
DPFS: A Distributed Parallel File System

Xiaohui Shen and Alok Choudhary
Center for Parallel and Distributed Computing

Department of Electrical and Computer Engineering
Northwestern University, Evanston, IL 60208

fxhshen,choudharg@ece.nwu.edu

Abstract

One of challenges brought by large-scale scientific ap-
plications is how to avoid remote storage access by collec-
tively using enough local storage resources to hold huge
amount of data generated by the simulation while provid-
ing high performance I/O. DPFS, a Distributed Parallel
File System, is designed and implemented to address this
problem. DPFS collects locally distributed unused stor-
age resources as a supplement to the internal storage of
parallel computing systems to satisfy the storage capac-
ity requirement of large-scale applications. In addition,
like parallel file systems, DPFS provides striping mecha-
nisms that divides a file into small pieces and distributes
them across multiple storage devices for parallel data ac-
cess. The unique feature of DPFS is that it provides three
file levels with each file level corresponding to a file strip-
ing method. In addition to the traditional linear strip-
ing method, DPFS also provides a novel Multidimensional
striping method that can solve performance problems of lin-
ear striping for many popular access patterns. Other is-
sues such as load-balanceing and user interface are also
addressed in DPFS.

1 Introduction

Data intensive applications have presented challenging
problems to current parallel computing systems especially
I/O sub-systems. One of major problems is the storage ca-
pacity. The tremendous increase of data volume of mod-
ern scientific applications has significantly out-paced the in-
crease of native storage devices (secondary storage system)
of parallel computing systems. Employing external stor-
age resources is a promising solution. A major problem,
however, of accessing these remote storage resources is per-
formance. The data has to move a long distance over net-
works. For example, the HPSS and disk storage resources
available for us are located at San Diego Supercomputer
Center (SDSC), while our computing systems are located
at Argonne National Laboratory and Northwestern Univer-
sity. To address the problems of storage capacity and perfor-

mance brought by large-scale data intensive applications, an
I/O sub-system should be able to (1) employ external stor-
age resources in a locally distributed environment that are
easily available to relieve contention at internal native stor-
age of parallel computing systems. Although purchasing
new storage could be a solution, it is neither economical nor
convenient; (2) employ high performance I/O techniques
such as parallel I/O to address performance problems.

Based on the above observations, we are motivated to
design and implement a Distributed Parallel File System
(DPFS). The features of DPFS are highlighted as follows.

� Distributed DPFS is distributed because it collects
distributed storage resources from networks. The
chance to aggregate sufficient storage volume for
large-scale data intensive applications exists since in
a typical computing environment, there are many local
storage resources not being fully used.

� Parallel DPFS adopts parallel I/O techniques to
achieve high performance. By striping the file across
multiple storage devices, parallel processes can ac-
cess their portion of data from different storage de-
vices simultaneously. In addition to the general strip-
ing method found in many parallel I/O systems, DPFS
also proposes novel striping methods such as multi-
dimensional striping and array striping that can take
hints from users to help better place and organize data
on storage.

� File System DPFS is designed and implemented as a
general file system. It provides an Application Pro-
gramming Interface (API) to help users easily to store
and access data over distributed storage devices and
provide storage location transparency as well.

� Database A significant feature of DPFS that distin-
guishes it from other parallel file systems is that it uses
databases to store meta-data of file system. Database
makes the meta-data management easily and reliably
in a distributed environment.

Fundamentally, DPFS tries to combine the advantages
of Distributed File System (DFS) and Parallel File System

1

Proceedings of the 2001 International Conference on Parallel Processing (ICPP’01)
0190-3918/01 $10.00 © 2001 IEEE

Parallel
File System
(DPFS)

Native
Parallel
File System

P

Disk

Memory

P

Disk

Memory

P

Disk

Memory

Disk

Disk

DistributedMemory

Resource

P

Disk

Memory

P

Disk

Memory

P

Disk

Memory

P

L
oc

al
 F

ile
 S

ys
te

m

L
oc

al
 F

ile
 S

ys
te

m

L
oc

al
 F

ile
 S

ys
te

m

Networks (TCP/IP)

P

Memory

Parallel
Computing

Figure 1. System Architecture of DPFS.

DPFS Server Program

Local File System API
Server

Networks

DPFS Client Library (API)

Parallel Applications

Database

(Socket, Winsock etc)
Communication API

DPFS Meta Data

Client

Figure 2. Architecture of DPFS from Software’s
Point of View.

(PFS) with the aid of databases to satisfy both storage ca-
pacity and performance requirements of large-scale parallel
applications.

