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1. INTRODUCTION

Several computer-intensive real-time signal-processing applications such
as the space time adaptive processing (STAP) [Brown and Linderman 1997]
in the area of airborne surveillance radars, have stringent requirements on
processing and response times. Different phases of these applications
exhibit different computation granularities and degrees of inherent paral-
lelism.

The current trend is to implement each subtask in the computation by
using a combination of off-the-shelf devices such as general-purpose proces-
sors, DSP processors, and field programmable gate arrays (FPGAs), exploit-
ing both data and functional parallelism. While general-purpose processors
and DSPs handle the bulk of the coarse-grained computational require-
ments of the application, FPGAs provide fast hardware implementations of
time-critical parts. These FPGAs can be reconfigured on the fly to make the
system adaptive to the requirements of the application at various phases of
computation. Figure 1 shows a typical scenario.

These systems are heavily pipelined at various levels and each macro
task is implemented as a collection of tightly-coupled data parallel tasks, as
shown in Figure 2. The introduction of heterogeneity and adaptability adds
additional dimensions to the complexity of the design. Manual synthesis of
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Fig. 1. A large time-constrained system implementation using heterogeneous resources (DSP
and FPGA are generic devices in their respective categories).
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such systems is extremely tedious due to the availability of a large number
of implementation alternatives, making automatic synthesis techniques
very attractive.

In a typical scenario, a synthesis algorithm works on what are known as
hierarchical control data-flow graphs (HCDFG), which abstract various
macro tasks and their interdependencies, of both data-flow and timing
requirements (see Figure 3 for a simple example of such a HCDFG). An
HCDFG is a directed graph with the nodes representing the macro tasks to
be performed and the edges indicating the flow of data/control across these
tasks. These edges can also represent timing constraints, where they
indicate the allowable time from a source task (typically a task that reads
the input) to a destination task (typically the one that initiates some
action). Some of the tasks (abstract tasks) in turn stand for a lower level
HCDFG. These abstract tasks can be loop bodies comprising several tasks,
in which one of the tasks reads the incoming data and others perform
various processing assignments, and the final one initiates some action
based on the processed data. This can impose both throughput and total
delay constraints on such an abstract task.

Stage 3
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Intertask Comm
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Sequential Task
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End

Data Parallel Tasks

Macro Tasks

Fig. 2. Task/data parallel implementation of a large time-critical application.
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Given such an abstract representation of the computation, a synthesis
algorithm has to solve several subproblems (many of them provably NP-
complete) before it can arrive at the right architecture to perform the
computation which meets all the constraints. Some of these subproblems
include constraint propagation, pipelining, resource selection, allocation,
scheduling, and hiding the reconfiguration times of the FPGAs. More
formally, it needs to do the following:

Given
(1) a hierarchical control data-flow graph (HCDFG) capturing the com-

putation to be performed;
(2) timing and throughput constraints;
(3) possible resource types to be used in the design;
(4) design alternatives in the form of delay/cost tables.

Synthesize the program to arrive at a system with minimal total
resource cost.

Such that the timing (indicated by timing edges) and throughput
(indicated by interarrival-time IAT) constraints are not violated.

In this paper we describe an algorithm that propagates the timing
constraints from a higher-level HCDFG to lower levels; selects and allocates
the right type/ number of devices to implement each macro task; pipelines
the tasks (if necessary) to achieve throughput requirements; schedules the
resources to ensure optimal utilization and takes into account reconfigura-
tion delays of the FPGAs.

We model pipelining, selection, and allocation of resources as a mixed
integer-linear programming problem (MILP) to minimize the cost (dollar
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Fig. 3. An example hierarchical control data-flow graph (HCDFG).
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cost, for example) of the synthesized system. To further reduce the cost of
the system, we use a simple variant of the list-scheduling algorithm [De
Micheli 1998] to schedule the resources, taking into account pipelining,
mutually exclusive control paths, and the reconfiguration delays of the
FPGAs. To guide our synthesis process, we use delay/cost tables (delay
meaning the execution time for a specific implementation of a node and the
cost indicating the corresponding resource cost) that encapsulate the vari-
ous design alternatives for each node in the HCDFG.

