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Abstract

I/O intensive applications have posed great challenges
to computational scientists. A major problem of these ap-
plications is that users have to sacrifice performance re-
quirement in order to satisfy storage capacity requirement
in a conventional computing environment. Further perfor-
mance improvement is impeded by the physical nature of
these storage media even state-of-the-art I/O optimizations
are employed.

In this paper, we present a distributed multi-storage re-
source architecture that can satisfy both performance and
capacity requirements by employing multiple storage re-
sources. Compared to traditional single storage resource
architecture, our architecture provides a more flexible and
reliable computing environment. It can bring new oppor-
tunities for high performance computing as well as inherit
state-of-the-art I/O optimization approaches that have al-
ready been developed. We also develop an Application Pro-
gramming Interface (API) that provides transparent man-
agement and access to various storage resources in our
computing environment. As I/O usually dominates the per-
formance in I/O intensive applications, we establish an I/O
performance prediction mechanism which consists of a per-
formance database and a prediction algorithm to help users
better evaluate and schedule their applications. A tool is
also developed to help users automatically generate the per-
formance database. The experiments show that our multi-
storage resource architecture is a promising platform for
high performance distributed computing.

1 Introduction

Large scientific simulations, especially I/O intensive ap-
plications, are generating huge amounts of data that has be-
come a major problem facing computational scientists[13].
In a traditional computing environment, the compute re-
source is tightly coupled with local file systems, i.e. using

local disks as data storage. As the speed of increase in data
size significantly exceeds that of increase in disk capacity,
large-scale scientific applications have to turn to other large
storage resources. These storage resources include tertiary
storage systems such as HPSS[5, 7], UniTree[17] and large
database systems such as Oracle. This technology change
has shifted the traditional computing environment to a dis-
tributed environment because the large storage archival sys-
tems are not so popular as the compute resources, so it is
very common that these large storage systems are not lo-
cally installed. For example, the available tertiary storage
system (HPSS) for us is located at San Diego Supercom-
puter Center (SDSC), while our application is running at
Argonne National Lab and Northwestern University. There-
fore, the compute resources and storage resources may no
longer tightly coupled, rather, they may be geographically
distributed across wide area networks. In such a distributed
environment, the I/O problem seems more serious: an I/O
call in this case has become a remote I/O access[6] across
networks, thus the I/O cost is many times worse than a local
disk I/O cost (bear in mind that I/O access speed is already
far lagged behind memory access even in a local computing
environment.). In addition, the network may bring more is-
sues such as reliability, quality of service, security and so
on in a remote I/O access.

A major concern of I/O in a distributed environment is
performance. I/O (remote I/O) evaluation and optimizations
are more important and urgent than ever in such an envi-
ronment. Both traditional I/O optimizations and new I/O
techniques should be employed. We have built a run-time
library (SRB-OL)[10] that provides various state-of-the-art
optimizations for tertiary storage access (HPSS). Although
these optimizations can significantly improve the perfor-
mance compared to naive approaches, further improvement
is impeded by the physical nature of storage media. For ex-
ample, the tape system such as HPSS requires a minimum
of 20 to 40 seconds to be ready to move the data and data
transfer rate is very slow compared to disks. The general
I/O optimizations such as collective I/O, data sieving and
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so on can not eliminate this overhead when data resides on
tapes. Aggressive prefetch or prestage may partially solve
this problem by overlapping I/O access and computation,
but they may significantly complex I/O system and force the
user to specify more precise hints to the system, otherwise a
‘false’ prefetch or prestage may actually hurt performance.
In general, the remote large storage archival systems suffer
from large data access latency, while, on the other hand, the
local fast storage systems suffer from limited storage capac-
ity. So the users have to satisfy the capacity requirement at
the loss of performance. We think this dilemma is rooted
in the traditional single storage resource architecture. In
this architecture, the application has only one storage me-
dia available for storing the user’s data. The performance
improvement would saturate even if many state-of-the-art
optimizations are applied. Note that a scientific simulation
here not only concerns the application that generates data,
it also includes ‘post’ processing of these datasets, such as
data analysis, visualization etc. on datasets just generated.
So the performance here means an overall performance for
all these processings.

