
Improving Collective I/O Performance by Pipelining
Request Aggregation and File Access

Saba Sehrish

Northwestern University

USA

ssehrish@eecs.northwestern.edu

Seung Woo Son

Northwestern University

USA

sson@eecs.northwestern.edu

Wei-keng Liao

Northwestern University

USA

wkliao@eecs.northwestern.edu

Alok Choudhary

Northwestern University

USA

choudhar@eecs.northwestern.edu

Karen Schuchardt

PNNL

USA

Karen.Schuchardt@pnnl.gov

ABSTRACT
In this paper, we propose a multi-bu↵er pipelining approach
to improve collective I/O performance by overlapping the
dominant request aggregation phases with the I/O phase in
the two-phase I/O implementation. Our pipelining method
first divides the collective bu↵er into a group of small size
bu↵ers for an individual collective I/O call and then pipelines
the asynchronous communication to exchange the I/O re-
quests with the I/O requests sent to the file system. Our
performance evaluation of a representative I/O benchmark
and a production application shows 20% improvement in the
I/O time, given theoretical upper bound of 50% when both
phases completely overlap.

Keywords
Parallel I/O, Collective I/O, Two-phase I/O performance

1. INTRODUCTION
I/O has always been considered as one of the limiting fac-

tors in achieving scalability and high performance in large-
scale computer systems, such as those from the Top500 list [8].
Thus, many parallel I/O libraries have been developed to
work with the underlying file systems to achieve better per-
formance. One of the most common file access patterns used
in parallel applications running on these large-scale systems
is shared-file I/O, in which multiple processes simultane-
ously read or write from/to di↵erent locations of the same
file. While the shared-file I/O reduces the number of files
created from a single application run, it can cause file lock
contentions at the file system level and thus hamper the
achievable performance. To tackle such problem, collective
I/O was proposed to reduce the lock contentions by reor-
ganizing the parallel I/O requests among all the requesting
processes. Well-known examples of collective I/O implemen-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

EuroMPI ’13 September 15 - 18 2013, Madrid, Spain

Copyright 2013 ACM 978-1-4503-1903-4/13/09 ...$15.00.

tations are two-phase I/O [5] and disk directed I/O [9]. The
two-phase I/O method uses a subset of processes to aggre-
gate the I/O requests from all processes into fewer larger
contiguous requests, so they can be serviced more e�ciently
by the underlying file systems. This strategy has demon-
strated significant performance improvement over the unco-
ordinated approaches.

The two-phase I/O is adopted by the ROMIO library to
implement the collective MPI-IO functions. ROMIO is the
most commonly used implementation of MPI-IO functions
and has been incorporated by almost all MPI libraries [19].
The two-phase I/O strategy conceptually consists of a re-
quest aggregation phase (or referred as the communication
phase) and a file access phase (or simply the I/O phase). In
the request aggregation phase, a subset of MPI processes is
picked as I/O aggregators that act as I/O proxies for the
rest of the processes. The aggregate file access region re-
quested by all processes is divided among the aggregators
into non-overlapping sections, called file domains. During
writes, the non-aggregator processes send their requests to
the aggregators based on the file domain assignment. In the
file access phase, each aggregator commits the aggregated
requests to the file system. When the aggregated request
amount is large, the collective I/O is carried out in multiple
rounds of two-phase I/O to conserve the memory usage.

Recent studies on collective I/O performance have shown
that the cost of request aggregation phase starts to exceed
the file access phase for large runs [12, 10]. TAU profiling
result from one of our experiments using 10,240 compute
cores on Hopper shows write phase contributes to only 32.3%
of the collective write time. The reason is that there are
only 156 Lustre file object server targets (OSTs) available
on Hopper and hence 156 aggregators were selected by the
Cray’s MPI-IO library. Such a small number of aggregators
causes inter-process communication contention and impacts
the performance. Hence, as the number of compute cores on
a parallel computer increases and the I/O-to-compute node
ratio remains small, it becomes important to study di↵erent
approaches to minimize inter-process communication con-
tention and balance the cost of two phases to achieve best
end-to-end performance.

