W + F ;
2. ifL < 0 then L = 0;
3. if(L > 2) and (L <> Infinite) then L = 2.
Where the values of S, W and F are as follows:

S(WriteSize) = 0 (small), 1 (medium), 2 (large) or
3 (huge); W (WhenAccess) = -1 (soon), 1 (long), Infi-
nite (never); F (AccessFrequency) = -1 (frequent), 1
(seldom), Infinite (never). So the value of L can be 0
(local disks), 1 (remote disks), 2 (remote tapes) or Infi-
nite (no storage). The trick of the above algorithm is that
we assign negative values to S and F when they prefer
a fast storage medium. For example, if a dataset is large
(S = 2), but it will be accessed shortly (W = �1) and
frequently (F = �1), then the combined result is L =
S + W + F = 2 � 1 = 0. So a local disk is chosen
to place the data. On the other hand, if a dataset is small
(S = 0), but it will be seldom accessed (F = 1) and not
used recently (W = 1), then the remote tape is selected
(L = S +W + F = 0 + 1 + 1 = 2).

Another significant feature of MS-I/O is that many opti-
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mization candidates in MS-I/O can coexist in a single I/O
session, so the performance improvement is more signifi-
cant than using only one single optimization scheme found
in many other I/O systems. For example, data location, col-
lective I/O, asynchronous I/O and data replication can co-
work in a single I/O access session.

5 Performance Evaluation

In this section, we present performance numbers. We
first introduce our experimental environment and applica-
tions, followed by experiment results.

5.1 Experimental Environment

The compute resource is an IBM SP-2 located at Center
for Parallel and Distributed Computing (CPDC) of North-
western University. Each node has 128 MB memory and
2 GB disk. The internal communication bandwidth is
24MB/sec. The storage resources (Figure 1) include:

� Postgres Database This database of MS-I/O is in-
stalled on a Linux machine at CPDC of Northwestern
University.

� Local Disks Local disks here refer to the disk storage
associated with SP-2. Local disks are the most pop-
ular traditional storage resource for saving user’s data
files. The basic I/O interface to local disks is UNIX
I/O routines.

� Remote Disks The remote disks in our environment is
located at San Diego Supercomputer Center (SDSC).
We use SDSC’s Storage Resource Broker (SRB) [4, 3]
as native interface to remote disks. Compared to local
disks, remote disks have both larger storage capacity
and data access latency.

� Remote Tapes The remote tape system we use in
our environment is High Performance Storage System
(HPSS) [11]. The remote tapes have very large storage
space and we assume it can hold any size of data. But
the cost to access tape-resident data is extremely ex-
pensive. So it is suitable to store large, permanent and
infrequently used data. The native interface to HPSS
could be SRB or HPSS internal API, we also use SRB
as native interface in this work.

5.2 Applications

Figure 3 shows our applications and tools which include
a data producer and several data consumers. It is a repre-
sentative of many scientific simulation environment.
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Figure 3. Data Flow of Applications.

The first application is an astrophysics application called
Astro3D or astro3d [23, 34] henceforth3. From I/O’s point
of view, Astro3D is a data producer: it generates three kinds
of datasets: one for later possible data analysis which in-
clude six datasets (press, temp, rho, ux, uy and uz); one
for visualization which includes seven datasets (vr-scalar,
vr-press, vr-rho, vr-temp, vr-mach, vr-ek and vr-logrho);
one for checkpoint which includes six datasets (restart-
press, restart-temp, restart-rho, restart-ux, restart-uy and
restart-uz). These datasets may be used by subsequent post-
processing programs. The user can specify in command line
the dump frequency of each kind of datasets, total number
of iterations (time steps) and problem size (3 dimensional).

The second application is a data analysis program. This
application is a data consumer in that it takes one of datasets
generated by Astro3D (press, temp, rho, ux, uy or uz)
and calculates the difference between two consecutive time
steps. This will show how dataset changes as simulation
goes on. The algorithm applied is Maximum Square Error
(MSE) between two consecutive time steps.

The third application is a parallel volume rendering code
(called Volren henceforth). It generates a 2D image by pro-
jection given a 3D input file. This application is both a
data consumer and data producer. It takes one of datasets
(3 dimensional) generated by Astro3D (vr-scalar, vr-press,
vr-rho, vr-temp, vr-mach, vr-ek or vr-logrho) and then per-
forms parallel volume rendering algorithm and generates a
two dimensional image data file for each iteration. This im-
age dataset is then dumped to storage for later usage. As the
output (writing 2D image files) is insignificant compared to
input (reading 3D dataset), we focus on the input part of
I/O, that is, we only view Volren as a data consumer in this
paper.