The reminder of paper is organized as follows. In Sec-
tion 2 we describes the overall architecture of DPFS. In
Section 3 we present three striping methods employed by
DPFS. In Section 4 we present the striping algorithms
and an optimization called request combination is also de-
scribed. In Section 5 we introduce the meta data manage-
ment of DPFS and database tables. In Section 6 we present
DPFS API. We describes user interface of DPFS in Sec-
tion 7. In Section 8 we show the performance numbers and
In Section 9 we introduce the related work. We conclude
the paper in Section 10.

2 Architecture of DPFS

DPFS adopts Client-Server architecture: the client (com-
pute node) sends requests to the server (I/O node) whenever

it needs to perform input or output. The server which re-
sides on a specific storage device is responsible for sending
the requested data to the client or storing data from the client
on local storage. The parallelism can be found when multi-
ple servers work in parallel to service clients’ requests. The
concurrency exists on each server since multiple requests
from clients to the server can be serviced concurrently by
server’s spawning multiple processes or threads to handle
them. The parallelism and concurrency of servers are the
key contributions to high performance in DPFS. Figure 1
shows the overall system architecture of DPFS. This archi-
tecture can be grouped into several layers.

� Parallel Computing Resource At the top is the par-
allel computing resource, which could be distributed
memory systems such as IBM SP2, Network Of Work-
stations (NOW) and shared memory systems such as
SGI Origin 2000.

� Native Parallel File System Under the computing re-
source is the storage sub-system for parallel systems.
This layer makes use of the local disk storage asso-
ciated with the computing resource and form a native
parallel file system to achieve high performance. The
problem of this storage resource, however, is that it
is tightly coupled with the computing resource, there-
fore, it is very hard to scale with the increasing storage
capacity requirement of data intensive applications.

� DPFS At the bottom is our proposed Distributed Paral-
lel File System (DPFS). DPFS utilizes unused storage
resources distributed over networks. These resources
can be found on various commodity workstations and
personal computers. For example, at our ECE depart-
ment of Northwestern University, it is very easy for
a typical user to access tens of workstations. Since
the main storage space of a user is located at a Net-
worked File System (NFS), much of the local disk
space of these machines is unused. Aggregating these
disjointed storage by DPFS, we can have a very large
storage space to satisfy large-scale data intensive ap-
plications’ storage requirement1.

� Networks The network makes accessing various dis-
tributed storage resources conveniently and it is also
very easy to find enough storage space on network to
satisfy storage space requirement of large-scale appli-
cations.

Figure 2 shows the layered architecture of DPFS from
the software’s point of view. At the top is the parallel ap-

1DPFS is built on top of the local file system of each storage resource,
therefore, there is no need to change the underlying system software of
local file system and DPFS can take advantage of I/O optimizations such
as caching and prefetching of the local file system to access the actual data
on disks.

2

Proceedings of the 2001 International Conference on Parallel Processing (ICPP’01)
0190-3918/01 $10.00 © 2001 IEEE

su
bf

ile
-2

su
bf

ile
-3

5

3

7

21

25

0 1 2

4 6
111098

12 13 14 15
19181716

20 22 23

26 2724

28 29 30 31

su
bf

ile
-0

su
bf

ile
-1

DPFS File

Figure 3. DPFS File View.

plications. The user uses DPFS API whenever she needs
to perform I/O. DPFS API then calculates the brick (ba-
sic striping unit in DPFS) numbers according to the portion
of data held by each processor. Next, DPFS-API consults
database to obtain meta data information of the file such as
which I/O nodes store these bricks and what their offsets are
in the local subfile. Then, DPFS API invokes system com-
munication API such as socket on UNIX [20] to send the
request to the server which runs on the local file system of
storage devices. As long as the server receives the request,
it uses the local file system API to actually perform I/O.

3 DPFS Striping Methods and File Levels

The most significant feature of parallel file systems is
that a parallel file is striped across multiple storage devices
with each storage device holding a portion of data. The key
of DPFS, like other parallel file systems, lies in the striping
methods. A striping method decides the shape and size of
a striping unit which is the basic accessing unit and build-
ing block of a DPFS file. A basic striping unit of DPFS is
also called a brick. A DPFS file consists of a sequence of
bricks numbering from zero to filesize=bricksize. Given
multiple storage devices, a brick is assigned to a storage de-
vice according to the striping algorithm such as round-robin
when a DPFS file is created. A storage device may be as-
signed multiple bricks and these bricks form a subfile in the
local file system. Figure 3 shows a DPFS file striped across
four I/O devices by round-robin algorithm.

In most parallel file systems, they assume a single type of
striping method. The problem of this fixed striping method
is that for many access patterns, it may cause very poor per-
formance. The striping method in DPFS, however, is flexi-
ble because DPFS has multiple methods can be chosen. The
DPFS-API provides a hint structure that can help choose a
suitable striping method.

In this section, we present three striping methods in

Subfile Subfile

Global File View

SubfileSubfile

Figure 4. Linear Level of DPFS File.