In this paper, we propose an optimization to balance the
cost of request aggregation and file access phase. Our ap-
proach is designed specifically for improving the performance
of a single collective I/O call by reducing the impact of

communication time. Our main contribution in this pa-
per is design and implementation of a multi-bu↵er pipelining
method that allows overlapping between the request aggre-
gation and file access phases within a single collective I/O
call. The pipelining method divides the collective bu↵er, an
internal temporary bu↵er, which accommodates the aggre-
gated requests into several sub-bu↵ers. It then pipelines the
two-phase I/O on the individual sub-bu↵ers by overlapping
the MPI asynchronous send-receive calls and the I/O phase
alternatively. This strategy can significantly improve the
performance if both the request aggregation and file access
phases spend equal amount of time in a collective I/O call.

We evaluate the proposed method on the Cray XE6 par-
allel computer named Hopper at the National Energy Re-
search Scientific Computing Center (NERSC) using an I/O
benchmark and application I/O kernel for up to 40,000 MPI
processes. The ideal scenario happens when both phases
take equal amount of time and the pipelining method can
completely overlap these two phases. Therefore, the theo-
retical upper bound of performance improvement is 50%. In
reality, it is rare that the two phases take an equal amount of
time and the upper bound is in fact determined by the phase
with smaller percentage to the overall time. For example,
if the aggregation and file access phases take 30% and 70%
respectively, the upper bound of the overlapping is 30%, i.e.
the maximum amount of work that can be overlapped be-
tween the two phases. In our experiments, we obtain up to
20% improvement for most of the cases, which we consider
a decent performance improvement.

The rest of this paper is organized as follows: Background
and related work is discussed in Section 2. Design and im-
plementation of proposed pipeline approach is described in
Section 3. Performance evaluation is presented and analyzed
in Section 4 followed by conclusion in Section 5.

2. BACKGROUND AND RELATED WORK
The I/O functions defined in MPI are classified into two

categories: collective and independent. Collective I/O re-
quires all processes that belong to the communicator group
used in MPI_File_open() to open a file. Such synchroniza-
tion provides a collective I/O implementation an abundant
opportunity for process collaboration, for instance, by ex-
changing access information and reorganizing the I/O re-
quests. Many collaboration strategies besides the two-phase
I/O and disk directed I/O have been proposed and demon-
strated their successes, including server-directed I/O [18],
persistent file domain [3, 2], active bu↵ering [13], and col-
laborative caching [4, 11]. Independent I/O, in contrast,
requiring no synchronization makes any collaborative opti-
mization di�cult.

Two-phase I/O is a representative collaborative I/O
technique that runs at user space. It is motivated by the
fact that much slower I/O phase than the aggregation phase
is observed in parallel machines at the time it was pro-
posed. It leverages much faster inter-process network to
redistribute the requests among processes into large and con-
tiguous chunks, so that the I/O cost to the underlying file
system is significantly improved. The request redistribu-
tion is referred as the aggregation phase and file accessing
the I/O phase. The aggregation phase first identifies the
I/O aggregators and calculates the aggregate access region
of the entire collective I/O. I/O aggregators are a subset of
processes that can make read() and write() calls to the

file system. The aggregate access region is a contiguous file
region starting from the minimal access o↵set to the maxi-
mal o↵set among all the requesting processes. The region is
partitioned into non-overlapping sub-regions denoted as file
domains, and each is assigned to a unique I/O aggregator.
For non-aggregator processes, their file domains are null.

File domain partitioning methods were first studied by
Nitzberg and Lo who examined three file domain-partitioning
methods, namely block, file layout, and cyclic target dis-
tributions [14]. The three methods perform competitively,
and with carefully selected collective bu↵er sizes the cyclic
method can outperform others in some cases. File domain
partitioning methods were also studied in [21], which focuses
on the request arrival orders at the disk level. By rearrang-
ing the file blocks at the I/O aggregators into sequential
accesses in disk blocks, collective I/O performance can be
e↵ectively improved. File domain partitioning methods for
Lustre and the IBM GPFS file systems were proposed in [12,
10] to minimize the file lock contentions.

Many strategies have been proposed to improve collective
I/O performance [6, 20, 1]. None of the existing approaches,
however, try to overlap the data aggregation and I/O phases.
Partitioned collective I/O improves collective I/O perfor-
mance by partitioning file area, I/O aggregator distribution
and intermediate file views. View-based collective I/O uses
MPI file views across multiple calls, so that the request re-
distribution does not need to calculate and exchange the
request information after the first call [1]. However, the re-
quirement is that the file view must keep unchanged. Patrick
et al. [15] overlap the MPI communication, computation,
and I/O at the application level and none is designed for
improving the performance of a single collective I/O call.