3Astro3D is a code for scalable parallel architectures to solve the equa-
tions of compressible hydrodynamics for a gas in which the thermal con-
ductivity changes as a function of temperature.
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5.3 Experiments

� (1) Data Analysis Suppose the user conducts an ex-
periment on Astro3d, and then choose a generated
dataset to carry out data analysis. In the first case,
the user does not provide any access pattern informa-
tion: this corresponds to the naive I/O systems without
any optimizations. So all the datasets are stored on re-
mote tapes. When the user carries out data analysis,
the data is read from remote tapes without any opti-
mizations. The total I/O time is show in Figure 4(1).
Then, the user realizes that her data is partitioned in
(Block, Block, Block), so she adds this information to
read access pattern: DataPartition = ‘BBB’ and run
data analysis program again. As data is partitioned
in (Block, Block, Block), collective I/O is applied by
MS-I/O. The performance improvement is significant
(Figure 4(2)). Further, if the user knows that one of her
datasets will be used soon and its size is large (prob-
lem size 1283), so she can pass these hints as WriteSize
= ‘large’ and WhenAccess = ‘soon’ when it is gener-
ated by Astro3d. This write access pattern will sug-
gest the data be placed on remote disks rather than re-
mote tapes. So when the user carries out data analysis,
the I/O time is show in Figure 4(3). Again, when col-
lective I/O is also applied by adding DataPartition =
‘BBB’, the performance is improved dramatically (Fig-
ure 4(4)). Finally, if the user knows that she will fre-
quently perform data analysis on the dataset, so she
further adds AccessFrequency = ‘frequent’ to the ac-
cess pattern, then the dataset will be placed on the local
disks. The I/O time of data analysis this time would be
Figure 4(5) and Figure 4(6) if DataPartition = ‘BBB’ is
also provided. We can see that the more access pattern
information the user provides, the more performance
improvement can be achieved.

� (2) Volume Rendering Similar to the last example,
our next example is the volume rendering application.
The data partition is B** which conforms the data’s
layout on storage, so there is no benefit for collec-
tive I/O. But the computation is an important part of
performance in this example, so the optimization poli-
cies include data location and asynchronous I/O. Fig-
ure 5 shows the performance numbers. Note that the
most significant performance improvement by asyn-
chronous I/O occurs between (3) and (4) on remote
disks since the computation time and I/O time are
closer than others, so there is more chance to over-
lap them. In other cases, either I/O dominates (1,2)
(remote tapes) or computation dominates (5,6) (local
disks) the performance, asynchronous I/O contributes
less percentage of performance improvement.

Figure 4. I/O Time of Data Analysis for Dif-
ferent Access Patterns. (1) No Access
Pattern (Remote Tape); (2) DataPartition =
‘BBB’ (Remote Tape + Collective I/O); (3)
WriteSize=‘large’ + WhenAccess=‘soon’ (Re-
mote Disk); (4) WriteSize=‘large’ + WhenAc-
cess=‘soon’ + DataPartition=‘BBB’ (Remote
Disk + Collective I/O); (5) WriteSize=‘large’
+ WhenAccess=‘soon’ + AccessFrequency =
‘frequent’ (Local Disk); (6) WriteSize=‘large’
+ WhenAccess=‘soon’ + AccessFrequency =
‘frequent’ + DataPartition = ‘BBB’ (Local Disk
+ Collective I/O).

� (3) Subfile If the user is going to create huge data files
(10243) and will only access a portion of it (sub-cube
512), the user can provides access pattern as WriteSize
= ‘huge’ and FutureReadSize = ‘partial’ when the data
is created, subfile optimization is used (subfile chunk
size 2563). Figure 6 shows the results when the data is
located at remote disks and remote tapes respectively.

� (4) Superfile If the user generates a sequence of small
files (512) and will access it in a sequence too, she
can provide access pattern as WriteSize = ‘small’ and
WriteSequence = ‘yes’ and FutureReadSequence =
‘yes’, then superfile technique is applied. The perfor-
mance improvement is show in Figure 6 for 10 and 20
small files respectively.

� (5) Data Replication The user’s access pattern may
change. For example, when a medium-sized dataset is
created, it is first placed on remote disks because the
user does not provide further information. The prob-
lem is that when the user starts to access it frequently,
the dataset has already been placed on remote disks:
other optimizations can hardly help in this case. By
making a local disk copy, Data replication of MS-I/O
can solve this problem. The user’s task is just provid-
ing the access pattern information such as AccessFre-
quency = ‘frequent’. MS-I/O will automatically du-
plicate the dataset on local disks when the data is first
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Figure 6. I/O Time for Subfile(left) and Superfile(right).