6

8 9

34 36 37

46

48 54 55

0 1 2 3 4 5 7

14 1513

1

121110

16 17 18 19 20 21 22 23

2524 26 27 28 29 30 31

3332 35 38 39

4140 42 43 44 45 47

5352515049

6362616059585756

1312

10

8

6

4

2

0

14 15

11

9

7

5

3

Figure 5. Linear Striping Problem. Brick num-
bers are marked at the left and right sides. Bricks
with the same shading belong to the same subfile.

DPFS, each method corresponding to a DPFS file level.
When a DPFS file is created, the user can convey a file level
hint through DPFS API, then the file will be striped using
corresponding striping method.

3.1 Linear Striping

The sequential UNIX file is a stream of contiguous bytes.
In many parallel file systems, although files are striped
across multiple storage devices, they are still treated as lin-
ear logically. The reasons are that linear model is consistent
with the sequential file and many parallel files still need to
be transfered to sequential workstations for post-processing
such as data analysis and visualization. In the linear striping
method, a striping unit, called linear brick, is also a linear
sequence of bytes. The file is called linear file if it consists
of linear bricks. Figure 4 illustrates the linear brick and lin-
ear file. No extra effort is needed when a linear parallel
file is transferred to a sequential file system, but for many
popular access patterns, linear striping could cause serious
performance problems.

3.2 Multidimensional Striping

The problem of linear striping in the above sub-section
can be illustrated in Figure 5. Consider a 8� 8 two dimen-
sional array and suppose a brick size is of 4 elements. In
the linear striping, the two dimensional array is flattened to

3

Proceedings of the 2001 International Conference on Parallel Processing (ICPP’01)
0190-3918/01 $10.00 © 2001 IEEE

1

8 9

2 3

10 11

4 50

12 13

6 7

14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 3534 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

3

6

0 2

4 7

11

1

5

12

8 9 10

14 1513

Figure 6. Multidimensional Striping Method.
Each striping unit is multidimensional (2 � 2).
Brick numbers are marked at the center of each
brick and bricks with the same shading belong to
the same subfile.

a linear sequence of elements as in Figure 4 and the lin-
ear brick is a contiguous 4 elements. Suppose the array
is striped across 4 I/O devices and the brick numbers are
marked at the left and right sides of the array in Figure 5.
Brick 0 contains array elements 0, 1, 2 and 3, and brick 1
contains 4, 5, 6 and 7 and so forth. The array is distributed
by round-robin algorithm, so the bricks with the same shad-
ing forms a subfile in the local file system. Now suppose
there are four processors accessing the array with each pro-
cessor accessing a chunk of array (BLOCK, *), then each
processor will access exactly two rows and 4 bricks are ac-
cessed. But what if the processors access in a (*, BLOCK)
way ? That means each processor accesses two columns, so
8 bricks are needed and only part of each brick (2 elements)
are useful for each processor. For example, processor 0 will
access the first two columns, so it has to access brick 0, 2, 4,
6, 8, 10 , 12 and 14, and only the first two elements of each
brick are really useful, the second half will be discarded.
Consider a real-world array: a 64K�64K two dimensional
array. Suppose the brick size is 64K, so each row forms a
brick and there are totally 64K bricks for linear striping.
When a processor accesses a column of data, all the bricks
(64K=65536) will be needed. Accessing columns of data
is very common for many applications such as matrix mul-
tiplication, but the linear striping results in too many brick
requests from client to server and only a small portion of
the brick is useful. A deep study shows that this problem
is rooted in the nature of linear file model, in which a file
is treated as a sequence of linear bytes. For many scientific
applications, the multidimensional array is the basic oper-
ating unit from the user’s point of view. However, when
linear striping is applied, the multidimensional array has to
be flattened to a linear file or one dimensional array (Fig-
ure 4) in order to perform the striping. Doing this, however,

Block, * *, Block Block, Block

Figure 7. Array Level of DPFS File. The striping
unit is large chunk.

makes convenience of high level array manipulation lost at
the low level of file system. For example, the convenient
way to express a column of data in a two dimensional array
can not be easily manipulated at file system level. To main-
tain the original multidimensional information and the ma-
nipulation flexibility of the array, we propose a novel strip-
ing method called Multidimensional Striping to address this
problem. The striping size of each brick does not change,
but each striping unit (brick) is multidimensional. The file
is called multidimensional file if it consists of multidimen-
sional bricks. Figure 6 shows a 8 � 8 array striped by
2 � 2 multidimensional bricks. When the processor 0 ac-
cesses the first two columns again, it only needs to access
4 bricks (0, 4, 8 and 12) and no extra data is accessed. For
the 64K � 64K array example, each brick size would be
256 � 256, so only 256 bricks are needed. When a mul-
tidimensional file is converted to a sequential file, extra in-
memory data reorganization is needed. Compared to expen-
sive I/O access, in-memory cost is very small.