The remainder of this paper is organized as follows. We briefly discuss
related work in system-level synthesis in Section 2. Our synthesis algo-
rithm is covered in Section 3. We present the experimental results in
Section 4, and conclude in Section 5.

2. RELATED WORK

Various aspects of automatic synthesis in real-time systems have been
examined by several researchers [Kalavade and Lee 1992; Chou et al. 1995;
Ernst et al. 1994; Gupta and De Micheli 1993; 1992; Bakshi and Gajski
1997; Dick and Jha 1998; Dave and Jha 1998; Prakash and Parker 1992;
Decastelo et al. 1995; and Karkowski and Corporaal 1998]. Many of the
problems in system-level synthesis have their counterparts in high-level
synthesis [Gajski et al. 1998; De Micheli 1998]. In this section we discuss
some of the earlier efforts that are closely related to our work and compare
and contrast them in terms of problems, architectures, and techniques.

In terms of the problems, Prakash and Parker [1992]; Dave and Jha
[1998]; and Decastelo et al. [1995] all deal with automatically synthesizing
task graphs using heterogeneous components. However, each has a differ-
ent emphasis. While Prakash and Parker [1992] and Dave and Jha [1998]
focus on intertask communication-related issues, Decastelo et al. [1995]
and Bakshi and Gajski [1997] emphasize achieving high throughputs. Our
current work takes into account both communication and throughput-
related issues.

Unlike the problem we address in this paper, these algorithms assume
single-processor implementation of each task and do not address issues
related to reconfigurable devices. An algorithm for multiprocessor task
implementation is proposed by Karkowski and Corporaal [1998] with an
emphasis on program transformations and a parallelization strategy for
each task. Dick and Jha [1998] propose an algorithm for system design
using FPGAs, and focus on reusing the FPGAs across tasks. It tries to
minimize reconfiguration time by sequencing the tasks optimally onto the
FPGAs, whereas our algorithm tries to achieve this by configuring in
anticipation of future use (latency hiding).

In terms of techniques, Bakshi and Gajski [1997]; Dave and Jha [1998];
and Karkowski and Corporaal [1998] employ greedy heuristics (based on
iterative refinement) and Dick and Jha [1998] base their technique on list
scheduling and evolutionary programming. While the use of greedy heuristics
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has an advantage in terms of a fast solution, the use of randomized
algorithms may not necessarily result in low synthesis times.

In the context of multiprocessor task implementation, not only the
scheduling but the selection and allocation of resources to each task (type
and number of resources) is crucial. The design space becomes very large
and an algorithm based purely on a greedy heuristic is less likely to find aa
good solutions in a reasonable time.

As an alternative to heuristic-based solutions, Prakash and Parker
[1992] and Decastelo et al. [1995] proposed MILP techniques to solve the
synthesis problem which have the potential to produce optimal solutions.
However, their models are restrictive and do not address all the issues we
deal with in the this paper. For example, the cost model in Decastelo et al.
[1995] does not seem to take resource sharing across tasks into account.
Resource sharing is very important in reducing the cost of a synthesized
system. Further, it is not clear whether these models are time-efficient.
While Prakash and Parker [1992] deal with small task graphs (fewer than
10 nodes) and report solution times in hours; Decastelo et al. [1995] report
solution times (for algorithm selection only) on the order of minutes.
Neither of these algorithms addresses issues related to FPGAs or parallel
implementation of individual tasks.