3. DESIGN AND IMPLEMENTATION
As the request aggregation phase for larger runs starts

to dominate the overall collective I/O cost, we propose a
multi-bu↵er pipelining approach to overlap the aggregation
with the file access phases. In ROMIO’s implementation for
the collective I/O, a collective bu↵er is an internal tempo-
rary bu↵er used for the request aggregation. When the file
domain size assigned to an I/O aggregator is larger than
the size of the collective bu↵er, the collective I/O operation
is carried out in multiple rounds of two-phase I/O. Each
round handles a file sub-domain with size equal to or less
than the collective bu↵er size. More than one round of two-
phase I/O happens very often especially on parallel comput-
ers that have large number of CPU cores on each compute
node and only one core is chosen to serve as an aggregator.
However, these rounds of two-phase I/O are currently im-
plemented in a blocking manner. In other words, one round
of two-phase I/O must complete before the start of the other
round of two-phase. In fact, we found that the sequence of
two phases in multiple rounds can be overlapped through
a pipeline mechanism to reduce the e↵ect of longer request
aggregation phase on overall collective I/O cost.

There are potentially two design options to enable the
overlapping: 1) using asynchronous I/O, and 2) using asyn-
chronous communication. The former divides the collective
bu↵er into two halves and runs the two-phase I/O on the
two sub-bu↵ers alternatively. By replacing the blocking
read/write calls by the non-blocking calls, the I/O phase
of one round can be overlapped with the aggregation phase
of the next round. POSIX standard defines a set of asyn-

iW
assume the same run time for both communication and I/O phases

C0 C3C2C1

0W W 1 W 2 W 3

C7C4 C5 C6

4W W 5 W 6 W 7

Original design for two−phase I/O

S10

S11

S12

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S3

S2

S1

S0

C1 C2 C3C0post

0W

C4

W 1

C5

W 2

C6

W 3

C7

4W

W 5

W 6

W 7

C0wait for
to complete

C1wait for
to complete

write buffer 0
to file system

write buffer 0
to file system

write buffer 3
to file system

Pipelined two−phase I/O

post recv using buffer 0

post recv using buffer 1

post recv using buffer 2

post recv using buffer 3

time saved by pipeliningtime

C
o

p
e

ra
ti

o
n

 s
e

q
u

e
n

c
e

i

Figure 1: Comparing the conventional non-pipelined
method with the pipelined method. In the pipelined
method, the collective bu↵er is divided into multiple sub-
bu↵ers used to enable the overlapping of the request aggre-
gation and file access phases.

chronous I/O functions, generally referred as aio, including
aio_write, aio_read, and aio_suspend. A wait call for the
asynchronous read/write must be used to enforce the ex-
clusive use of the bu↵ers to prevent one phase outrunning
the other. Since two consecutive rounds of two-phase I/O
uses di↵erent bu↵ers, overlapping of the two phases can be
achieved. This approach can be extended to use multiple
sub-bu↵ers to increase the overlapping the two phases across
multiple rounds. However, the drawback is that the over-
lapping depends on the support of asynchronous read/write
from the file systems. Many modern parallel file systems
do not support asynchronous I/O, e.g. aio functions on the
Lustre file system are actually blocked, which commit the re-
quests before returning the calls. For this reason, we choose
the second option that relies on the MPI asynchronous com-
munication to overlap the two phases.

In ROMIO, the default size of collective bu↵er is 16 MB. A
customized value for the bu↵er size can be set through the
MPI-IO hint cb_buffer_size . In our pipelining design,
the collective bu↵er is divided into smaller sub-bu↵ers of
equal size. Each sub-bu↵er is used to receive requests from
the remote processes for data aggregation in a successive
but independent round of two-phase I/O. We set the size of
sub-bu↵er bu↵er equal to the file striping size to minimize
the file lock contention. The range of the file domains of
all aggregators are made known to all processes, hence each
process can calculate the number of rounds of two-phase I/O
based on the local requests. Before starting the two-phase
I/O, the o↵set-length pairs of the requests by all processes
are made available to the relevant I/O aggregators through
an all-to-all personalized MPI communication. Therefore,
no global synchronization is required during the multiple
rounds of two-phase I/O because all processes know their
requests, non-aggregators know which aggregators will serve
their requests, and aggregators know which non-aggregators
to serve. In each round, requests are received in the sub-
bu↵er independent of each other and committed to file sys-
tem in a pipelined manner.