In this paper, we present a multi-storage resource archi-
tecture which is a promising approach to solve the problem
discussed previously. In this architecture, an application can
be associated with multiple storage resources that could be
heterogeneously distributed over networks. These storage
resources could include local disks, local databases, remote
disks, remote tape systems, remote databases and so on. In
short, any kind of storage media can be added to this archi-
tecture. The advantages of employing multiple resources
are three-fold.

� First of all, it increases the logic storage capacity of
the system. The total available storage capacity can
be significantly increased by adding as many storage
media in the system as possible.

� Second, multi-storage resource system provides a
more flexible and reliable computing environment. For
example, failure of one storage system may not impede
the computation when other resources are available. It
is very common that the remote large storage system
especially in production is shutdown for system fail-
ure or maintenance, so that the experiment can not go
on in a single storage resource architecture. A multi-
storage resource system, however, can help the user
avoid relying on one storage resource for computing.

� Finally and most importantly as far as the performance
is concerned, a multi-storage resource architecture
provides new opportunities for further performance
improvement for scientific simulations. With multi-
ple storage resources coupled with the simulation, the
application can speculatively store the datasets to the

‘best’ storage media favorable for the post-processing
such as data analysis and visualization thereafter. For
example, if the user wants to carry out visualization on
a specific dataset just after simulation generates it, she
can suggest the system dump this dataset locally (if it
does not exceed local storage capacity.), where visual-
ization tools are installed and all other recently unused
datasets to the remote large storage system for perma-
nent archival. So her visualization tools can directly
read data from local disks rather than go all the way
to the remote tapes as in a single storage resource ar-
chitecture. In general, each generated dataset has its
purpose of usage and the multi-storage resource ar-
chitecture allows this purpose to be best implemented
(in terms of performance) by storing it on a suitable
storage medium, which is impossible in a single stor-
age resource architecture. In short, this architecture
can combine the capacity advantage of remote large
storage system and the performance advantage of lo-
cal small storage system for best usage.

To efficiently make use of this multi-storage resource ar-
chitecture, an effective user interface is required. This in-
terface should be easy-to-use, so the user does not need to
change her programming practice and should be scalable, so
other storage resources can be easily added. Another issue
this paper addresses is I/O performance prediction. There
is a lot of study in literature on performance prediction for
computing resources[12], but few study is on I/O perfor-
mance prediction. The I/O time usually dominates the per-
formance in I/O intensive applications, so accurate I/O per-
formance prediction can greatly help the user evaluate and
schedule her applications. Embarking on these goals, our
contributions in this paper are summarized as follows.

(1) Present a multi-storage resource architecture that pro-
vides opportunities for further performance improve-
ment and better data manipulation of users’ applica-
tions.

(2) Design and implement an API that provides transpar-
ent access to diverse storage resources. Our design of
this API is scalable since other storage media can be
easily added.

(3) Provide run-time library (I/O optimization) for each
kind of storage resource. Each storage resource has its
own data access characteristics and we provide state-
of-the-art I/O optimizations for each type of storage
resource. So access to each kind of storage resource is
optimized.

(4) Establish an I/O performance predictor that can accu-
rately predict I/O performance across diverse storage
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resources before the user actually carries out the ex-
periment. The user can have better evaluation of her
application via this performance predictor.

(5) Implement a tool called PTool to help the user auto-
matically establish the I/O performance database that
is used by performance predictor.

The remainder of the paper is organized as follows. In
Section 2 we describe a data model that captures I/O char-
acteristics of most I/O intensive applications. We also in-
troduce our simulation environment which includes several
applications and some tools. In Section 3 the system archi-
tecture of our multi-storage resource system is presented.
We first describe a logic view of this architecture, followed
by physical environment of our experiments. In Section 4
we present I/O performance predictor. We first introduce a
basic performance model and a tool that can help automat-
ically generate the performance database, then we describe
our I/O performance prediction algorithm. In Section 5,
we show performance numbers of experiments performed
in our new architecture. The experiment results are also
compared to prediction results by our I/O performance pre-
dictor. We conclude the paper in Section 6 and some future
work is also presented.