Our algorithm is unique because it combines the power of MILP tech-
niques for the optimal solution of the selection, allocation, and pipelining
problems with the speed of heuristic techniques for solving the constraint
propagation and scheduling problems. We believe that this is a good
balance between speed and the quality of the result. Our algorithm aims at
designing large systems with a heterogeneous pool of resources, which
exploits parallelism not only across tasks but also within each task. It
makes good use of pipelining techniques to increase throughput. And it
addresses one of the main problems in the use of reconfigurable devices,
namely reconfiguration delays. By cleverly overlapping reconfiguration of
the FPGAs with the computations in the preceding tasks, our algorithm
allows efficient use of the FPGAs.

3. THE SYNTHESIS ALGORITHM

Our algorithm works on a hierarchical control data-flow graph (HCDFG),
which is captured from a high-level sequential description of the computa-
tion after flow analysis. We employ a hierarchical synthesis algorithm to
match the hierarchy in the control data-flow graph representation of the
given program. The Synthesis algorithm goes recursively through each
abstract vertex in the given HCDFG and synthesizes each one in a
bottom-up fashion. A higher-level graph is synthesized after all its lower-
level graphs (represented by abstract vertices) are synthesized.

Our algorithm is comprised of (1) a heuristic-based constraint propaga-
tion phase; (2) an MILP-based selection and pipelining phase; and (3) a
heuristic-based scheduling phase. The following sections discuss these
phases.
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3.1 Propagating Timing Constraints

In order to set timing bounds for each of the lower-level graphs, we
propagate the timing constraints specified at a higher- to lower-level graph.
These propagated timing constraints are set as timing edges in the lower
level. As discussed in Section 1, a timing constraint in a HCDFG is
suggested by a timing edge from a vertex vs to a vertex ve. There can be one
or more paths in the HCDFG that include both vs and ve. We call the
sequence of vertices in these paths, starting from vs and ending at ve, a
path segment, and the sum of the execution times of each vertex in a given
path segment (excluding vs and ve), the delay of the path segment.

A timing edge with a weight t indicates that @p, delay~ p! # t, where p
is any path segment between vs and ve. This puts a constraint on the
execution times of the vertices that lie on these path segments. Section 3
discusses how these timing constraints are handled in general; but the
hierarchical synthesis algorithm requires that the timing constraints at a
specific level of the graph hierarchy be propagated to each of the abstract
vertices at that level if they happen to lie on any one of the path segments
constrained by a timing edge.

To illustrate our constraint propagation algorithm, let us assume a
timing edge of weight t between vertices vs and ve. Let s 5 ,vi, vi11,
. . . , vi1n. be the set of vertices on a given path segment between vs and
ve (excluding vs and ve). Let vi1k [ s be an abstract vertex. We need to
propagate the timing constraint t as an execution time bound on the
execution of the vertex vi1k. We do this as follows: We first compute the
median delays for each of the vertices in s. Let mtot denote the sum of the
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Fig. 4. Constraint propagation for the example HCDFG (the numbers without parenthesis
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median delay of each of the vertices in s and let ma denote the median
delay of vertex vi1k. We estimate the execution time bound on vi1k in the
path segment s as

ts 5 t
ma

mtot

.

Further, if the vertex vi1k lies on path segments ,s1, s2, . . . , sm., then
the time constraint ta on the abstract vertex vi1k is given by

ta 5 min
s[,s1, ..., sm.

ts.

For our example program (shown in Figure 3), assuming a set of design
alternatives (skipped for brevity), our algorithm propagated a timing
constraint of 10800 (specified at the procedure level) to the loop body (an
abstract vertex in the procedure) as shown in Figure 4. We outline our
propagation algorithm in Figure 5.

Once the constraints are propagated, our algorithm synthesizes the
HCDFG following the inherent hierarchy in the graph. At each level of
hierarchy, the algorithm solves the pipelining, selection, allocation, and
scheduling problems guided by the estimates provided by the delay/cost
tables.

Fig. 5. Algorithm: Propagate.
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3.2 Selection and Pipelining

Our selection and pipelining algorithm is based on Mixed Integer Linear
Programming (MILP). We model the various constraints imposed by the
control data-flow graph (in terms of data and timing edges) and minimize
the objective function that is the total cost of the resources used in the
synthesis. Table I lists the notation in our formulation.