A collective write example shown in Figure 1 illustrates
our pipelining design. In this example, there are 2 rounds of

two-phase I/O when the traditional approach is used. The
collective bu↵er size is equivalent to the size of 4 sub-bu↵ers
if our pipelining approach is used. Without loss of general-
ity, we assume the time spend on writing the sub-bu↵er data
to the file system is the same as the communication cost of
receiving remote requests in the sub-bu↵er. The communi-
cation time for sub-bu↵er i is denoted as Ci and the write
time Wi. In the Figure 1, each block of Ci represents the
time duration starting from the posts of MPI asynchronous
receive calls from the non-aggregators to the completion of
the receive calls. Note that the time for each Wi is more
deterministic than Ci, as the MPI asynchronous communi-
cation can truly overlap with other operations, even other
asynchronous communication. In this figure, the operation
sequence is indicated by Si and there are 12 steps in this
example. In S0, an aggregator posts all the asynchronous
receive calls for all 4 sub-bu↵ers and since the asynchronous
calls return immediately, the call to wait for C0 to complete
in S1 can be initiated with a very little delay after S0. Once
C0 is complete, the write phase starts to write sub-bu↵er 0
to the file system. Only when W0 finishes, sub-bu↵er 0 can
be free for the next request. This is depicted by S1 and S2,
where C4 must be run after W0. As can be seen from S2 to
S9, the communication for request aggregation phases fully
overlap with the write phases. Obviously, the larger number
of two-phase I/O rounds means longer overlapping pipeline
and better performance improvement. At the end of the
pipeline, when all aggregation phases have been posted, the
write phases must be carried out one after another.

The same example using the traditional, non-pipelined
design is also depicted in the top portion of the Figure 1.
An MPI_Waitall is called at the end of each communica-
tion block to ensure that the write data is in place, and
the write phase can use the bu↵er to write to the file sys-
tem. Since the aggregation and I/O phases run one after
another, there would be no overlapping. Note that the
write phase is a blocking operation for both pipelined and
non-pipelined method. The end-to-end time saved by our
pipelined method is shown at the bottom of the figure.

The pseudo code for the I/O aggregators of our pipeline
method is shown in Figure 2. Two important values de-
termine the depth of pipeline, the number of sub-bu↵ers
n sub bufs and the number of two-phase I/O rounds ntimes.
In the conventional non-pipelined method, there is only one
loop of ntimes as the aggregation phase run after the I/O
phase in each round. In the pipelined method, this loop is
broken into two loops, the first loop starting from line 4 to
10 and the second loop from line 11 to line 14. The inner
loop on lines 5 and 6 describes the posting of the asyn-
chronous receive calls. The if condition from line 8 to 10
indicates that the I/O phase starts only when the pipeline
is full. The wait and write calls for the same sub-bu↵er ID
shown in lines 8, 9, 13, and 14 are adjacent to each other
to guarantee that the aggregated data is ready to be writ-
ten to the file. The maximum depth of overlapping can be
seen from the if condition which is n sub bufs � 1. When
ntimes > n sub bufs, our proposed method can achieve the
maximum overlap. Otherwise, the pipelined method should
perform about the same as the non-pipelined approach.

The e�cacy of our approach depends upon the following
factors: 1) cost of each phase in the two-phase I/O, and 2)
the length of the pipeline. The ideal scenario happens when
both phases spend equal amount of time in collective I/O

buf_id +1) % n_sub_bufs

(buf_id +1) % n_sub_bufs

wait for the irecv calls for buffer buf_id to complete

buf_idwrite buffer

wait for the irecv calls for buffer buf_id to complete

write buffer buf_id

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

0

for

for

i

j

if

for i 0 . . . (

n_sub_bufs

ntimes

buf_id

coll_buf_size / sub_buf_size

file_domain_size / sub_buf_size

0 . . . (ntimes −1)