3.3 Array Striping

Many scientific applications’ access pattern to an array
can be described in a High Performance Fortran (HPF) nota-
tion, such as (Block, *), (Block, Block) and so on. Figure 7
shows a two dimensional array accessed by 4 processors.
Each processor writes and then reads a coarse-grain chunk
of data. In this case, storing each chunk as an integral unit is
more efficient than further dividing it into smaller fine-grain
bricks because each chunk will be accessed as a whole unit,
striping into bricks only cause extra work and is not nec-
essary. One example to demonstrate this scenario is that
many large-scale scientific applications periodically dump
check-pointing data. Each processor writes the data it holds
to storage and simply reads it back later when the applica-
tion resumes from this point. In this case, striping data on
each processor into smaller bricks results in a large number
of small data requests which is totally unnecessary. To ad-
dress this problem, DPFS provides its third striping method:
array striping. The striping unit, also called array brick, is
a large coarse-grain chunk (Figure 7). The data distribution
of the array observes HPF convention which fits many sci-
entific applications. The file is called array file if it consists

4

Proceedings of the 2001 International Conference on Parallel Processing (ICPP’01)
0190-3918/01 $10.00 © 2001 IEEE

for i=0 to B {

}

assign brick i to server k;

 find k, where A[k]+P[k] <=

A[j] = 0, j = 0 to S;

 A[j]+P[j] for all j = 0 to S;

B = num of bricks;

 A[k] = A[k] + P[k];

initialize p[j], j = 0 to S;
S = num of servers;

Figure 8. Greedy Algorithm.

3

0 2 6 8 12 14 18 20 24 26 30

4 10 16 22 28

1 3 7 9 13 15 19 21 25 27 31

115 17 23 29

0

1

2

Figure 9. Greedy Algorithm Example.

of array bricks.
The three levels of DPFS file bring more flexibility and

convenience as far as performance is concerned. The low
level such as linear level is more general than others but
may cause performance problems for some access patterns.
On the other hand, the high level such as array level can
bring significant performance improvement but its domain
is limited in the context of HPF notation, although many
applications fall into this category. To achieve both gen-
erality and high performance, the file system itself is lack
of enough information. Therefore, the user’s involvement is
crucial because only the user has the best picture of how her
data will be utilized. Section 6 will present a hint structure
in DPFS API to make user’s involvement easily.

4 Striping Algorithms and Request Combi-
nation

4.1 Greedy Striping Algorithm

Given a brick, the striping algorithm of DPFS decides
which storage device should be assigned to take the brick
when the file is created. A straightforward algorithm is
round-robin, in which each storage device is assigned a
brick alternately. Figure 3 shows a DPFS file which has 32
bricks, striped across four storage devices by round-robin
algorithm. The round-robin algorithm expects the striping
units being evenly distributed across storage devices, thus
trying to keep a balanced workload on storage. In the dis-
tributed environment like DPFS, however, round-robin may
not yield a ‘fair’ workload distribution. For example, our

DPFS may consist of heterogeneous storage resources that
are distributed over networks with different communication
bandwidth. Accessing a brick on fast storage and high-
bandwidth network could be much faster than accessing a
brick on slow storage and low-bandwidth network. There-
fore, evenly distributing bricks across storage devices may
actually cause load un-balance. The basic idea to solve this
problem is to let the fast storage be assigned more bricks
than slow storage. We designed a Greedy Striping Algo-
rithm to address this problem. We assign each storage de-
vice a normalized performance number according to their
access time for one brick. The value for the fastest storage
is 1, and a integer number larger than 1 for others. The al-
gorithm is depicted in Figure 8. The idea of the algorithm is
that given a brick i, it will be assigned to the storage device
that will minimize the maximum value of the sum of perfor-
mance numbers of each storage among all storage devices.
Figure 9 shows brick distribution by our greedy algorithm
for the file in Figure 3.

4.2 Request Combination

Another issue brings to our attention is that a processor’s
data request may consists of multiple bricks. For example,
consider four processors accessing a DPFS file which has 32
bricks (Figure 3). Suppose processor 0 accesses brick 0 to 7
and processor 1 accesses 8 to 15, and so on. In a general ap-
proach, each processor issues a request for a brick and con-
tinues until all the bricks are accessed. The problem of this
approach is two-fold. First of all, to access each brick, a re-
quest from client is needed. So there are many requests sent
to servers. The servers have to spawn a process or thread to
handle each request for only one brick. This could make a
server too busy to handle all the requests if many requests
happen to be sent to it simultaneously. The un-handled re-
quests have to try again later. Second, consider Figure 3
again. In the general approach, when all processors start to
access data, processor 0, 1, 2 and 3 will access brick 0, 8,
16 and 24 respectively. Note that brick 0, 8, 16 and 24 are
on the same storage device. Then for the next brick, they
access brick 1, 9, 17 and 25 respectively. These bricks are
still on the same storage. This problem would happen un-
til all the bricks are accessed. Although our DPFS server
can service concurrent requests, the actual I/O has to be se-
quentialized locally due to the nature of sequential storage
device. Therefore, the potential parallelism provided by file
striping is not been fully exploited.

