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Abstract In petascale systems with a million CPU cores, scalable and consistent
I/O performance is becoming increasingly difficult to sustain mainly because of I/O
variability. The I/O variability is caused by concurrently running processes/jobs com-
peting for I/O or a RAID rebuild when a disk drive fails. We present a mechanism that
stripes across a selected subset of I/O nodes with the lightest workload at runtime to
achieve the highest I/O bandwidth available in the system. In this paper, we propose
a probing mechanism to enable application-level dynamic file striping to mitigate I/O
variability. We implement the proposed mechanism in the high-level I/O library that
enables memory-to-file data layout transformation and allows transparent file parti-
tioning using subfiling. Subfiling is a technique that partitions data into a set of files
of smaller size and manages file access to them, making data to be treated as a single,
normal file to users. We demonstrate that our bandwidth probing mechanism can suc-
cessfully identify temporally slower I/O nodes without noticeable runtime overhead.
Experimental results on NERSC’s systems also show that our approach isolates I/O
variability effectively on shared systems and improves overall collective I/O perfor-
mance with less variation.
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1 Introduction

Scientists and engineers are increasingly utilizing leadership-level high performance
computing (HPC) systems to run their extreme-scale data-intensive applications, such
as thermonuclear reactions, combustion, climate modeling, and so on [11,37,39,41].
Scalable parallel I/O libraries and runtime systems are one of the key components to
sustain scaling of those applications [5,21]. The I/O requirements of such applications,
however, can be staggering, ranging from terabytes to petabytes, and managing such
massive data sets imposes a significant performance bottleneck [7,22].

Current parallel I/O libraries already use state-of-the-art techniques and opti-
mizations; significant challenges still exist in accomplishing scalable, consistent I/O
performance. The reason is that the file servers are shared resources among various
applications; therefore, they often experience unbalanced I/O load at runtime. This
results in fluctuating file system performance from a perspective of individual appli-
cation. [4,6,15,24,30,55]. In petascale systems, the amount of I/Obandwidth available
to any particular job or application can fluctuate to a large extent depending on the
degree of other concurrent jobs accessing the shared file system. Shared burst buffer
systems have been introduced to mitigate contention on the file servers [28,40,54],
but that interference effects are still a problem and an effective scheduling is required
to address that I/O interference [17,36,46,50,53,56,61]. Another common cause of
I/O fluctuation is an RAID rebuild from a disk drive failure. Since the collective I/O
performance is limited by the slowest process (also called stragglers [4,6]), ensuring
no process remarkably lags behind is critical for scalable collective I/O performance.

Many parallel applications express their problem using a global data structure in
a multidimensional array format and partitions the array among all processes, such
that each process computes on sub-domains in parallel. There have been numerous
techniques to coordinate application processes’ I/O requests, and the collective I/O in
MPI-IO [34] has been a widely used optimization to allow coordination among partic-
ipating processes and rearrange their I/O requests to achieve better I/O performance.
Optimizations to improve collective I/O performance include two-phase I/O [38,47],
disk-directed I/O [18], server-directed I/O [42], persistent file domain [26], active
buffering [33], collaborative caching [27], and adaptive file domain [25]. While these
improvements are effective, collective I/O operations at scale face new challenges
on modern HPC systems. That is, as system scales and application complexity grow,
various contentions, such as contention on communication network owing to the high
ratio of application processes to file servers and contention on file locking among
processes accessing shared files, can be a significant barrier to achieve scalable I/O
performance at scale.

1.1 Contribution

In this paper, we make the following four contributions:

– Wedemonstrate that various contention on shared I/O resources significantly limits
the performance of collective I/O.
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– We demonstrate that there is a higher correlation between the bandwidth measure-
ments and latency measurement at runtimes.

– We propose a probing technique to calculate file servers’ available bandwidth
at runtime and isolate the impact of accessing relatively slower I/O servers by
excluding them from being used for file striping.

– We propose and implement a transparent subfiling through data layout transfor-
mation mechanism that divides the data among files in the context of higher I/O
library, called PnetCDF.

The study presented in this paper supports the view of conventional collective I/O
where N processes write to 1 shared file or an N-1 pattern, and still offers scalable I/O
performance in the presence of fluctuating performance among file servers. We extend
our prior work on the design and evaluation of file partitioning [44] and have imple-
mented the proposed scheme into a high-level I/O library, parallel netCDF [23]. Our
experimental evaluations of several production-level applications running up to 40,960
processes on NERSC’s Hopper [35] have shown significant I/O performance improve-
ments. We show that our approach effectively isolates the impact from temporarily
slower I/O nodes, thereby reducing write I/O time significantly with less deviation.
Since themechanism is implemented at high-level I/O library layer (PnetCDF), all files
including subfiles are in a self-describing portable data format. Maintaining portable
data representation is beneficial to applications because it preserves layouts across
all I/O software layers and provides transparent access to data structures. Also, the
metadata available at high-level I/O library made much flexible partitioning like per-
array partitioning or use of different dimension for partitioning. Lastly, our evaluations
using a set of micro benchmarks and real applications demonstrate that our approach
improves I/O performance significantly while limiting the number of (sub)files gen-
erated, which is proportional to the number of I/O nodes available.