0 . . . (−1)nprocs

buf_id

n_sub_bufs −1)

n_sub_bufs −1)

buf_id

post an irecv call to receive from rank j to buffer buf_id

i ≥ (

: total number of processes

: size of file domain of this aggregator

: size of temporary buffer used by collective I/O

: size of each sub−buffer

: number of sub−buffers

: number of two−phase I/O rounds to complete the collective I/O

sub_buf_size

n_sub_bufs

ntimes

coll_buf_size

file_domain_size

nprocs

(

Figure 2: Pseudocode of pipelining algorithm to overlap the
request aggregation and write phases in collective I/O.

call, and then our approach can completely overlap these
two phases. Therefore, it can be stated that the theoretical
upper bound of performance improvement is 50%. However,
it is rare that the two phases take equal amount of time in
real applications. In fact, the upper bound is determined
by the phase with smaller percentage contribution to the
overall time. For example, if the aggregation and file access
phases each take 30% and 70% of the I/O time respectively,
the maximum performance improvement is 30%. Hence, the
cost of each phase determines the performance improvement
that can be achieved with the new approach. The large num-
ber of rounds of two-phase I/O leads to a longer pipeline,
more overlap and better performance. If there is only one
round of two-phase I/O, then the I/O request may be too
small to benefit from the pipelining design. In that case, our
approach would perform same as non-pipelining method.

4. PERFORMANCE EVALUATION
Our performance evaluations were performed on Hopper,

a Cray XE6 parallel computer at the National Energy Re-
search Scientific Computing Center (NERSC). Hopper has a
peak performance of 1.28 Petaflops with 153,216 processor
cores, 212 TB of memory, and 2 Peta bytes of disk stor-
age. Each compute node contains two 12-core AMD CPUs.
The parallel file system available on Hopper is Lustre with
a total of 156 OSTs and a peak I/O bandwidth of 35 GB
per second. In our experiments, we use all 156 OSTs and
a striping size of 1 MB for all di↵erent cases of benchmark
runs. Our implementation is based on the ROMIO source
tree released from the MPICH 2-1.4.1p1 version. We kept all
the default MPI-IO hints. In particular, the default collec-
tive bu↵er size coll_buf_size 16MB is used, the sub-bu↵er
size equal to the file striping size, which gave us 16 sub-
bu↵ers. Our evaluations used one artificial benchmark, the
collective performance test from ROMIO distribution, and
one application I/O kernel from GCRM. We compare the
bandwidth obtained using system default ROMIO, an exist-
ing optimization based on file domain partitioning [12, 10],

Figure 3: Timing breakdown of the aggregation and I/O
phase in coll perf benchmark. The first bar in each pair
corresponds to the file domain, and second to the pipelining
optimization.

our pipelining approach and the ideal improvement that can
be achieved. The timing breakdown results only compare
file domain partitioning and pipelining method because we
only intend to show that file access time remains the same.
It should be noted that the performance improvement we
claim is compared with the file domain optimization instead
of system default ROMIO.

ROMIO collective I/O test: coll perf is a synthetic
benchmark from the ROMIO test suite. It uses a block
partitioning method to write and read 3 dimensional arrays
in parallel. In order to obtain stable timing and bandwidth
results, we modified the benchmark to run ten iterations of
the collective I/O call and kept the size of block partition
constant across processes. We used a local array size of
128⇥128⇥128 and hence the I/O amount is proportional
to the number of processes. Each process wrote the same
amount of data independent of number of processes, but the
amount of data aggregated by aggregators varied with the
number of processes (up to 128 GB total data per iteration
and 850MB per aggregator).

Figure 3 shows the timing breakdown of collective writes
into the request aggregation phase and I/O phase. It can
be seen from the figure that file access phase contributes
only 11-21% to the overall I/O time for the original, non-
pipelined method for 512-16,384 processes. Note that this
percentage indicates the maximum amount of time that can
be overlapped with the aggregation phase time. Hence, the
maximum performance improvement for this set of test is
21% and ideal case would have been if there were 50% con-
tribution by each phase. We observed an average of 19% im-
provement in overall I/O time, under the 50% upper bound.
The figure also shows that the I/O phase time is about the
same for both pipelined and non-pipelined methods. This
is because the write amounts per process do not change for
both methods and our proposed approach targets the re-
quest aggregation phase. However, the request aggregation
time is reduced by up to 19% in the pipelined case. Only
the overall collective write time and I/O phase time are re-

Figure 4: Write bandwidth comparison of pipelined method
with other approaches for coll perf benchmark.