3.2.1 The MILP Formulation. The selection has to do with choosing a
specific implementation for each task as well as each data edge from among
various available alternatives. Depending on the alternative chosen, the
cost of implementing the node as well as the interconnection network could
change. The resource cost of a macro task depends on the processing
elements used and the interconnect for intra and inter task communication.

Communication costs incurred by a macro task could be due to intram-
acro task communication (among the data parallel tasks in the macro task)
or the intermacro task communication due to the data dependence between
macro tasks.

Intramacro task communication costs depend on the interconnect used to
support the communication (refer to Table II). The effective time taken by
the communication across the tasks within a macro task for a given
interconnect/implementation pair contributes to the total execution time of
the macro task. The resource cost of the interconnect is split into two
components. A fixed interconnect cost is incurred (for the system as a
whole) whenever an interconnect of a given type is used in the final
synthesis by any of the devices. In addition, an interface cost is charged to
each device that communicates using such an interconnect.

Intermacro task communication depends on a variety of things. Since each
data edge in the HCDFG represents one such instance of the communication,

Table I. Notation In the Formulation

t Total processing delay.
T Interarrival time (IAT)
tcij Weight of the timing edge between nodes i and j.
Nv Number of nodes in the CDFG
Ne Number of data edges in the CDFG
Nai Number of design alternatives for node i
Nbi Number of design alternatives for edge i
dik Execution time of ith node if kth alternative is selected.
xik Communication time of ith edge if kthalternative is selected.
cik Cost (dollar cost, for example) of kth implementation of ith node.
lik Cost (dollar cost, for example) of kth implementation of ith edge.
Di Execution time of ith node after selection.
S Number of pipeline stages.

Model variables
si Start time of ith node.
aik [ @0, 1# Stands for selection of the kth alternative for the ith node.
bik [ @0, 1# Stands for selection of the kth alternative for the ith edge.
pi [ @0..S 2 1# Pipeline stage of node i
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our communication cost table needs to list different implementation alter-
natives that support such a communication. Depending on the situation,
such a communication could depend on the sender task only, the receiver
task, or both. Further, the implementations chosen for the sender and
receiver tasks may influence the cost of the communication in addition to
the actual interconnect used for the communication.

In general, each implementation alternative for a data edge is a triplet
,s, d, r. with an associated communication time. The s and d in the
triplets stand for source and destination implementations, and r stands for
the type of interconnect used for the communication. The source and the
destination can be specified in a variety of ways (see Table III).

One and only one of the implementations for a given node/edge can be
selected. This results in the following constraints.

O
k51

Nai

aik 5 1, @i, 1 # i # Nv (1)

O
k51

Nbi

bik 5 1, @i, 1 # i # Ne (2)

The selection of an implementation for a data edge is further bound by
the constraint that the selection should match the source and destination
implementation selections. That is, bjk can be true only if the aik corre-
sponding to s and d in the corresponding triplet ,s, d, r. are true. For
example, if the triplet is ,S1, D2, r., then the constraint bjk # y (where

Table II. Intramacro Task Communication Cost Table

Task

Impl. 1 Impl. 2 Impl. 3

Res. Time Res. Time Res. Time

t1 xbar 10 lan 90 bus 50
t2 bus 10 bus 20 NA
t3 xbar 60 xbar 70 bus 80
... ... ... ... ... ... ...
tn bus 5 bus 10 NA

Table III. Intermacro Task Communication Cost Table (A ’*’ is any implementation; a list
of names within parenthesis means a list of implementations)

Edge

Impl. 1 Impl. 2

Res. Time Res. Time

e1 ,S1, D2, xbar. 30 ,*, *, bus. 40
e2 ,S3, *, bus. 50 ,*, *, xbar. 10
e3 ,S1, ~D2..D5!, lan. 90 ,*, *, bus. 40
... ... ... ... ...
en ,*, *, xbar. 30 ,*, *, bus. 80
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y is an auxiliary variable, which is set to true if and only if both the
variables as1 and ad2 are true) should be met.