The remainder of this paper is organized as follows. Section 2 extends the discussion
of our motivation. The design of our approach is described in Sect. 3. Our modification
to PnetCDF to implement our idea is provided in Sect. 4. Section 5 presents our
experimental evaluation results. We discuss related work in Sect. 6. Finally, Sect. 7
summarizes the major findings of this paper and discusses the list of possible future
work topics.

2 Background

To establish the theoretical depth of the ideas in this paper, we first describe distinctive
features of the I/O architecture and software layers adapted by many HPC systems at
scale, followed by the implications of such architecture to I/O performance.

2.1 I/O architecture and software components

The system architecture illustrated in Fig. 1a, a representative block diagram for many
modern HPC systems such as Cray XT6 or IBM BG/P systems, has thousands of
compute nodes, each with several multi-core CPUs, and tens of GBmemory per node,

123



2072 S. W. Son et al.

(a) (b) (c)

Fig. 1 I/O architecture and I/O contention. P Compute nodes, A I/O aggregators, S: I/O nodes. a A
typical system configuration. b Contention among processes (I/O aggregators). All aggregator processes
are competing to access File A stripped across all I/O nodes. cContention among jobs. Aggregator processes
from different applications are competing to write to File A and B whereby one I/O node (in red color) is
shared between two files

offering peak performance of tens of petaflops for the entire machine. The I/O and
inter-node communication on the compute nodes travels on several internal networks.
The compute nodes communicate using a high-bandwidth, low-latency network, e.g.,
a 3D torus in Intrepid [1] and Hopper [35]. Each compute node is connected to other
neighbor nodes through a network topology. Each network node handles both inbound
and outbound data traffic among other nodes. Tens to hundreds of storage servers, each
is attached to storage devices, are connected at the other end of this interconnection
network. The storage system typically provides some form of redundancy, e.g., RAID
or replication, to provide high availability.

Because of the layered system architecture as described above, there are multiple
layers of software involved in the I/O path. At the application layer, high-level I/O
libraries, such as HDF5 [51] or PnetCDF [23], are typically used, but MPI-IO or
POSIX I/O calls also be used directly.MPI-IO optimizations such as two-phase I/O are
achieved through communications over the interconnection network among compute
nodes,whetherMPI-IOAPIs are called directly fromapplications or indirectly through
higher-level libraries.

Collective I/O is an optimization employed in many MPI-IO implementations for
improving the I/O performance to shared files. The motivation is that file systems
prefer large contiguous requests to small noncontiguous ones. ROMIO, an implemen-
tation of MPI I/O functions adapted by many MPI implementations, first calculates
the aggregate access region, a contiguous file region denoted by the start and end off-
sets among all requesting processes. This aggregate access region is then partitioned
into non-overlapping, contiguous subregions denoted as file domains, each of which
is assigned to an individual process. These set of processes, called aggregators, can
make I/O calls [such as open(), read(), write(), and close()] on behalf of all request-
ing processes located in its file domain. There are two parameters in ROMIO, which
are tunable by users through MPI hint mechanisms: the aggregators (or cb_nodes)
and the collective buffer size (or cb_buffer_size) [47,48]. The aggregators are
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a subset of processes acting as I/O delegates for the remainder of the processes. In
ROMIO, the choice of aggregators depends on the file systems. For most file systems,
one MPI process per compute node is picked to serve as an aggregator. In the systems
containing multi-core CPUs in each node, this strategy avoids the intra-node resource
contention that could be caused by two or more processors making I/O calls con-
currently. For the Lustre file system, the current implementation of ROMIO picks the
number of aggregators equal to the file striping count (or striping_factor). This
design produces an one-to-one mapping between the aggregators and the file servers
to eliminate the possible lock conflicts on the servers [25,57]. The collective buffer
size indicates the amount of temporary buffers that can be used during data redistri-
bution. If the file domain is bigger than the collective buffer size, multiple collective
I/O operations need to be performed, each of which handles a file sub-domain of size
no larger than the collective buffer size. The striping count of a file is the number of
I/O servers, or object storage targets (OSTs) in Lustre, where a file is stored. Like all
parallel file systems (PFS), files are striped using fixed block lengths, which are stored
in the OSTs in a round-robin fashion.

2.2 Contention on I/O path

While collective I/O is an effective technique to improving I/O performance on shared
files, it continues to face significant scalability challenges [4,30,55,58] for several
reasons. First, as demonstrated by several prior studies as well as illustrated in Fig. 1b,
the synchronization cost among aggregators acquiring lock on the shared filewithin the
assigned file domain pose a limit to the scalable I/O performance. Recent studies [25,
58] also observed similar findings, and this problem would merely aggravate as the
number of processes increases.More importantly, in accessing shared storage systems,
there are higher degrees of I/O variability. This variability is hard to remove completely
because of the various ways an application can access “shared” file systems. For
example, as illustrated in Fig. 1c, two applications (or jobs) running concurrently on
the system can access the file system simultaneously at a given time. Another example
of such a case can occur when one application is trying to read the data stored in
the shared storage while the other application is writing checkpoint data. This I/O
variability is a big barrier to achieve scalable collective I/O operations because the I/O
performance is coupled with the slowest storage nodes. In other words, even if most
storage nodes are relatively fast, the overall collective I/O time is determined by the
slowest nodes.