2 I/O Model and Applications

Figure 1 (left) shows a typical I/O model for scientific
applications. N represents maximum number of iterations
of the application and M is the total number of datasets.
The I/O frequency of dataset(j) is given by freq(j). In
the main loop, dataset(j) will be either read or written for
every freq(j) iterations. The computing part, which is not
shown in the figure, may be interleaved with I/O operations.
As the number of iterations could be very large and/or each
dataset could be large, the total amount of data would be
huge. Figure 1 (right) shows our simulation environment
which includes several applications and tools. It is a repre-
sentative of typical scientific simulation environments.

The main application is an astrophysics application
called Astro3D or astro3d [1, 15] henceforth. Astro3D is a
code for scalably parallel architectures to solve the equa-
tions of compressible hydrodynamics for a gas in which
the thermal conductivity changes as a function of temper-
ature. The code has been developed to study the highly tur-
bulent convective envelopes of stars like the sun, but sim-
ple modifications make it suitable for a much wider class
of problems in astrophysical fluid dynamics. The algo-
rithm consists of two components: (a) a finite difference
higher-order Godunov method for compressible hydrody-
namics, and (b) a Crank-Nicholson method based on non-
linear multigrid method to treat the nonlinear thermal dif-
fusion operator. These are combined together using a time

splitting formulation to solve the full set of equations. From
data flow’s point of view, Astro3D is a data producer: it
generates three kinds of datasets: one for later possible data
analysis which include six datasets (press, temp, rho, ux, uy
and uz); one for visualization which includes seven datasets
(vr-scalar, vr-press, vr-rho, vr-temp, vr-mach, vr-ek and
vr-logrho); one for checkpoint which includes six datasets
(restart-press, restart-temp, restart-rho, restart-ux, restart-
uy and restart-uz). The user can specify in command line
the dump frequency of each kind of datasets, total number
of iterations and problem size (3 dimensional) of datasets
(Figures 1, 2). The second application is a data analysis
program. This application is a data consumer in that it takes
one of datasets generated by Astro3D (press, temp, rho, ux,
uy or uz) and calculates the difference between two con-
secutive timesteps. This will show how dataset changes as
simulation goes on. The algorithm applied is Maximum
Square Error (MSE) between two consecutive timesteps.
Other data analysis programs can easily substitute this pro-
gram if needed. The third application is a parallel volume
rendering code (called Volren henceforth). It generates a 2D
image by projection given a 3D input file. This application
is both a data consumer and data producer. It takes one of
datasets (3 dimensional) generated by Astro3D (vr-scalar,
vr-press, vr-rho, vr-temp, vr-mach, vr-ek or vr-logrho) and
then perform parallel volume rendering algorithm and gen-
erate two dimensional image dataset for each iteration. This
image dataset is then dumped to storage media for later us-
age. (Figure 2).

The two tools are an image viewer and an interactive
visualization tool such as VTK. They are both data con-
sumers. The image viewer read two dimensional image
datasets generated by Volren and the interactive visualiza-
tion tool takes datasets directly from Astro3D (Figure 2).

We view this whole picture (Figure 1) as a complete sim-
ulation environment. The user performs experiments of As-
tro3D first and later on, she may carry out one or more of the
post processings (data analysis, volume rendering and inter-
active visualization) on the generated datasets. The perfor-
mance improvement of one component should not impede
the improvement of other components. Therefore, the over-
all performance improvement can be achieved.

3 System Architecture and Experimental En-
vironment

3.1 Logical Architecture of Multi-Storage Re-

source System

In this section, we present our multi-storage resource ar-
chitecture. A logic architecture of this environment is de-
picted in Figure 3. This architecture can be logically layered
into five levels.
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Figure 1. I/O model (left) and Data ow of applications in our Simulation Environment (right).

Figure 2. I/O model of Astro3D and Volren.

Figure 3. Logical Ar chitecture of multi-
storage resource system.