The execution time Di of a node vi (after selection) is modeled as the sum
of Ci (sum of computation time and intramacro task communication times)
and Xi (sum of the intermacro task communication time corresponding to
each data edge emanating from the node).

Di 5 O
k51

Nai

aikdik 1 O
@e[ out edge

O
k51

Nbe

bekxek

Using the start time variables si, we impose the following selection con-
straints to be met by our model.

Precedence constraints. A data edge between a pair of nodes vi and vj

~vi a data vj! implies that the start time sj of node vj cannot be less than the
end time of the node vi.

sj $ si 1 Di (3)

Timing constraints. A timing constraint of tcij units of time imposed by a
timing edge between a pair of nodes vi and vj (vi a timing vj) implies that the
start time sj of node vj cannot be greater than the end time of node vi by tcij

units of time.

sj # si 1 Di 1 tcij (4)

An overall processing time constraint of t units of time (either specified
or propagated) from the start node to end node implies

send # sstart 1 t (5)

Pipelining constraints. In case the timing constraints dictate the pipelin-
ing of a CDFG, we need to impose constraints such that the tasks in the
CDFG get placed suitably in different pipeline stages. The requirements for
pipelining are (1) the delay Di of a node i assigned to any of the pipeline
stages should not be more than the interarrival time T; (2) the execution
time interval @si, ~si 1 Di 2 1!# of node i should fall within one of the
pipeline stage intervals. Using the variables pi we model the pipelining
requirements as

Di # T (6)

T p pi # si # T p ~pi 1 1! 2 Di (7)

Objective function.The main objective of the selection problem is to arrive
at a solution that employs resources whose total cost is the minimum.
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Using the boolean variables aik, bjk, and cost values cik, ljk we can express
this objective function as

C 5 O
i51

Nv O
k51

Nai

cikaik 1 O
j51

Ne O
k51

Nbj

ljkbjk (8)

3.3 Allocation and Scheduling

After the implementations for each node and edge are selected (as dis-
cussed in the previous section), the scheduler first computes the as late as
possible (ALAP) schedule to decide how a given node can be delayed before
starting execution. The scheduler allocates both the processing elements
(PE) and interconnects (IC) in a conservative fashion guided by these
schedules.

The algorithm ScheduleAllocate (simplified for the sake of illustration)
sketched in Figure 6 starts with an empty pool of resources and picks a
node for scheduling when all its predecessors have finished. If required
resources are available in the pool, the same resources are allocated to the
node and the node is scheduled. If the required resources are currently held
by some other node, then the scheduling is delayed until either the
resources become available or the ALAP schedule for the node is reached.

Fig. 6. Resource allocation and scheduling.
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If by that time some other node scheduled earlier has released all or some
of the resources needed by the node, same are allocated to the current node.
If sufficient resources are not available in the pool, then new resources are
allocated. The resources are held with a node until the clock advances (the
advancement is shown as single time step in Figure 6 for simplicity) by the
time denoted by the delay of the node. It should be noted that this
scheduling is done at synthesis time (static) and not at runtime.

3.3.1 Allocation of Interconnects. The scheduler needs to allocate not
only the interconnects needed by the PEs implementing a node (for intra-
macro task communication), but also those needed by the data edges
(intermacro task communication) between these nodes. Allocation of inter-
connects is slightly more involved as compared to allocation of PEs. A PE is
always viewed as attached to an IC and remains so permanently. While a
PE can be simultaneously attached to more than one IC (assuming that it
has that many interfaces), a specific IC may have limits on the number of
PEs that can be attached to it. The cost of an IC may depend on the number
of PEs connected to it and it may often increase in discrete steps. For
example, crossbar switches may come with capacities of multiples of 4 PEs.