To test our hypothesis, we wrote a micro benchmark code where each process
opens a file with a striping factor of 1 and writes 1GB of data on it. We have collected
the write I/O time observed at each I/O server. Details of our experimental setup are
given in Sect. 5. Figure 2 shows that although each I/O node writes the same 1GB of
data, there are a couple of I/O nodes showing an excessively high write I/O time than
others. In fact, the slowest I/O node showed almost 9 times higher I/O time than most
other I/O nodes. If a file is striped on the I/O nodes including that particularly slower
one, which is quite common in production runs, it would be of a significant barrier to
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Fig. 2 The write I/O time distribution measured for all 156 I/O nodes when 156 processes write 156 files
with the same size exclusively
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Fig. 3 We observed that all benchmarks we evaluated did not scale well when there is an excessive
imbalance in I/O node performance. Details about our experimental setup are explained in Sect. 5. Note
that, while we observe the same impact on GCRM, we do not present the results with GCRM in this figure
because it runs on different number of processes

achieve scalable I/O performance. As shown in Fig. 3, this imbalance severely limits
the scalability of the benchmarks we tested.

3 Design of transparent subfiling layer

This section describes our subfiling mechanism in the context of higher-level I/O
libraries. We discuss how our mechanism determines the number of subfiles with
existence of imbalanced performance in I/O servers and how datasets are divided into
subfiles.

3.1 Dynamic probing for selecting storage nodes

Our mechanism to isolate the impact of accessing relatively slower I/O nodes is to
probe each I/O server’s load at runtime and estimate available bandwidth on each
server before the file is created for striping. The goal of this step is twofold. First, we
would like to monitor each OST’s current bandwidth availability at runtime. Because
the I/O access pattern in HPC systems is typically bursty, we measure each server’s
I/O bandwidth by writing a small dummy dataset just before writing actual data to the
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Fig. 4 Distribution of write I/O bandwidth observed for all 156 OSTs when a dummy file of 16MB is
written to each OST. Each OST’s observed bandwidth is sorted in descending order

file. Second, we would like to select the list of OSTs that can be used for storing each
subfile by taking account of those available I/O bandwidth.

We consider two criteria in designing the probing module. First, the overhead
incurred by probing should be minimized as it will not be the part of actual I/O.
Second, the probed bandwidth should reflect the temporal behavior of I/O node as
much as possible. Combining these two, we determine each I/O node’s bandwidth by
writing several tens of MB of randomly generated data to each I/O server. To make
the actual I/O happen for this relatively small-sized files, we explicitly bypass buffer
cache using POSIX I/O with the O_DIRECT flag; otherwise, they could sit on the
buffer cache on compute nodes. For the same reason, we also have to make sure that
the dummy file is large enough to fill the RPC buffer size.

Figure 4 shows the distribution of measured write I/O bandwidth for all 156
I/O nodes (OSTs) available on NERSC’s Hopper. This graph confirms that certain
OSTs show relatively slower bandwidth than the others. We again attribute this to
an imbalance when accessing shared storage, as extensively discussed in recent stud-
ies [4,30,55]. Given these observed I/O bandwidths, we use following algorithm to
select the a set of I/O nodes being used for file striping. Assuming Bi to be the sorted
bandwidth observed in each I/O server, i , we denote the aggregate I/O bandwidth, Bi ,
using i OSTs by Bi = i × Bi , where 1 ≤ i ≤ 156. To illustrate how to calculate Bi ,
let us assume that there are five OSTs and the observed bandwidths are 100, 110, 120,
90, and 70, respectively. Then, we first sort the measured bandwidth, which results in
120, 110, 100, 90, and 70. Therefore, if we add the node with 120, B1 is 120, which
is 120 × 1. If we add the node with the next highest measured bandwidth, B2 is 220,
which is 110 × 2. The entire values for Bi , where i = 1, 2, 3, 4, 5, are 120, 220, 300,
360, and 280. As we can see, B drops after adding the node with 70 from 360 to 280
as B is bound the bandwidth of the slowest OSTs. Therefore, we exclude that node
from being used for striping and use only the first four OSTs for file striping.

Figure 5 shows the estimated maximum aggregate I/O bandwidth based on our
algorithm. As shown in the figure, the aggregate bandwidth increases as more I/O
nodes are added, but gradually saturates and then eventually declines because the
aggregate bandwidth has limited the performance of the slowest node. To select the
maximum number of I/O nodes that provide us the highest aggregate I/O bandwidth,

123



2076 S. W. Son et al.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100
104
108
112
116
120
124
128
132
136
140
144
148
152
156

-8

-6

-4

-2

 0
A

gg
re

ga
te

 w
rit

e 
ba

nd
w

id
th

 (
G

B
/s

)

D
er

iv
at

iv
e 

(d
y/

dx
)

number of OSTs

Aggregate bandwidth
Derivative

Fig. 5 Aggregate I/O bandwidth graph and its derivative (i.e., the slope) at each point. Our algorithm
determines the subset of I/O nodes that would offer the best available aggregate bandwidth, as it sorts the
observed the bandwidth of I/O nodes and selects relatively faster (or less busy) I/O nodes among them

we calculate the derivative of Bi , which represents the slope of Bi at each value of i .
Since our goal here is to maximize the number of I/O nodes, we select i when B