� Physical Storage Resources At the bottom of this
five-layered architecture are various storage resources.
These resources could include local disks, local
databases, remote disks, remote databases, remote tape
systems and other storage systems. They the the actual
holder of data.

� Native Storage Interface The layer residing above the
storage resources is native storage interface . Each
storage resource has its own access interface provided
by the vendors of these storage systems. These inter-
faces to various storage systems are well established
and developed by vendors. For example, the inter-
face to a local database can be an embedded C API
which is provided by database vendor. The interface
to local disks is usually a filesystem. To access remote
disk and tape systems, SRB is now a popular interface.
Some tape systems such as HPSS also provide their
own APIs for users. Unfortunately, the major concerns
of these native interfaces are portability, ease-of-use
and reliability etc. Few of them have fully consid-
ered performance issues in a parallel and distributed
computing environment demanded by computational
scientists. In addition, it is impossible for the appli-
cation level users to change these interfaces directly
to take care of performance issues. So this layer is
performance-insensitive.

� Run-time Library One methodology to address per-
formance problem of native storage interface is to
build a run-time library that resides above it. The only
concern of these libraries is performance. It captures
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the characteristics of user’s data access pattern and per-
form an optimized data access method to the native
storage interface. For example, MPI-IO, which is built
on top of local filesystems, takes advantage of collec-
tive I/O, data sieving, asynchronous I/O and so on to
gain performance improvements. For remote disk and
tape systems, our previous work SRB-OL [10] also
employs other novel optimization approaches such as
subfile, superfile etc as well as those found in MPI-I/O.
This layer is performance-sensitive.

� User API On top of Run-time libraries is Application
Programming Interface (API) layer. This API is used
in user applications to provide transparent access to
various storage resources and selection of appropriate
I/O optimization strategies and storage types.

� User Application The top layer in our logical architec-
ture is user applications. The user writes her program
by using API and passes a high level hint in the API.
This hint is high level since it is not concerned with low
level details of storage resources and I/O optimization
approaches. It only describes how the user’s dataset
will be partitioned and accessed by parallel processors,
how her dataset will be used in the future, what kind of
storage systems the user expects to put her datasets on
etc.

We can also think the the bottom two layers, storage re-
sources and native interfaces, as physical level. They are
provided by commercial vendors and the user has on con-
trol inside them. The top layer can be viewed as applica-
tion level. The middle two layers, user API and run-time
libraries can be thought of as system level, which is pro-
vided by the system developers like us. The purpose of this
layer is to mediate between physical level and application
level to optimize the raw access from application level to
physical level.

An example to work under this architecture is that the
user writes her application using our API when she needs to
perform I/O. Our API then decides which storage resource
should be responsible for the datasets of these I/O requests.
Then the optimized I/O requests by run-time library are ac-
tually performed to the selected storage resources. Note that
selecting target storage resources is fine-grain: it can be as
fine as a specific dataset rather that the whole run. This
means that different datasets may be spread to different stor-
age media even within a single run. We will demonstrate in
the subsequent sections that this architecture is more flexi-
ble and scalable for high performance distributed comput-
ing than in a single storage resource architecture.

Figure 4. System Ar chitecture of multiple
stora ge resource system and I/Operformance
predictor.

3.2 Experimental Environment

Figure 4 shows our overall experimental environment
(including I/O performance predictor and tool). The com-
pute resource on which applications carry out is IBM SP2
which is located at Argonne National Laboratory. Each
node of the SP-2 is RS/6000 Model 390 processor with 256
megabytes memory and has an I/O sub-system containing
four 9 gigabytes SSA disks attached to it. The storage re-
sources involved in this environment are:

� Local Postgres Database This database is installed
at Northwestern University1. This ‘small’ database is
used to store meta-data of our system. These meta-
data describe information about what applications and
users are involved in the system, information about
each dataset and its characteristics. These characteris-
tics include storage resource that each dataset is stored
or to be stored, file path and name of each dataset,
how each dataset is partitioned among processors, how
it is stored (storage pattern) on storage systems and
so on. The other layers such as API layer can use
these information to locate each dataset that the user
is interested in and also make an optimized I/O de-
cision. This database also store performance-related
data (Section 4), so that I/O performance predictor can
consult this database to make performance prediction.
The native interface to Postgres database is Embedded
C API provided by the database vendor. As meta-data
access is inexpensive, there is no need to provide a
run-time library on top of native interface or other ap-
proaches to optimize meta-data access.