Our strategy to allocate the ICs is to use the same IC for multiple
nodes/edges wherever possible, effectively reducing the resource costs.
When we need to allocate a new IC, our scheduler tries to meet this
requirement by an already allocated IC. If required, it could upgrade an
existing IC to a higher capacity to accommodate new PEs. It also tries to
change the selection of an IC for a node/edge if doing so does not violate the
constraints and reduces the resource cost. If everything fails, then it could
allocate a new IC. A brief sketch of this allocation strategy is outlined in
Figure 7.

3.3.2 Handling Reconfigurable Devices. Our scheduler takes care of
hiding the reconfiguration time of the FPGAs wherever possible. For this
purpose it modifies the original CDFG by inserting additional reconfigura-
tion tasks. Let us assume that a vertex v with a delay de is mapped to an
FPGA. Let dc denote the configuration time for this vertex. We can
visualize the vertex v as two vertices vc (the configuration task) and ve (the
computation task) each with corresponding delays dc and de. We introduce
a dummy dependence edge from vc to ve to indicate that ve can start
execution only when vc has finished (i.e., FPGA is configured). Also, all the
incoming edges of vertex v become incoming edges of vertex ve. The vertex
vc has a single incoming edge from the start vertex.

With this modification of the HCDFG, for each vertex mapped to recon-
figurable devices, we proceed as follows. A vertex such as vc is scheduled as
soon as its resource requirements are met by the current resource pool. If
there are multiple vertices of the type vc contending for a free resource,
then we use their successor’s ALAP schedule as priority to break the tie.
The resources are returned to the pool as usual after the vertex ve finishes.
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In case the vertex vc cannot be scheduled before the clock reaches the
ALAP schedule for vertex ve, then ve is assumed to be preprogrammed and
the FPGAs are not reused for that vertex.

3.3.3 Scheduling of Mutually Exclusive Control Paths. The vertices
between a branch vertex and the corresponding merge vertex could fall in
nonoverlapping path segments. Since only one of the control paths emanat-
ing from a branch vertex can be active at any given instant of time, the
vertices lying on all such mutually exclusive path segments can share
resources.

Our scheduling algorithm takes advantage of this fact and tries to
allocate the same resources to two or more vertices if they happen to fall in

Fig. 7. Resource allocation.
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different mutually exclusive control paths. When a vertex vj is picked up
for scheduling and if the resource pool does not have the necessary
resources, the scheduler checks all the currently RUNNING vertices and
does the following. If a currently RUNNING vertex vi has allocated
resources needed by vj and if vi and vj fall on two mutually exclusive
control paths, it allocates some or all of the resources allocated to vi also to
vj. The resources are freed only when both vi and vj finish.

3.3.4 Refining Selection While Scheduling. To take into account the
interaction between selection and scheduling, we have incorporated the
capability to change the selection (under some conditions) in our scheduler.
Whenever a node becomes ready for execution and it becomes necessary to
allocate new resources, the scheduler tries to choose an alternate imple-
mentation for the node if the resources for that implementation is available
in the pool and the delay associated with that implementation is no more
than that associated with the previously selected implementation.

4. EXPERIMENTAL EVALUATION

We currently have a Java-based implementation of our synthesis algo-
rithm. The MILP problem is automatically generated from a CDFG, which
in turn is fed to a public domain MILP solver [Berkelaar 2001]. The output
of the solver is input to the scheduler.

We used a large number of benchmarks to evaluate our synthesis
algorithm, including real applications such as space time adaptive process-
ing (STAP), MPEG decoder, as well as several synthetic benchmarks. In
each case we compare the results generated by the automatic synthesizer
with what could be produced by manual synthesis. We assume that a
typical manual synthesis involves pipelining and resource allocation based
on the relative computation weights of each of the tasks. The initial
decisions are iteratively refined by using runtime measurements until the
computation load is balanced and communication delays are minimized. At
each step the allocation is done in a conservative fashion. We take the
manual design techniques employed in Choudhary et al. [1998] as a
guideline in designing large systems. Some of the results of the evaluation
of our synthesis algorithm are listed in Tables IV(a)–(c) and V(a)–(c).