′
i is

negative and is less than a certain threshold, δ. The threshold value is basically meant
for capturing the degree of slowness in the aggregate bandwidth when a node is added.
The mechanism for runtime probing and I/O node selection described so far is given
in Algorithm 1. Using the results given in Fig. 5, our algorithm excludes 12 OSTs that
show less than 50MB/s for striping (sub)files. The aggregate bandwidth was estimated
to peak when the first 128 OSTs were added, but the significant bandwidth drop occurs
when 145th OST is added. We note that if all probed bandwidth values are similar to
each other, our algorithm will select most of the available OSTs. We also note that
this behavior is temporal, so depending on actual I/O load and the time of writing, our
algorithm selects a different set of I/O nodes, and we observe that typically less than
5% of I/O nodes (chosen randomly) is excluded from our algorithm.

Since I/O nodes are shared resources, it is possible that multiple applications
can probe the bandwidth simultaneously. However, such chances are extremely rare
because probing happens only once when a file is created. If two probes did occur at
the same time, the bandwidths obtained should be halved. However, this also means
that two jobs are most likely competing for the shared file systems. Therefore, both
applications are expected to observe slower I/O performance. An ideal solution could
be conveying individual application’s probing information to system-level scheduler,
but in this study, we focus on user-level solution that makes best use of available
information to maximize I/O performance.

3.2 Mapping multidimensional arrays to subfiles

When the subset of I/O nodes that are relatively faster than others has been isolated,
the ideal solution would be to stripe files across those I/O nodes. However, on current
PFSs like Lustre, users have no way to stripe files across a set of specific I/O nodes, or
OSTs in Lustre. Because of this, we cannot provide the performance on normal files on
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Algorithm 1:Algorithm for determining the storage nodes that would potentially
give the maximum achievable aggregate bandwidth at a given time. The obtained
I/O node lists are broadcasted to all processes.
Input: N: number of I/O nodes;
Output: N ′: number of selected I/O nodes;

S[N ′]: I/O node list of N ′;
Bi : each OST’s bandwidth;
lb: lower bound of bandwidth;
for each sampling process, Pi , 1 ≤ i ≤ N do

obtain Bi by writing a dummy data using POSIX I/O to storage node i ;
/* gather all OST’s write bandwidth */
MPI_Allgather(&Bi , ...);
sort the gathered Bi in descending order;
for each i do

calculate aggregate bandwidth, Bi = Bi*i ;
calculate B′

i , the derivative of Bi ;
if B′

i < δ then
lb = Bi ;
break;

while i ≤ lb do
S[i] = i ;
i + +;

/* broadcast number of selected I/O nodes as well as
corresponding node IDs */

MPI_Bcast(&N ′, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(&S[N ′], N ′, MPI_INT, 0, MPI_COMM_WORLD);

selectedOST in the experiments. The same reason of Lustre not allowing users to stripe
files across selected OSTs prevents the use of our subfiling in ROMIO. We note that
MPI-IO processes one file at a time. This leads to our “subfiling” mechanism where
each subfile has a striping factor of 1 (or stripe_count==1). Lustre does allow users to
pick the starting OST for a file. Therefore, after the set of I/O nodes is determined, we
partition arrays among them. Figure 6 gives an overview of our subfiling scheme. From
an application’s perspective, the partitioning is transparent, meaning that all processes
open and access a single file throughout program execution. The subfiling mechanism
then internally splits application processes into set of subprocesses, each creates its
own subfile collectively. The subfile created by each subprocess group is accessed
exclusively by that group. The goal of this mechanism is to reduce the contention as
illustrated in Fig. 1b.

In higher I/O libraries like PnetCDF or HDF, there are sequences of steps to follow
in order to perform I/O, and a typical example of such steps is as follows:

1. file open/creation
2. dimension definition
3. array definition
--------------------------------------
4. I/O operation (write/read)
5. file close.

Theremight be other steps like adding attributes to a file or array, but the above steps
are the key steps thatmost applicationwriters need to include in their I/O routine.Based
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Fig. 6 Overview of our subfiling mechanism. At the higher-level I/O library, a file is represented as
multidimensional arrays. Arrays also have attributes and may share dimension. In our approach, each array
is internally divided into K subfiles; each is stored in a single I/O node. All files (both master and subfiles)
are in self-describing file format

on this API usage sequence, we decide to include the partitioning mechanism when
array definition is finished and the data in memory are ready for write/read; in other
words, just before step 4 above. We choose this time because number of dimensions,
length of each dimension, and datatype of each element for each array are finalized at
this point. The header information is also written at the end of partitioning. To enable
subfiling, users need to express their intention through the MPI hint mechanism.

Thedefault partitioning policy is along themost significant dimension. For example,
an array of Z–Y–X dimension, each with the same dimension size will be parti-
tioned along the dimension Z . There are, however, certain applications that prevent
applying the default policy. For instance, in the S3D application, the dataset called
u is a four-dimensional array with the most significant dimension length 3. Such a
small dimension length limits the number of subfiles, preventing the application from
exploiting potential benefits of partitioning in larger subfile counts.