Based on the above observations, we propose a request
combination scheme to address this problem. Let’s take
processor 0 as an example. Processor 0 accesses totally 8
bricks (0 - 7) which are striped across over four devices with
2 bricks on each device. The combined approach will let
processor 0 access brick 0 and 4 in one request because they

5

Proceedings of the 2001 International Conference on Parallel Processing (ICPP’01)
0190-3918/01 $10.00 © 2001 IEEE

reside on the same storage. Next, it accesses brick 1 and 5 in
another single request, and so on. Therefore, there are only
4 requests needed for each processor, much smaller than 8
requests of general approach. The less requests, the less
network traffic and server processing. In addition, we can
better schedule the request sequence of each processor after
requests are combined. For example, we can easily let pro-
cessor 0 starts its access from subfile-0 (brick 0, 4), while
processor 1 starts from subfile-1 (brick 9, 13), processor 2
from subfile-2 (brick 18, 22) and processor 3 from subfile-
3 (brick 27, 31). As these combined bricks are located on
the different physical storage devices, the maximum par-
allelism can be exploited by avoiding multiple processors
congesting requests at one storage device.

5 Meta Data and Database

We have chosen a database as repository for DPFS meta
data. Using a database solution has many advantages. It can
save programming efforts since SQL is a very high level and
reliable interface compared to manipulating low level file
directly. Moreover, the transaction mechanism provided by
database systems can help maintain meta data consistency
easily, especially in a distributed environment.

The DPFS meta data should keep such information as
what servers are available for I/O, how the data bricks are
distributed across servers and what DPFS directories and
files are currently maintained by DPFS and so on. We use
four database tables to maintain these information and they
are described as follows.

� DPFS-SERVER This table has three attributes:
server-name which stores all the server names avail-
able for clients; capacity which tells the user how
much storage space available on this server; and per-
formance which stores the normalized performance
number of servicing client’s request by that server. Our
greedy algorithm in Section 3 use this attribute to make
a balanced brick distribution.

� DPFS-FILE-DISTRIBUTION This table maintains
information about how DPFS bricks are distributed
across different servers. It has three attributes: server
which stores the server name; filename which keeps
the subfile name of DPFS distributed on that local file
system. Usually, we use the same name as the DPFS
name. This subfile name also includes DPFS path; and
bricklist which stores a list of bricks that is maintained
by this server. These bricks form a file from local file
system’s point of view or subfile from DPFS’s point of
view.

� DPFS-DIRECTORY This table keeps the DPFS file
and directory tree structure. There are three attributes:

dpfs.test
/home/chourhar
/home/xhshen/

/tmp
/home

main-dir
/

files
home, tmp
sub-dir

ccn40.mcs.anl.gov
aruba.ece.nwu.edu

moorea.ece.nwu.edu
ccn41.mcs.anl.gov

/home/xhshen/dpfs.test
/home/xhshen/dpfs.test
/home/xhshen/dpfs.test
/home/xhshen/dpfs.test

0,2,6,8,12,14,18,20,24,26
4,10,16,22,28
1,3,7,9,13,15,19,21,25,27,31
5,11,17,23,29

file1,file2

local-file-name server bricklist

ccn40.mcs.anl.gov
aruba.ece.nwu.edu
ccn41.mcs.anl.gov
moorea.ece.nwu.edu
ccn42.mcs.anl.gov
bermuda.ece.nwu.edu

server performancecapacity
1
2
1
2
1
2400M

500M
400M
500M
400M
500M

DPFS-FILE-ATTR

DPFS-DIRECTORY

DPFS-FILE-DISTRIBUTION

DPFS-SERVER

dimsize
256,256

dims
2

filelevel
multidims 2097152

size

xhshen, choudhar

filename
/home/xhshen/dpfs.test 744

permissionowner
xhshen

Figure 10. DPFS Meta Data Tables.

main-dir which is the name of directory name in
DPFS; sub-dir stores the sub-directories under main-
dir; files stores the DPFS file names under main-dir.
When a new file is created, attribute files is updated
to include the new file. When a new directory is cre-
ated, the row containing the current directory will be
updated to include the created sub-directory and a new
row, with the created directory name as the main-dir,
is inserted into the table.

� DPFS-FILE-ATTR This table maintains such infor-
mation as owner of the file, access permissions, file
size etc. As DPFS has three levels, this table also has
an attribute filelevel to reflect the characteristics of file
striping. The shape of striping unit is described by
the attributes stripe-dims and stripe-size. For the ar-
ray level file, attribute pattern decides how the array is
chunked by HPF notation.