We synthesized each benchmark for various combinations of ,Delay,
IAT. pairs. We compared the cost of the automatically synthesized system
with the manually synthesized one. We separated the cost of the system
before scheduling (shown as NS) and after scheduling (shown as WS) to
highlight the contributions of these two synthesis phases. We also show the
percentage cost reduction as compared to manual synthesis. The last
column in each table shows the time taken for automatic synthesis.

In almost all cases, our algorithm generated substantially better quality
results compared to the manually synthesized ones. The cost reduction is
as high as 70% in some cases. The cost reduction is significant when, for
various reasons, the CDFG are large (Synthetic programs 2 and 3). First, a
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large graph provides a large number of possibilities to pipeline the graph,
and the quality of the result depends on the right pipelining. Second, the
size of the search space for resource selection is very large in the case of
large graphs, making the simple greedy heuristics used by the manual

Table IV. Automatic synthesis of the benchmarks (real applications) for various timing
constraints (Delay is the total delay; IAT the interarrival time; Man. and Auto for manual

and automatic synthesis; WS and NS for costs with and without scheduling; CR for
percentage cost reduction; Syn.time time for synthesis)

(a) STAP using homogeneous resources

Delay IAT

#of Procs

Syn.
time

(secs.)

Man. Auto.

(msecs.) NS WS CR

1250 1250 60 60 44 27% 0.1
700 700 83 78 50 40% 0.1
365 365 108 106 60 44% 0.1

1400 700 68 60 48 29% 0.1
700 350 88 82 60 32% 0.5
360 180 148 136 102 31% 0.6

1500 500 62 62 56 10% 0.1
750 250 94 94 88 6% 1.7
360 120 156 152 140 10% 0.2

(b) STAP using heterogeneous resources

Delay IAT

Cost in $

Syn.
time

(secs.)

Man. Auto.

(msecs.) NS WS CR

1250 1250 2800 2800 1920 31% 0.1
700 700 4375 3960 2140 51% 0.2
365 365 7710 6360 5460 29% 0.2

1400 700 3250 2800 2410 26% 0.1
700 350 4840 4345 3895 20% 0.7
360 180 11270 8250 7350 35% 0.5

1500 500 2920 2920 2520 14% 0.1
750 250 5140 4930 4240 18% 1.2
360 120 8600 8380 8380 3% 0.1

(c) MPEG using heterogeneous resources

Delay IAT

Cost in $

Syn.
time

(secs.)

Man. Auto.

(msecs.) NS WS CR

110 110 375 375 135 64% 0.1
90 90 450 405 225 50% 0.1

100 50 495 495 315 36% 0.5
90 45 515 510 390 24% 0.3
75 25 540 540 540 0% 0.2
60 20 680 680 680 0% 0.4
60 15 805 775 775 4% 0.1
50 10 1145 1145 1145 0% 0.1
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synthesis unable to find a good solution (in spite of iterative refinement) in
a given amount of time. In most cases, the contribution of scheduling to
cost reduction is also significant, and larger graphs no doubt provide more
opportunities for scheduling.

Table V. Automatic synthesis of benchmarks (synthetic) for various timing constraints
(Delay is total delay; IAT is interarrival time; Man. and Auto. for manual and automatic

synthesis; WS and NS for costs with and without scheduling; CR stands for percentage cost
reduction; Syn.time is time taken for synthesis)

(a) Synthetic program 1 using heterogeneous resources

Delay IAT

Cost in $

Syn.
time

(secs.)

Man. Auto.