When partitioning along a dimension other than the most significant dimension
is needed, application writers can specify the dimension name using a hint, called
par_dim_id. When this hint is given to our subfiing module, it converts the ID into
the index of the dimension defined in the array. We use the dimension ID because
it can be reused by any array definition with a different order of the dimension list,
making per-variable partitioning feasible.

Once all user’s file partitioning strategies are delivered through the hint mechanism,
our proposed module creates subfiles. The details of the file creation are as follows.
First, it obtains all relevant hints usingMPI_Info_get().We convert those acquired
information into metadata and store them in both master and the subfile’s header
information. If no hints were provided regarding file partitions, the normal procedure
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Algorithm 2:Algorithm illustrating our subfilingmechanism. A file is partitioned
only when partitioning is enabled through the MPI hint. Otherwise, normal files
will be created.
get user’s hints about subfiling;
if subfiling is enabled then

obtain N ′ by executing Algorithm 1;
determine MPI_Comm split parameters;
/* split the original communicator into subcommunicators */
MPI_Comm_split (..., color, ..., &subcomm);
/* create a subfile */
MPI_Info_set(info, “romio_lustre_start_iodevice”, offset);
MPI_Info_set(info, “striping_factor”, "1");
create a subfile associated with it;
for each array, Ai do

get par_dim_id;
for dim_id, d[i][ j] in Ai do

dim_sz = d[i][j]→size;
if j == par_dim_id then

dim_sz = d[i][ j]→size
N ′ ;

define a new dimension using dim_sz and d[i][ j];
for each subfile, k do

create metadata for partition range, R j ;
store R j to the master file;

/* master file: replace the original var with scalar value */
Ai →ndims_org = Ai →ndims;
Ai →ndims = 0;
Ai →dimids = NULL;

define an array with newly-defined dimension;
else

execute the normal array definition procedure;

will be executed; it creates a normal single file without partitions. Otherwise, it splits
the original MPI communicator because each process is divided into a subprocess
group. The split processes then collectively create their own subfile using a dataset
function available in the high-level I/O library, for instance, ncmpi_create in
PnetCDF. After a subfile is created, our algorithm traverses each array definition and
determines which dimension ID it needs to use for partitioning. Unless the user gives
a hint for the dimension ID for partitioning, the default is the first dimension ID for
an array. It calculates a new dimension size for each partition. Only the partitioning
dimension will be affected; all the remaining dimensions will have the same size as
the original. Once a new dimension size is determined, we define a new dimension for
the subfile and create an array with the new dimension lists. If the array is partitioned,
we update the original array definition in the master file using a scalar value. This is
because the master file does not have a physical space allocated for the partitioned
array as the actual data will be stored in the subfiles. We repeat these steps until all
arrays in the original file are processed. The algorithm described so far is given in
Algorithm 2.

In default, we partition all arrays defined in a file. There are, however, several
situations where this may not be an ideal case. First, in real applications, there are
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certain arraysmerely for a bookkeeping purpose, typically through associated attribute
fields, instead of storing actual data. Those arrays are ones that application writers
typically use to store the information needed to either restart the simulation or visualize
plot files later. While our subfiling mechanism provides transparent access to those
datasets, it is better to store this information in a single file. Second, arrays with fewer
number of dimensions often do not contribute a significant portion to the total dataset.
For instance, if there are two arrays, one 3D and the other 2D, the 2D array is less
than 10% of total dataset size assuming that the length of all dimensions is the same
and at least 10. In this case, partitioning the 2D array may not be a good idea because
it will result in more, but smaller I/O requests. To handle these cases, our module
accepts another hint, called min_ndimes, to allow selective array partitioning. This
hint limits applying subfiling for arrays with a dimension length equal to or less than
min_ndims.

Ourmainmechanism to convey the user’s partitioning strategy is throughMPI hints.
We, however, also need to minimize the number of MPI hints, especially when appli-
cations run with larger process counts. This is because most high-level I/O libraries
internally include all-to-all communication in order tomake sure that the hint informa-
tion conveyed to each process is the same across all processes. Therefore, we also use
an environment variable so that the overhead incurred by our approach is minimized
with larger process runs.

3.3 Memory-to-file layout transformation

The created subfiles need to be accessed transparently as, from an application’s view-
point, all I/O accesses go through the original file (i.e., master file). The metadata in
both master and subfiles have sufficient information such as the number of subfiles,
how each array is partitioned among subfiles, etc. Therefore, nomodification is needed
in the application codes. We also note that reading data from subfiles can be also done
transparently by retrieving the same metadata internally.