The relationships of these tables are shown in Figure 10.

6 Application Programming Interface

DPFS API supports both contiguous and non-contiguous
data access. DPFS adopts MPI-I/O’s derived data type [23]
approach to allow the user to express non-contiguous data
conveniently. The main functions of DPFS APIs are de-
scribed as follows.

� DPFS-Open() The main arguments include a pointer
to DPFS file handle, file name, access mode (read or
write) and the suggested number of I/O nodes by the
user (for write operation only). This routine opens a
DPFS file and then returns a pointer to the DPFS file
handle for later usage.

� DPFS-Write() The main arguments include an opened
DPFS file handle, a buffer holding the data to be writ-
ten, the derived data type to express non-contiguous
data and a hint structure that allows the user to select a
suitable file level etc.

� DPFS-Read() The main arguments are similar to the
DPFS-Write() except that the buffer is to receive data

6

Proceedings of the 2001 International Conference on Parallel Processing (ICPP’01)
0190-3918/01 $10.00 © 2001 IEEE

and some hint information in hint structure is not used
for read operation.

� DPFS-Close() The only argument is the opened DPFS
file handle. This routine closes the DPFS file. It will
free allocated memory for the file handle and close the
database connection etc.

A significant feature of DPFS is that it allows user’s in-
volvement in low level file organization and manipulation.
The hint structure provided by DPFS API, is the tool to con-
vey user’s knowledge to the low level systems. The most
important information in the hint structure is the file level
when the file is created. As only the user has the best pic-
ture of how her data will be utilized in the future, she can
suggest a file level in hint structure, the file system then uses
corresponding striping method to perform file striping.

7 User Interface

Like traditional UNIX file system, DPFS also provides
a user interface which provides users with a bunch of com-
mands that can help manage files and directories in the file
system. These commands include cp mkdir, rm, ls, pwd
and so on. DPFS also allows data transfer between sequen-
tial files and DPFS. This is very convenient for the user.
since many data generated by parallel applications need to
be transfered to a sequential workstation for post-processing
such as data analysis or visualization.

8 Performance Evaluation

In this section, we present a variety of performance num-
bers of our experiments. The compute resource is an IBM
SP2 located at Argonne National Laboratory. Each node
of the SP-2 is RS/6000 Model 390 processor with 256
megabytes memory.

The external storage resources we employed in this work
are disk storage on many workstations from Argonne Na-
tional Laboratory and Northwestern University. These disk
storage devices can be grouped into three classes according
to location and network. One class (referred to as class 1
thereafter) is a bunch of Linux machines at Argonne, they
are connected to compute resource SP2 by local area net-
works(a Fast Ethernet plus a ATM). The other two classes
are located at Northwestern University. One (class 2) is
8 HP workstations on a local 10M Ethernet, and the other
(class 3) is 8 SUN workstations on a local 155M ATM net-
work. These workstations are connected to our compute
resource at Argonne over a metropolitan network.

The database to maintain DPFS meta data is POST-
GRES [21] installed on a Linux machine at ECE department
of Northwestern University. The database access interface
is standard SQL.

Figure 11. I/O Bandwidth (MBytes/sec) compar-
isons of different File Levels.

Figure 12. I/O Bandwidth (MBytes/sec) compar-
isons of different File Levels.

8.1 File Level Comparisons

As stated in Section 3, DPFS has three file levels and ex-
pects the user to choose one when the file is created. The
higher the file level, the more parallelism and performance
improvement can be expected. Figure 11 and 12 compare
the performance difference of three file levels. The data file
is a 32K � 32K two dimensional array (256M). For the
linear file level (linear striping), when the processors’ ac-
cess pattern is (�; Block) which means each processor ac-
cesses a chunk of columns in the array, each processor has
to access all the bricks (16K = 16384) and only part of data
is really needed. This results in very poor I/O bandwidth
even if request combination (Section 3) is used (Figure 11
and 12, Linear and Combined Linear). Now if the user
knows that the data file is an array and it may be accessed
in a (�; Block) distribution, then when the file is created,
she can suggest multidimensional striping through the hint
structure provided by DPFS API (Section 6). Then the file is
striped multi-dimensionally by a two dimensional 256�256
striping unit. When the file is accessed later in (�; Block),
each processor accesses only 128 bricks, much less than
16384 of linear striping. The performance can be improved

7

Proceedings of the 2001 International Conference on Parallel Processing (ICPP’01)
0190-3918/01 $10.00 © 2001 IEEE

Figure 13. I/O Bandwidth (MBytes/sec) Compar-
isons of Different Striping Algorithms. Half of the
storage is from class 1 and half from class 3.

Figure 14. I/O Bandwidth (MBytes/sec) Compar-
isons of Different Striping Algorithms. Half of the
storage is from class 1 and half from class 3.