Figure 5: Timing breakdown of the aggregation and I/O
phase in GCRM. The first bar in each pair corresponds to
the file domain, and second to the pipelining optimization.

ported, because the aggregation phase I/O is hard to mea-
sure due to the overlapping.

Figure 4 shows the improvement in write bandwidth us-
ing the pipelined approach. For the largest run on 16K
processes, we observe 19.6% improvement in the write band-
widths as compared with the File domain optimization method.

Global Cloud Resolving Model (GCRM): is a cli-
mate simulation application framework. It is designed to
simulate the circulations associated with large convective
clouds [16]. In our experimental setup, there are 256 hor-
izontal layers and 38 grid variables. Each variable is ap-
proximately evenly partitioned among all the processes. We
collected results for 5 cases: 160 processes with resolution
level 7, 640 processes with resolution level 8, 2,560 processes
with level 9, 10,240 processes with level 10 and 40,960 with
level 11. Resolution levels 9, 10, and 11 correspond to the
geodesic grid refinement at about 15.6, 7.8, and 3.9 km, re-
spectively. GCRM I/O uses Geodesic Parallel I/O (GIO) li-

Figure 6: Write bandwidth comparison of pipelined method
with other approaches for GCRM.

brary [17], which interfaces parallel netCDF (PnetCDF) [7].
Our TAU profiling results for GCRM show that on aver-

age 30% of collective I/O time is spent on the I/O phase.
This allows a maximum of 30% overlapping between the two
phases and hence up to 30% performance improvement. Fig-
ure 5 shows the timing breakdown of the collective I/O time
in request aggregation time and file access time for GCRM
as percentage of collective I/O time. We present the per-
centages in this figure instead of time in seconds because the
execution times for the smaller run are too small to see when
putting them in the same chart as the larger runs. It should
be noted that file access time remains constant across the
methods presented here, but due to overlapping file access
and communication, the over all I/O time decreases. The
constant file access time and smaller overall I/O time results
in the higher percentage of file access time for pipelining in
Figure 5.

From the measurement, we observe up to 14% perfor-
mance improvement in the bandwidth, as shown in Figure 6.
As the number of processes increases the ratio of the num-
ber of I/O aggregators to non-aggregators decreases, im-
plying the larger file domain size per aggregator. In our
pipelined design, the larger file domain size produces the
longer pipeline which explains why the performance improve-
ment is more obvious for large runs. Similar to all previous
benchmarks, this figure also shows a weak scaling evalua-
tion. For 640 and larger runs, we observe that longer pipelin-
ing improves the request aggregation time, hence improving
overall I/O time. However, the file access time remains con-
stant in each case.

5. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a multi-bu↵er pipelining

approach to improve the performance of the request aggre-
gation phase of the two-phase I/O. Through our pipelining
design, we show that the cost of the dominant request aggre-
gation phase can be minimized by overlapping it with the file
access phase, thereby reducing the total collective I/O time.
By using multiple sub-bu↵ers of smaller size instead of a
larger collective bu↵er, we allow asynchronous receive oper-

ation to continue using di↵erent sub-bu↵ers while a di↵erent
sub-bu↵er is used during the file access. The best perfor-
mance can only be achieved if both request aggregation and
file access contribute 50% to the collective I/O time, oth-
erwise the amount of overlap is determined by the smaller
percentage contribution of the both phases. However, in
our tests we observe only 20% improvement as in reality
50% overlap does not exist. Our future work will include
the analysis of the e↵ect of di↵erent number of spread out
aggregators on pipelining approach and the communication
cost in other collective I/O operations i.e. open call and in-
vestigate the implications of the proposed optimizations on
I/O benchmarks and production applications.

6. REFERENCES
[1] Javier Garćıa Blas, Florin Isaila, David E. Singh, and

J. Carretero. View-based collective i/o for mpi-io. In
Proceedings of the 2008 Eighth IEEE International
Symposium on Cluster Computing and the Grid,
CCGRID ’08, pages 409–416, Washington, DC, USA,
2008. IEEE Computer Society.

[2] K. Coloma, A. Ching, A. Choudhary, W. Liao,
R. Ross, R. Thakur, and Lee Ward. A new flexible
MPI collective I/O implementation. In the IEEE
Conference on Cluster Computing, September 2006.