Figure 7 shows our transformation mechanism from memory to file layout. This
transformation has two steps: (1) calculating each process’s requests to subfiles and

Fig. 7 Any I/O requests to a file partition not owned by processes in the same group need to be communi-
cated before actual I/O requests are made. All these data exchange would require sufficiently complicated
communication among processes. This approach is similar to application-level two-phase I/O mecha-
nisms [12,13] while ours is transparent to applications
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Algorithm 3: Algorithm for handling I/O requests to subfiles transparently.
Input: Ai , start[], count[], stride[], buf, bufcount

initialize my_req[] and others_req[];

if Ai is partitioned then
for each partition, Fi do

for each dim, D j ∈ Ai do
retrieve partition_index and par_dim_id from stored metadata;
retrieve partition range from stored metadata;
/* determine my_req[].start[] and my_req[].count[] */
if j == par_dim_id then

my_req[i].start = start[ j] ∩ range[Dj ];
my_req[i].count = count[ j] ∩ range[Dj ];

else
my_req[i].start = start[ j];
my_req[i].count = count[ j];

/* communicate my_req among all processes */
MPI_Alltoall (my_req, ..., others_req, ... );
/* exchange buf */
for each process, i do

if others_req[i].count != -1 && i != myrank) then
MPI_Irecv (xbuf[i], ...);

for each process, i do
if others_req[i].count != -1 && i != myrank then

MPI_Isend (buf, ...);
MPI_Waitall (...) ; /* wait until all buffers are exchanged */

/* issue all I/O requests belonging to my rank */
for each process, i do

if my_req[i].count != -1 then
call nonblocking I/O for buf belonging to local process;

if others_req[i].count != -1 && i != myrank then
call nonblocking I/O for xbuf[i] on behalf of remote processes;

wait until all I/O requests are finished;
else

proceed to the normal I/O routine;

exchanging them among all processes; (2) exchanging requests among processes in
each split communicator and making I/O requests using I/O calls. The I/O calls can
be either synchronous or asynchronous. We represent all I/O requests as start, count,
and stride offset list for each dimension because our partitioning mechanism is imple-
mented at the higher-level I/O library layer.

In Step 1, each process first calculates the list of start and count offsets to each
subfile, dividing the data in memory among the processes who own the partitions. This
is done by logically dividing the start and count offset, denoted asmy_req[], into file
partitions, each can be directly accessed by the processes within a sub-communicator.
In our implementation, we do not restrict the number of such delegate processes in
each subprocess group. Any process in fact can be a delegate such that it will not
create load imbalance at an application layer by selecting limited number of delegates
because non-delegate processes do not read/write files directly. This phase requires
one call of MPI_Allreduce() among all processes.
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Step 2 starts with everyone’s my_req, and calculates the portion of requests
by other processes that belong to this process’s file partitions. others_req[i].
{start,count} indicates how many noncontiguous requests from process i
accessing this process’s file partition. All these calculations require one
MPI_Alltoall and multiples of isend, irecv, and wait_all, but is required
to ensure that delegates collect the request information from all other processes.

After that, each process sends requests to the delegate(s) in other communicators.
Only delegatesmayhavemultiple I/O requests because non-delegate processeswill not
participate in this case. Non-delegate processes insteadwill call data exchange routines
if they have requests to delegates. Delegate processes iterate until they receive requests
from all other processes, and issue a non-blocking I/O. Each iteration goes through
all others_req[*] and continues until all requests are processed. We ensure that
they are all processed by calling wait_all() at the I/O library layer. The procedure
described so far is given in Algorithm 3.

4 Extending the PnetCDF library

We describe our modifications to the PnetCDF library to implement the mechanisms
described in Sects. 3.2 and 3.3. The probing mechanism described in Sect. 3.1 is not
dependent on specific I/O libraries and, thus, it can be implemented separately.

4.1 PnetCDF subfiling

Figure 8 shows an example of PnetCDF code that includes the sequence of dimension
and array (variable) definition followed by the write calls. In PnetCDF, all processes
in the communicator must make an explicit call (ncmpi_enddef) at the end of the
definemode to ensure that the values passed in by all processesmatch. Fromour design
perspective, this is the time when all dimensions of arrays are known; therefore, our
array partitioning is performed at the end of this call.

The NetCDF header generated by this example code is given in Fig. 9. After parti-
tioning, both master and subfiles have additional attributes than the original file. For
instance, the master file (Fig. 9b) has global attributes that indicate the file name for
each subfile, the number of partitions, and the original dimension size for an array,
“cube”. The header for subfiles, on the other hand, has attributes for describing the
range of partitioned dimension as well as the subfile index. All these additional meta-
data will be used in directing I/O requests to proper files, either master or subfiles.

We use a per-variable attribute to specify which dimension a variable needs to be
partitioned along. As an example, if a user wanted to use the second most significant
dimension than the default in the “cube” array, this option can be transferred to our
subfiling module by adding the ncmpi_put_att_intAPI call with “par_dim_id”
set to cube_dim[1]. This mechanism also can be used for handling record variables.
Since record variables use unlimited dimensions as the most significant dimension
(defined as UNLIMITED), we cannot determine the partition size. Therefore, we
have to choose the second most-significant dimension as the partitioning one for
record variables. For example, let us assume that there is a variable, xytime, with
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Fig. 8 A PnetCDF example code that creates a file with subfiling enabled. The number of subfiles is
determined through the probing mechanism explained in Sect. 3.1. This example creates a variable (array)
named “cube” of Z–Y–X dimension, each with 100 length. From an application writer’s viewpoint, it only
requires to add an MPI hint, nc_subfiling_enabled, to enable subfiling

(a) (b) (c) (d)

Fig. 9 NetCDF file header information dumped by ncmpidumpwhen the file is divided into 2. a Original
NetCDF file (i.e., a normal file without subfiling). bThemaster NetCDF file after subfiling. The data section
is 0, meaning empty. c First subfile. d Second subfile

three dimensions: time, x , and y. Let us assume further that we define the last two
dimensions, x and y, as 100 and time as UNLIMITED. In this case, the variable
xytime can be partitioned along either the x or y dimension.