1Northwestern University is very close to Argonne National Lab and
data exchange between Postgres database at Northwestern and the applica-
tion at Argonne is small, so we treat it as a local database.
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� Local Disks Local disks are the most popular tradi-
tional storage resource for saving user’s data files. As
scientific computing often generates huge amounts of
data that exceeds the capacity of local disks, local disks
are only suitable for storing small data files. On the
other hand, local disk access is much faster than re-
mote disk and tape access. Our multi-storage resource
system allows us to take this opportunity for novel op-
timizations. The native interfaces to local disks is gen-
eral UNIX filesystem, PIOFS and so on . On top of
this interface is MPI-IO run-time library or D-OL that
provides collective I/O, data sieving and asynchronous
I/O etc optimization schemes. D-OL is a run-time li-
brary we ported to local disks from our SRB-OL [10].
Compared with MPI-IO, D-OL performs slightly bet-
ter for write than MPI-IO but slightly worse for read.
This small performance difference do not matter and
can be ignored. The user can choose what kind of li-
brary she wants. We use D-OL in our experiments in
this paper only because it allows us relatively easier to
design a general performance prediction algorithm for
all storage media.

� Remote Disks The remote disks in our environment is
located at San Diego Supercomputer Center (SDSC).
Compared to local disks, remote disks have both larger
storage capacity and data access latency. We use
SDSC’s Storage Resource Broker (SRB) 2 [3, 14, 2]
as native interface to remote disks. The run-time op-
timization library which is called SRB-OL is devel-
oped in our previous work [10]. Besides optimiza-
tion approaches that can be found in MPI-IO, SRB-OL
also provides some novel optimization schemes such
as subfile, superfile and so on.

� Remote Tapes The remote tape system we use in
our environment is High Performance Storage System
(HPSS) [5]. Although HPSS can be configured as
multiple hierachies, we only use its tapes, i.e. only one
level of hierachy for simplicity. The remote tapes have
very large storage space and we assume it can hold any
size of data. But the cost to access tape-resident data
is extremely expensive. The native interface to HPSS
could be SRB or HPSS internal API. As we are not al-
lowed to use HPSS’s internal API at present3, we also
use SRB as native interface in our work. The SRB-OL
run-time library is also applied to HPSS.

In sum, we have identified four storage resources in our
system. One ‘small’ local database serves as meta-data de-
pository, the other three resources: local disks, remote disks

2SRB is a client-server middleware that provides a uniform interface for
connecting to heterogeneous data resources over a network and accessing
replicated datasets. Using SRB has some advantages.

3HPSS’s internal API is in general reserved for system administration.

Figure 5. A typical I/O ow .

and remote tapes are repositories for actual data files. In
general, the larger the storage capacity, the more expensive
the data access cost. Based on characteristics of these dis-
tributed multi-storage resources, a unique distributed com-
puting paradigm is identified: different datasets can be spec-
ulatively dumped to different storage resources for different
purposes even within a single run. For example, if the user
is going to carry out visualization on dataset vr-temp shortly
after it is generated by Astro3D application, she can provide
this information when she performs the experiment. Then
this dataset will be written to a fast storage resource, local
disks for example, which is ‘close’ to visualization tools,
and all the other unwanted datasets to other slow storage
media with large capacity for permanent archival. A spe-
cific dataset could be small enough to fit the local fast stor-
age media. Late on, the user can directly access this dataset
from local disks which is the fastest storage media in our en-
vironment. This speculation of dumping interested datasets
to fast storage media can significantly improve the overall
performance that is impossible for a system with a single
storage type.