Figure 7. I/O Time for data replication(left) and data access history(right). Left: The user clearly
knows that she is going to access a remote dataset frequently, so she specifies her access pattern
information (AccessFrequency = ‘frequent’). A local copy is made when the dataset is first accessed (1).
Then the subsequent accesses will be served directly from local disks (2-6). Right: When the user
is not clear whether the dataset will be frequently accessed, MS-I/O detects from the database that
this dataset is accessed three times in half an hour (1-3) which means it is being frequently used,
therefore a duplicated copy is made on local disks (3). Then the subsequent accesses can avoid
remote data transfer (4-6).
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Figure 5. Execution time of Volren (1) No Ac-
cess Pattern (Remote Tape); (2) Compute-
Time = ‘large’ (Remote Tape + Asynchronous
I/O); (3) WriteSize = ‘large’ + WhenAccess =
‘soon’ (Remote Disk); (4) WriteSize = ‘large’
+ WhenAccess = ‘soon’ + ComputeTime =
‘large’ (Remote Disk + Asynchronous I/O); (5)
WriteSize = ‘large’ + WhenAccess = ‘soon’ +
AccessFrequency = ‘frequent’ (Local Disk);
(6) WriteSize = ‘large’ + WhenAccess = ‘soon’
+ AccessFrequency = ‘frequent’ + Compute-
Time = ‘large’ (Local Disk + Asynchronous
I/O).

access and the subsequent access requests can be ser-
viced directly from local disks (Figure 7 (left)).

� (6) Data Access History The same situation as last
example and in addition, the user is even not clear
whether a remote dataset will be frequently accessed,
our MS-I/O system can detect from the database that
whether the dataset is being accessed frequently (say
three times in half an hour) and it will automatically
create a replica on local disks. The subsequent ac-
cesses will benefit from local disks even the user does
not provide any new access pattern information (Fig-
ure 7 (right)).

6 Related Work

The related work can be divided into several groups.
One is parallel file systems, including IBM Vesta [9]

and PIOFS [10], Intel Paragon [26], PPFS [19] and so on.
These parallel file systems, either commercial or experi-
mental, take advantage of parallel I/O techniques, caching,
prefetching etc to achieve significant performance improve-
ment. The storage of these systems usually includes only
secondary storage resources and they are tightly coupled
with the compute nodes, so they do not scale well in capac-
ity with the increase of applications’ requirements. There-
fore, the storage capacity required by large-scale data inten-

sive applications could be a problem for these systems.
Another body of work includes run-time systems such

as MPI-I/O [33, 31], PASSION [8], PANDA [27] and oth-
ers [30, 5]. These systems provide high level structured in-
terfaces on top of low level native parallel file systems [20]
and try to match the applications’ data structure which is
usually multidimensional array. They also provide opti-
mizations such as collective I/O and data sieving to solve the
problems brought by native parallel file systems for many
popular access patterns. Again, these systems do not help
when application size increases.

The Grid [1, 16, 15] infrastructure will connect mul-
tiple regional and national computational grids, creating
a universal source of pervasive and dependable comput-
ing power that supports dramatically new classes of ap-
plications. To address the data management problem of
Grid, the Data Grid [7] has proposed some design prin-
ciples of storage systems and data management for large
data collections. Other data management systems can be
found in [3, 30, 4, 17, 24]. Generally, these systems use
database’s query capability to automatically keep track of
huge amount of datasets generated by data intensive appli-
cations. However, how to effectively incorporate state-of-
the-art I/O techniques with data management system is not
well addressed in these systems.

The last group of work is the study on access pat-
terns [22] in Pablo project [2]. Their work, however, is lim-
ited to only a small number of features about the data’s us-
age, many other important access pattern information such
as data’s partition, access frequency etc are missing. In ad-
dition, the I/O optimizations of their work are limited to
prefetching and caching in the secondary storage environ-
ment.

7 Conclusions and Future Directions

In this paper, we have presented a Multi-Storage I/O Sys-
tem which employs multiple distributed storage resources
for high performance data intensive computing. MS-I/O
is a scalable, multi-threaded, multi-storaged and multi-
optimized I/O system. One of significant features of this
I/O system is that the datasets generated by one application
could be spread on different storage resources even within a
single run of the application and this feature can bring new
optimization opportunities which is impossible in the tradi-
tional single storage environment. A User Access Pattern
structure has also been presented to help MS-I/O automat-
ically and accurately choose I/O optimization strategies, so
the user is released from hard task of I/O decisions.

From the experiments we can easily see that access-
ing data locally can bring more performance improvement
than other optimization approaches. Unfortunately, local
resources usually have limited storage space available for
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many users. Therefore, increasing local storage space to
place more frequently used data locally is crucial for large-
scale data intensive applications. Fortunately, the opportu-
nity does exist since we have found that there are a lot of
local storage resources that have not been fully utilized in a
typical computing environment.
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