10 to 20 times on all three classes of storage. When re-
quest combination technique is used, further performance
improvement is also obvious (Figure 11 and 12, Multi-dim
and Combined Multi-dim). Further, if the user knows that
the array will be operated in a high level that can be ex-
pressed in HPF notation, she can suggest a file level of array
and the file is divided into large chunks when the file is gen-
erated. When the file is read back later, each processor can
access chunks it needs in much less requests (two in this
example). The performance improvement nearly doubles
compared to multidimensional striping. Request combina-
tion can not further improve performance since the number
of requests of each processor is already very small (Fig-
ure 11 and 12, Array and Combined Array).

8.2 Striping Algorithm Comparison

What makes DPFS different from other parallel file sys-
tems is that DPFS employs heterogeneously distributed
storage resources: the storage devices could be different

from each other and they may be located on different net-
works. The heterogeneity brings out load balance issues
in DPFS. In Section 3 we proposed a greedy striping al-
gorithm to address load balance issues in DPFS. Figure 13
and 14 shows the comparison between greedy algorithm
and round-robin algorithm. The storage includes half class
1 and half class 3 devices. Accessing a brick from class 1
is about 3 times faster than from class 3, so the greedy al-
gorithm will assign class 1 storage as three times number
of bricks as class 3. We can see that the performance has
been improved obviously compared to the popular round-
robin algorithm. The further performance improvement is
contributed by request combination optimization.

9 Related Work

The related work can be divided into four groups.
One is distributed file systems such as NFS [19], xFS [2],

and Coda [1]. These file systems provide easy access to dis-
tributed resources, but they are not designed for high perfor-
mance parallel data access required by parallel applications.

Another body of work is parallel file systems, includ-
ing IBM Vesta [9] and PIOFS [10], Intel Paragon [16],
HP Exemplar [5], Galley [15] and so on. These parallel
file systems, either commercial or experimental, take ad-
vantage of parallel I/O techniques, caching, prefetching etc
to achieve significant performance improvement. The stor-
age resources of these systems, however, are tightly cou-
pled with the compute nodes, so they do not scale well
in capacity with the increase of applications’ requirements.
PVFS [6] is built on Linux clusters and it does not employ
external storage either.

The third group includes run-time systems such as MPI-
I/O [25, 23], PASSION [7, 22], PANDA [17] and oth-
ers [18]. These systems provide high level structured in-
terfaces on top of low level native parallel file systems [12]
and try to match the applications’ data structure which is
usually multidimensional array. Again, these systems do
not help when application size increases.

The forth group includes meta data management sys-
tems [3, 18, 4, 11, 13, 8, 14]. These systems use database’s
query capability to automatically keep track of huge amount
of datasets generated by data intensive applications.

10 Conclusions

In this paper, we have presented a Distributed Parallel
File System (DPFS). DPFS collects distributed storage re-
sources and construct them as a parallel file system to sat-
isfy both storage capacity and performance requirements of
large-scale data intensive applications.

DPFS adopts Client-Server architecture and employs
TCP/IP as low level communication infrastructure. DPFS is

8

Proceedings of the 2001 International Conference on Parallel Processing (ICPP’01)
0190-3918/01 $10.00 © 2001 IEEE

built on top of the storage’s local file system without chang-
ing the low level system software that can directly make use
of optimization techniques such as caching and prefetching
of local file system. The meta data of DPFS is maintained
at the database which provides more convenience and re-
liability in a distributed environment. DPFS has three file
levels that can make file access more efficiently. The user’s
involvement is highly recommended since the user is clear
how her data would be accessed. DPFS API’s provides a
hint structure that allows user’s involvement easily. DPFS
also provides a request combination optimization approach
to further improve the performance and a greedy striping
algorithm to solve load balancing problems. A convenient
user interface is also provided by DPFS. The user can use
common file system commands such as cp, mkdir, ls etc to
operate DPFS files and directories.

In the future, we will use DPFS for some real world ap-
plications such as astrophysics application and use DPFS as
a low level system to service a high level interface such as
MPI-I/O [24] and MDMS [18].

Acknowledgments

This research was in part supported by Department of
Energy under the Accelerated Strategic Computing Initia-
tive (ASCI) Academic Strategic Alliance Program (ASAP)
Level 2, under subcontract No W-7405-ENG-48 from
Lawrence Livermore National Laboratories. We would like
to thank Prof. Banerjee and Prof. Taylor of ECE department
at Northwestern University for allowing us to use their stu-
dents’ workstations running DPFS server.

References

[1] Coda file system. In http://www.coda.cs.cmu.edu.

[2] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and
R. Wang. Serverless network file systems. In Proc. of the Fifteenth
ACM Symposium on Operating Systems Principles, pages 109–126,
1995.