To effectively and efficiently make use of this multi-
storage resource architecture, We implemented an Appli-
cation Programming Interface (API). This API is easy to
use because it observes UNIX programming practice. It
provides an unique interface to transparently access vari-
ous heterogeneous storage systems in our computing en-
vironment. In addition, the user provides high-level hints
and our API transparently consults the database and decides
storage type and I/O optimization approach internally ac-
cording to user’s hints and meta-data information kept in
database. Other storage media can also be easily added.
Figure 5 shows the I/O flow and main functions in our API
[11]. In order for the user to specify hints, each dataset is
associated with a ‘location’. The user can explicitly specify
it as one of the following values:

� LOCALDISK suggest dataset be placed on local disks;
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� REMOTEDISK suggest dataset be placed on remote
disks;

� REMOTETAPE suggest dataset be placed on remote
tapes;

� AUTO/DEFAULT leave to system to decide. Default
is remote tapes;

� DISABLE suggest this dataset not be dumped because
it may not be used this run.

The user should be clear how her datasets are going to be
used in the future, so it is easy for her to specify this hint.

Before we show our performance numbers in this envi-
ronment, we will present an I/O performance predictor that
gives a quantitative view of the performance of various stor-
age resources used in our experiments.

4 I/O Performance Predictor

4.1 Performance Model

As I/O cost is significant for many large-scale scientific
applications, it is very useful that the user can estimate the
I/O cost before she actually carries out her experiments, so
that she can have better arrangements of her experiments.
Therefore, I/O performance prediction is very important. In
our multi-storage resource system, an I/O call may initiate a
remote data access across networks, so in general, the cost
of a single I/O call in such an environment T (s) can be bro-
ken down into time for communication setup Tconn, time
for file open Topen, time for file seek Tseek , time to transfer
data Tread=write(s), time to close file Tfileclose and time to
close communication connection Tconnclose.

T (s) = Tconn + Topen + Tseek + Tread=write(s) +

Tfileclose + Tconnclose (1)

Where s is the size of a single data transfer. For the local
filesystem, there is no communication setup, so Tconn = 0
and Tconnclose = 0. For other distributed resources, the
communication setup is a constant for each storage re-
source. In addition, file open, file close are also constants.
The file seek time is also a constant for disk systems due
to random access mechanism. Tread=write(s) is a function
of data size s. Therefore, the basis of our I/O performance
prediction is to construct a performance database that main-
tains all the components in Equation 1 for each storage re-
source, so the performance predictor can search database to
obtain these numbers to perform prediction algorithm. The
main task is to time Tread=write(s) for various data sizes
on different storage media. To efficiently obtain these num-
bers, we built a tool called PTool that can automatically gen-
erate all these numbers. This program automatically mea-
sures read/write time of various data sizes and store them

in database directly. Therefore, the user can easily set up
her basic performance prediction database in a single run.
Figure 6 and 7 show read/write time for various data sizes
and Table 1 shows the file open, file close times etc.

4.2 Performance Prediction Algorithm

Once the basic performance database is established, we
can design the prediction algorithm. Remember in our
multi-storage resource environment, the user’s request for
I/O is high-level in her application, i.e. the user specifies an
access pattern that includes how data is partitioned among
processors, what kind of storage resource the user wants to
be affiliated with for each dataset and other high level hints.
This access pattern is interpreted by our Application Pro-
gramming Interface (API) to a data structure understandable
by lower-layer run-time library that can perform I/O opti-
mization for each storage resource. So for the performance
predictor, the main input parameters are data access pattern,
what storage resource is used and what kind of I/O opti-
mization is used as well as I/O frequency for each dataset
and total number of iterations. The predictor then calculate
the number of ‘native’ I/O calls (through native interface)
needed for the request and the data size (s) of each ‘native’
I/O unit according to how I/O will be performed at physical
level. Then by searching performance database, the pre-
dictor can calculate the overall estimated I/O time for each
dataset access. The following equation gives the prediction
algorithm.