[3] K. Coloma, A. Choudhary, W. Liao, W. Lee,
E. Russell, and N. Pundit. Scalable High-level Caching
for Parallel I/O. In the International Parallel and
Distributed Processing Symposium, April 2004.

[4] K. Coloma, A. Choudhary, W. Liao, W. Lee, and
S. Tideman. DAChe: Direct Access Cache System for
Parallel I/O. In the 20th International Supercomputer
Conference, June 2005.

[5] J. del Rosario, R. Brodawekar, and A. Choudhary.
Improved Parallel I/O via a Two-Phase Run-time
Access Strategy. In the Workshop on I/O in Parallel
Computer Systems at IPPS, pages 56–70, April 1993.

[6] Phillip M. Dickens. Improving collective i/o
performance using threads. In In Proceedings of the
13th International Parallel Processing Symposium and
10th Symposium on Parallel and Distributed
Processing, pages 38–45, 1999.

[7] J. Li et al. Parallel netCDF: A High-Performance
Scientific I/O Interface. In SuperComputing
Conference, 2003.

[8] http://www.top500.org/.
[9] D. Kotz. Disk-directed I/O for MIMD

Multiprocessors. ACM Transactions on Computer
Systems, 15(1):41–74, February 1997.

[10] W. Liao. Design and Evaluation of MPI File Domain
Partitioning Methods under Extent-Based File
Locking Protocol. IEEE Transactions on Parallel and
Distributed Systems, 22(2):260–272, February 2011.

[11] W. Liao, A. Ching, K. Coloma, A. Choudhary, and
L. Ward. An Implementation and Evaluation of
Client-Side File Caching for MPI-IO. In the
International Parallel and Distributed Processing
Symposium, March 2007.

[12] W. Liao and A. Choudhary. Dynamically Adapting
File Domain Partitioning Methods for Collective I/O
Based on Underlying Parallel File System Locking
Protocols. In International Conference for High

Performance Computing, Networking, Storage and
Analysis, November 2008.

[13] X. Ma, M. Winslett, J. Lee, and S. Yu. Improving
MPI-IO Output Performance with Active Bu↵ering
Plus Threads. In the International Parallel and
Distributed Processing Symposium, April 2003.

[14] B. Nitzberg and V. Lo. Collective Bu↵ering:
Improving Parallel I/O Performance. In the Sixth
IEEE International Symposium on High Performance
Distributed Computing, pages 148–157, August 1997.

[15] Christina M. Patrick, Seung Woo Son, and
Mahmut Taylan Kandemir. Enhancing the
performance of mpi-io applications by overlapping i/o,
computation and communication. In Proceedings of
the 13th ACM SIGPLAN Symposium on Principles
and practice of parallel programming, PPoPP ’08,
pages 277–278, New York, NY, USA, 2008. ACM.

[16] D. Randall, M. Khairoutdinov, A. Arakawa, and
W. Grabowski. Breaking the Cloud Parameterization
Deadlock. Bull. Amer. Meteor. Soc., 84:1547–1564,
2003.

[17] K. Schuchardt, B. Palmer, J. Daily, T. Elsethagen,
and A. Koontz. IO Strategies and Data Services for
Petascale Data Sets from a Global Cloud Resolving
Model. Journal of Physics: Conference Series, 78,
2007.

[18] K. Seamons, Y. Chen, P. Jones, J. Jozwiak, and
M. Winslett. Server-directed Collective I/O in Panda.
In Supercomputing, November 1995.

[19] R. Thakur, W. Gropp, and E. Lusk. Users Guide for
ROMIO: A High-Performance, Portable MPI-IO
Implementation. Technical Report
ANL/MCS-TM-234, Mathematics and Computer
Science Division, Argonne National Laboratory,
October 1997.

[20] Weikuan Yu and Je↵rey Vetter. Parcoll: Partitioned
collective i/o on the cray xt. In Proceedings of the
2008 37th International Conference on Parallel
Processing, ICPP ’08, pages 562–569, Washington,
DC, USA, 2008. IEEE Computer Society.

[21] X. Zhang, S. Jiang, and K. Davis. Making Resonance
a Common Case: A High-Performance
Implementation of Collective I/O on Parallel File
Systems. In the International Parallel and Distributed
Processing Symposium, March 2009.