[3] C. Baru, R. Frost, J. Lopez, R. Marciano, R. Moore, A. Rajasekar,
and M. Wan. Meta-data design for a massive data analysis system.
In Proc. CASCON’96 Conference, 1996.

[4] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The sdsc storage re-
source broker. In Proc. CASCON’98 Conference, Dec 1998, Toronto,
Canada, 1998.

[5] R. Bordawekar, S. Landherr, D. Capps, and M. Davis. Experimen-
tal evaluation of the hewlett-packard exemplar file system. In ACM
SIGMETRICS Performance Evaluation Review, pages 25(3):21–28,
1997.

[6] P. Carns, W. Ligon, R. Ross, and R. Thakur. Pvfs: A parallel file
system for linux clusters. In Proc. of the 4th Annual Linux Showcase
and Conference, Atlanta, October 2000, pages 317–327, 2000.

[7] A. Choudhary, R. Bordawekar, M. Harry, R. Krishnaiyer, R. Pon-
nusamy, T. Singh, and R. Thakur. Passion: parallel and scalable soft-
ware for input-output. In NPAC Technical Report SCCS-636, 1994.

[8] A. Choudhary, M. Kandemir, H. Nagesh, J. No, X. Shen, V. Taylor,
S. More, and R. Thakur. Data management for large-scale scientific
computations in high-performance distributed systems. In Proc. of
the 8th IEEE International Symposium on High Performance Dis-
tributed Computing, Redondo Beach, California, 1999.

[9] P. Corbett and D. Feitelson. The vesta parallel file system. ACM
Transactions on Computer Systems, 14(3):225–264, August 1996.

[10] P. Corbett, D. Feitelson, J.-P. Prost, G. Almasi, S. J. Baylor, A. Bol-
marcich, Y. Hsu, J. Satran, M. Snir, R. Colao, B. Herr, J. Kavaky,
T. Morgan, and A. Zlotek. Parallel file systems for the ibm sp com-
puters. IBM Systems Journal, 34(2):222–248, Janury 1995.

[11] W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger, and
K. Stockinger. Data management in an international data grid project.

[12] D. Kotz. Multiprocessor file system interfaces. In Proc. the Sec-
ond International Conference on Parallel and Distributed Informa-
tion Systems, pages 194–201, 1993.

[13] W. Liao, X. Shen, and A. Choudhary. Meta-data management sys-
tem for high-performance large-scale scientific data access. In Pro-
ceedings of the 7th International Conference on High Performance
Computing, December, 2000.

[14] Mcat. In http://www.npaci.edu/DICE/SRB/mcat.html.

[15] N. Nieuwejaar and D. Kotz. The galley parallel file system. In Pro-
ceedings of the 10th ACM International Conference on Supercom-
puting, Philadelphia, PA, May 1996, pages 374–381, 1996.

[16] B. Rullman. Paragon parallel file system. In External Product Spec-
ification, Intel Supercomputer Systems Division.

[17] K. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-
directed collective i/o in panda. In Proceedings of Supercomputing
’95, San Diego, CA, December, 1995.

[18] X. Shen, W. Liao, A. Choudhary, G. Memik, M. Kandemir, S. More,
G. Thiruvathukal, and A. Singh. A novel application development
environment for large-scale scientific computations. In International
Conference on Supercomputing, May 8-11, 2000, Santa Fe, New
Mexico, 2000.

[19] H. Stern. Managing NFS and NIS. O’Reilly and Associates, 1991.

[20] W. Stevens. UNIX Network Programming, Networking APIs: Sockets
and XTI, Volume 1, Second Edition. Prentice Hall PTR, Prentice-
Hall, Inc., Upper Saddle River, NJ 07458, 1998.

[21] M. Stonebraker and L. A. Rowe. The design of postgres. In Proc.
the ACM SIGMOD’86 International Conference on Management of
Data, pages 340–355, 1986.

[22] R. Thakur, R. Bordawekar, A. Choudhary, R. Ponnusamy, and
T. Singh. Passion runtime library for parallel i/o. In Proc. of the
Intel Supercomputer User’s Group Conference, 1995.

[23] R. Thakur, W. Gropp, and E. Lusk. A case for using mpi’s derived
datatypes to improve i/o performance. In Proc. of SC98: High Per-
formance Networking and Computing, 1998.

[24] R. Thakur, W. Gropp, and E. Lusk. On implementing MPI-IO
portably and with high performance. Preprint ANL/MCS-P732-
1098, Mathematics and Computer Science Division, Argonne Na-
tional Laboratory, 1998.

[25] R. Thakur, W. Gropp, and E. Lusk. Data sieving and collective i/o
in romio. In Proc. the 7th Symposium on the Frontiers of Massively
Parallel Computation, 1999.

9

Proceedings of the 2001 International Conference on Parallel Processing (ICPP’01)
0190-3918/01 $10.00 © 2001 IEEE