4.2 Coordinating I/O among subfiles

While there are several data mode functions available in PnetCDF, we focus on the
collective versions of those functions in our implementation. An example of such
functions that write a variable “cube” is ncmpi_put_vara_all shown in Fig. 8.
In this function, the varid (i.e., cube_id), start, count, and stride values (not used
in above example) refer to the data in the file whereas buf, bufcount, and datatype
(MPI_INT) refer to data in memory. When this API gets called, our subfiling module
intercepts it transparently and coordinates the data movement between memory to
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subfiles using the algorithm described in Algorithm 3. When each process issues I/Os
to its own subfile, we use a non-blocking API available in PnetCDF. They will allow
PnetCDF to aggregate multiple smaller, noncontiguous requests to generate larger
ones for better I/O performance. These routines follow the MPI model of posting
operations, then waiting for completion of those operations.

We illustrate how I/O requests to the subfiles are processed using the example code
in Fig. 8. Let us assume that 4 processes access this shared array and the number of
subfiles is set to 2. Each I/O request can be expressed as start offset, count and stride
for each dimension. Since the array is in 3 dimensional, we have start[3], count[3],
and stride[3]. For illustrative purposes, let us assume that stride count is 1, meaning
that all array elements are accessed contiguously. In this case, one subfile (50 by 100
by 100) is owned by P0 and P1 whereas the other subfile (50 by 100 by 100) is owned
by P2 and P3. Assuming a block–block access pattern and user’s file partition, we
calculate each process’s request to each subfile. For instance, P0’s original request,
denoted as start{0, 0, 0} and count{100, 50, 50}, is now divided into two portions:
a portion belonging to its own subfile (denoted as start{0, 0 ,0} and count{50, 50,
50}) and the other (denoted as start{50, 0, 0} and count{50, 50, 50}) to be sent to
the remote process that owns that subfile. Once all this information is obtained, all
processes now exchange information (using all-to-all communication) and determine
which process has a portion of the data not belonging to its own subfile. Afterwards,
all processes have knowledge of which sub-I/Os they need to handle by themselves.
The code then communicates the corresponding buffers and issues all those received
I/O requests using PnetCDF’s nonblocking I/O calls. The I/O to subfiles returns when
all the issued nonblocking I/O calls are completed.

Our discussion so far assumes that the buffer in memory is contiguous. Real appli-
cations, however, often take advantage of MPI-derived datatype as a method to define
arbitrary collections of noncontiguous data in memory and to transfer it to the file
in a single MPI-IO call. To handle user buffers in derived datatypes, our memory-to-
file data layout transformation first packs the noncontiguous buffer to a contiguous
one before determining memory regions belonging to each subfile. Subsequent buffer
exchange and issuing of nonblocking calls are all based on this contiguous buffer. We
note that no conversion and byte swap are performed at this layer because they are
done in PnetCDF layer underneath.

5 Evaluations

5.1 Experimental setup

All our experiments are performed on the Cray XE6 machine, Hopper, at NERSC.
Hopper has a peak performance of 1.28 Petaflops/sec, 153,216 processors cores for
running scientific applications, 212 TB of memory, and 2 Petabytes of online disk
storage. The Hopper system has two locally attached high-performance scratch disk
spaces, /scratch and /scratch2, each of 1 PB capacity. They both have the
same configuration: 26 OSSs (Object Storage Servers), each of which hosts 6 OSTs
(Object Storage Target), making a total of 156 OSTs. The PFS deployed in Hopper is
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Lustre [32] mounted as both scratch disk spaces. When a file is created in /scratch, it
is striped across two OSTs by default. Lustre provides users with a tunable striping
configuration for a directory and files; both directory and files have the same striping
configuration. In our experiment, we use all available OSTs for striping and 1 MB as
default stripe sizes. We use the default number of aggregator nodes, which is auto-
matically set to the stripe count of files. Therefore, without any tuning on the striping
configuration, a file is striped on two randomly selected OSTs, which is accessed by
two aggregator processes.

We implemented our proposed approach into the parallel netCDF 1.3.1. We added
approximately 1,500 lines of new code to implement the subfiling feature in PnetCDF.
Our implementation is configured to link with Cray’s xt-mpich2 version 5.6.0. We
used a separate ROMIO module described in [25] as a standalone library, which
is then linked with the native MPI library. Our previous experience tells that this
optimized ROMIO is about 30% faster than the system’s default one. In other words,
our base collective I/O performance is already optimized for our evaluation platform.
All applications including benchmarks and our modified PnetCDF are compiled using
PGI compiler version 12.9.0 with the “-fast” compilation flag.