(msecs.) NS WS CR

1400 200 1785 1785 1725 3% 2.0
1800 300 1605 1320 1080 33% 1.2
2400 400 1530 1260 960 37% 1.6
2000 500 1320 1305 825 38% 2.8
1800 600 1605 1260 765 52% 0.7
1400 700 1545 1380 840 46% 3.1

800 800 2025 1880 950 53% 0.7
650 650 2875 2255 1355 53% 1.7

(b) Synthetic program 2 using heterogeneous resources

Delay IAT

Cost in $

Syn.
time

(secs.)

Man. Auto.

(msecs.) NS WS CR

2800 400 2670 2115 1500 44% 2.1
4200 600 2235 2115 1435 36% 0.2
3500 700 2475 2115 1380 44% 0.2
2400 800 2550 2145 915 16% 1.2
1800 900 2430 2295 1170 52% 0.4
2500 500 2835 2130 1530 46% 2.1
1200 1200 3345 3080 1055 68% 0.3

900 900 4700 3975 1800 62% 0.2

(c) Synthetic program 3 using heterogeneous resources

Delay IAT

Cost in $

Syn.
time

(secs.)

Man. Auto.

(msecs.) NS WS CR

1400 700 5370 4665 1710 68% >300
2600 650 5450 3405 1500 72% 228.0
4200 600 4665 3375 2025 57% 2.2
4500 500 3795 3375 2715 28% 3.2
4000 1000 3885 3375 1545 60% 2.7
1600 800 5025 4310 1760 65% >300
3600 1200 3705 3375 1605 57% 2.1
2800 1400 3375 3375 1110 67% 0.4
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For a given graph, the cost reductions are not significant (in many cases
it is almost zero) whenever the timing constraints are tight (low delays and
low IAT). This is because most of the design alternatives become infeasible
(for a given delay/cost table) for those timing constraints making the search
space relatively small. Both manual and automatic techniques produce
comparable results in such cases.

It is interesting to analyze the exact reason why a huge cost reduction
was achieved in specific cases. For example, consider the case where our
algorithm achieved a maximum cost reduction of 72% (second row of Table
V(c)). More than half of this reduction is mainly due to better selection and
pipelining (see column NS). While the manual synthesis employed 41
M68k, 24 PowerPC, 11 Pentium, and 1 FPGA to design this system, our
algorithm chose 30 M68k, 13 PowerPC, and 7 Pentium processors. In both
cases, cheaper resources are given preference, expensive devices such as
FPGAs are selected only when essential, both partitioned the graph into
the same number of stages (4 in this case). But the MILP-based pipeliner/
selector resulted in a better assignment of pipeline stages to the tasks that
not only helped in choosing fewer resources, but also in better scheduling.

In many cases the cost reduction was not because the MILP selector
preferred low-cost devices (in fact it chose expensive devices), as would any
greedy algorithm, but it chose the resources (even if it increased the
implementation cost of some of the nodes), keeping the overall cost in view.
There were other cases where the cost reduction came partly from reuse of
FPGAs across the nodes by dynamically reconfiguring them.

As can be seen from Tables IV and V, the synthesis time in most cases is
very small. In rare cases the MILP solver took an unduly large amount of
time to come up with an optimal solution (see the highlighted cases in
Table V(c)). We set a timeout of 300 secs, after which the MILP solver
terminates the search and returns the best suboptimal solution. As can be
seen from Table V(c), even in such cases the cost reduction achieved was
quite impressive (around 65%).

5. CONCLUSION

In this paper we presented a synthesis algorithm that automatically
performs constraint propagation, resource selection, allocation, pipelining,
scheduling, and hiding of reconfiguration delays in the context of the
design of large time-constrained parallel heterogeneous adaptive systems.
Our algorithm combines the power and the elegance of MILP techniques to
solve the selection and pipelining problems with the fast list scheduling-
based heuristic to perform scheduling. Experimental evaluation of our
algorithm using a large number of benchmarks shows that high-quality
results can be obtained in reasonable amount of time.
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