Tprediction =

MX

j=1

(N=freq(j) + 1)� n(j)� tj(s) (2)

Where N , M and freq(j) are total number of iterations,
total number of datasets and I/O frequency of dataset(j)
respectively. n(j) is number of ‘native’ I/O calls required
by dataset(j) given an access pattern and I/O optimization
approach. tj(s) is unit I/O time searched from performance
database according to unit data size s. The following ex-
ample will show how the algorithm works. Suppose the
user is going to generate only vr-temp (dataset(1)) and vr-
press(dataset(2)) in Astro3D for every 6 iterations and the
maximum iteration is 120. Vr-temp is written to local disks
and vr-press is dumped to remote disks. Each dataset is
2M. So M = 2, N = 120 and freq(1) = freq(2) = 6.
When collective I/O is applied, it allows the user to is-
sue one single write for one dataset each iteration. So
n(1) = n(2) = 1. By consult the performance database and
according to Equation 1, t(1) = 0:1234 and t(2) = 8:47.
So the total time is:

Tprediction =

MX

j=1

N=freq(j) + 1)� n(j)� tj(s)
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Figure 6. Read time for local, remote disks and remote tapes.

Figure 7. Write time for local, remote disks and remote tapes.

Table 2. Run-time parameter set of Astro3D
Item Size Datatype

Problem Size 1283 -
Max num of iterations 120 -

Data Analysis Freq 6 Float
Data Visualization Freq 6 Unsigned Char

Checkpointing Freq 6 Float

= (120=6 + 1)� 0:2534+ (120=6+ 1)� 8:47

= 2:59 + 177:98 = 180:57(s) (3)

Our experiment shows that the actual time is about
197.40 (Figure 8) which is consistent with our prediction.
One example of using this performance prediction is that
the user can choose better maximum run time parameter for
her job. Our application is running on Argonne’s SP2 which
allows the user to specify a maximum run time for her job.
The larger the maximum run time, the lower priority for
scheduling. As the competition for job scheduling is keen,
the user always wants to specify the maximum run time as
small as possible. Our performance predictor can provide a
lower bound for this parameter that might be great helpful
for the user to choose a suitable maximum run time.

5 Experiments

In this section, we present various opportunities that our
multi-storage resource architecture can take advantage of
for high performance computing. These opportunities are
impossible in a single storage resource architecture.

Our base application is Astro3D, a data producer. It gen-
erates a number of datasets for different purposes. A typ-
ical run-time parameter set is shown in Table 2. This set
of parameters will generate a total of about 2.2G data. As

the user may carry out many such scale experiments with
different parameters, the total amount of data size gener-
ated could be huge. Therefore, In a single storage resource
environment, the user has to choose tape systems as stor-
age depository which are usually thought of as unlimited in
space. The total I/O time is shown in Figure 8 if write all
these data to tapes. Note that this time has already been op-
timized by collective I/O. Without collective I/O, it will be
many times worse. Then suppose the user wants to perform
data analysis(MSE) on dataset temp, then the total I/O time
is shown in Figure 9 (left). This is our base experiment for
comparison, which is typical for a single storage resource
system. We can see that the I/O cost is very expensive even
if state-of-the-art I/O optimizations such as collective I/O is
performed.

In our multi-storage resource architecture, on the other
hand, if the user knows that she is going to carry out data
analysis on dataset temp shortly after it is generated, she
can suggest the system to place temp on a ‘closer’ storage
medium such as remote disks in this example. A subset of
total datasets generated by Astro3D could be small enough
to be held on a faster media for fast data access and our
multi-storage resource system can just provide a platform
for this opportunity. Although the total time of generating
all these data is not saved much by placing the temp on re-
mote disks (Figure 8), but when the user carries out data
analysis, she can read data from remote disks which saves a
lot of time compared to from tapes (Figure 9).

Another opportunity our multi-storage resource system
can provide is that if the user knows that she is only inter-
ested in temp and possibly press and all the other datasets
are not going to be used for a particular run, she can DIS-
ABLE dump of other datasets by providing ‘location’ hint
as DISABLE. So the total I/O time of Astro3D can be de-
creased significantly (Figure 8).

Our second example is that if the user is going to perform
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T ab le 1. Timings for le open, close etc
Location Type Conn Fileopen Fileseek Fileclose Connclose

Local Disk read 0 0.20 - 0.001 0
Local Disk write 0 0.21 - 0.001 0
Remote Disk read 0.44 0.42 0.40 0.63 0.0002
Remote Disk write 0.44 0.42 - 0.83 0.0002
Remote Tape read 0.81 6.17 - 0.46 0.0002
Remote Tape write 0.81 6.17 - 0.42 0.0002

parallel volume rendering on vr-temp or carry out interac-
tive visualization by VTK, she can suggest the system to
dump vr-temp to local disks. Vr-temp is consisted of un-
signed characters, its size is small that could fit on local
disks in our example. As vr-temp is closely related to vr-
press, the user may also possibly examine vr-press as well,
so vr-press is put to remote disks for possible faster usage
than from tapes. All the other datasets which will not be
used are dumped to tapes. In addition, if the user knows
that all the other datasets will not be used at all, she can
also DISABLE them. So the total write time saved is huge
(Figure 8). When the user read vr-temp by parallel volume
rendering or interactive visualization tools (VTK), the total
read time is 10 times less than from tapes. If user also reads
vr-press, she can also save time by read data from remote
disks (Figure 9).

Our next example is to demonstrate a novel optimization
approach called superfile to efficiently access large number
of small files from remote systems. Suppose the images
files generated by Volren are going to be stored on remote
disks or tapes. When superfile is applied, these small files
will be transparently write to one large superfile when they
are created. Later on, when the user read these data, the
first read will bring all the data into memory. Then the sub-
sequent read can be satisfied by copying data directly from
main memory. In this approach, there is only one remote
I/O access with large data size compared to multiple remote
I/O calls with small data sizes that would dominate the I/O
performance [10] in the naive approach. Figure 9 (right)
shows that the performance improvement is significant.

Our final example is that suppose the remote tape system
is down for maintenance, recovery or other problems which
could often happen, we can still satisfy large storage space
requirement for simulations by aggregating all the space of
remote disks, local disks and other storage resources in the
future, i.e. the user does not have to stop her experiments.
Therefore, this multi-storage resource system can provide a
more reliable computing environment.

We also show the predicted I/O time for each perfor-
mance number in Figure 8 and 9. Our prediction is quite
close to the actual I/O time 4. Our performance predictor

4For remote systems, as network is involved, there is fluctuation in per-
formance numbers possibly due to different network traffic condition. The

Figure 8. I/O time for Astro3D. 1: Write all
datasets to remote tapes; 2. Write temp to re-
mote disks and all other datasets to remote
tapes; 3. Write only temp to remote disks and
press to remote disks; 4. Write vr-temp to lo-
cal disks and all the other datasets to remote
tapes; 5. Write only vr-temp to local disks and
vr-press to remote disks.

is integrated with our IJ-GUI[11], a Java graphical environ-
ment that can help the user submit her job, carry out visual-
ization, perform data analysis and so on. Figure 10 shows a
prediction result of Astro3D. It is very easy for the user to
change parameters directly in the Java window to get other
prediction results.

6 Conclusions and Future Directions

In this paper, we have presented a multi-storage resource
architecture for scientific simulations that provides a more
flexible and reliable computing platform in a distributed en-
vironment. This architecture, compared to the traditional
single-storage resource architecture, can combine the ad-
vantages of different classes of storage resources and avoid
their disadvantages. It is also scalable since other storage
resources can be easily added.

We also established an I/O performance prediction
mechanism that can help the user better evaluate her ap-
plications. Our experiments have shown that the prediction

numbers shown here are the most common cases.
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Figure 9. I/O time for Data Analysis, Visualization and Superle.

Figure 10. A Prediction Result of Astro3D.

is very close to the actual I/O time.
We would add more storage media in our system. Our

current post-processing programs and tools are all installed
locally. In the future, they could also possibly be dis-
tributed. So far, we require the user to explicitly specify
storage hints. In the future, the user can also specify only a
performance requirement for a particular run of her applica-
tion and our system can automatically decide which storage
resources should be used according to the capacity and per-
formance of each storage resource.
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