For all experiments, we measure the I/O throughput as the number of bytes read
or written by the benchmarks and applications during the time it took to complete.
We observe that probing is one time cost, executed during file creation. Therefore, the
impact of probing is negligible, less than 1% of the total I/O time in our observation.
Since we measure the collective I/O time, this overhead is already included in the tim-
ings reported in this paper. We ran all experiments at least five times, and present the
average of those runs with a standard deviation. We note that the proposed subfiling
is designed to work with I/O systems showing variation due to multiple jobs or aggre-
gators competing for shared I/O resources. If we ran sufficient larger jobs that occupy
most of the available compute nodes, the opportunity of seeing such I/O contention
shall decrease. For large-scale runs, we anticipate all available I/O nodes be selected
to serve the I/O unless certain nodes are offline for an RAID rebuild or maintenance.
While our goal was to measure the overall performance of the system for applications
running during production, large variations in performance from week to week and
even day to day were seen, most often due to storage component failures and firmware
problems.

We evaluate our dynamic subfiling mechanism as compared with the base case,
where all arrays are stored in a normal file (without subfiling) striped using all avail-
able OSTs. To show the effectiveness of our dynamic bandwidth probing, we ran two
schemes of our subfiling cases: striped over all OSTs and striped over selected OSTs.
While there are several other techniques whose goals are similar to ours like PLFS [3]
and ADIOS [31], we do not compare our approach against them because fair com-
parison is hard to make; they do not preserve canonical order of the original dataset
whereas all subfiles are also stored in portable NetCDF format. Unlike ours, PLFS is
a system-level approach and does not select I/O nodes based on the workload to stripe
files. In our partitioning mechanism, the number of generated subfiles is proportional
to the number of aggregator processes, whereas the number of files generated by PLFS
is proportional to the number of processes.
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Fig. 10 Balanced write I/O time observed when only subset of I/O nodes that were detected through our
dynamic bandwidth probing

Lastly, our proposed approach relies on a mechanism to change the stripe width (or
factor) when a file is created. The hints for such mechanism are available at the high-
level I/O libraries, e.g., PnetCDF or even MPI-IO, but the actual implementation is
dependent on underlying PFSs. While lusture implements this mechanism, but GPFS
does not. Therefore, we evaluate our mechanism on Lustre. This might be a limitation
to our proposed system, but most HPC systems deploy Lustre, so our contribution is
still meaningful for the majority of HPC community.

5.2 Collective I/O benchmark

Before presenting our evaluation with the collective I/O performance benchmark, we
first showhoweffectively our approach can isolate slower I/O nodes. In order to do this,
we wrote a small test code that writes 1GB of dummy data to each I/O node selected
by our dynamic probing module. Figure 10 shows the write I/O time, collected using
the TAU profiling tool [43], observed at each I/O node, which was selected by our
probing module. In this result, 134 out of 156 OSTs were selected for writing. As
compared with Fig. 2, all selected OSTs showed similar, balanced write I/O time.

To understand the performance of our approach against the base case, we ran a
collective I/O test program, coll_perf, originally from ROMIO test suite, that writes
and reads the three-dimensional arrays in a block-partitioned manner. We made it
write/read four 3D variables. The application-level data partitioning is done by assign-
ing a number of processes to each Cartesian dimension. In our experiments, we set the
subarray size in each process to 128 × 128 × 128 of 4-byte integers, corresponding
to 8MB. All data are written to a single file for the base case (normal file). For our
subfiling cases, all four variables are partitioned along the most significant dimension.

Figure 11 shows the write throughput of coll_perf with and without our subfiling
mechanism.We scale both schemes by increasing the number of processes from 1,024
up to 8,192. The results indicate that writing data into a normal file does not scale well
with larger number of processes; the write throughput actually went up and down
when the number of processes are increased. On the other hand, our subfiling schemes
improve the write throughput significantly by 12–94% when used with all 156 OSTs
and 36–137% when used with selected OSTs, respectively.
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Fig. 11 Write throughput
results for coll_perf
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Fig. 12 The average write I/O
time for coll_perf with error
bars. Using all OSTs shows
much higher deviation, whether
files are partitioned or not
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5.2.1 Performance breakdown

To understand the performance improvement by our approach in detail, we analyzed
the performance of coll_perf using the TAU profiling tool [43]. Figure 12 illustrates
that each aggregator’s POSIXwrite() time increases slowly as the number of processes
increases. This is because coll_perf performs the weak scaling test, so I/O time also
increases with larger number of processes. The most remarkable observation in this
result is that writing to subfiles reduces the write I/O time significantly regardless of
using all OSTs or selected OSTs. The average write time improvement is about 70%,
which clearly indicates that enabling subfiles minimizes the impact of the contention
on the file server. Another notable insight from this result is that the write I/O time
has high deviations when all OSTs are used, and the variations increased with larger
process counts. The subfiles with selected OSTs show low deviations mainly because
relatively slower OSTs were effectively eliminated before the time of writing.

Read performance In our next experiments, we would like to understand how the
read from subfiles performs. To do this, we run the same weak scalability tests (1024
to 8192 processes) on the read case; each case collectively reads the entire files in a
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Fig. 13 Read throughput results
for coll_perf
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block–block partitioned manner. Since partitioning on selected OSTs does not have
fixed the number of OSTs per run, we evaluate only reading from all OSTs for a fair
comparison. In other words, we simply would like to compare our subfiling approach
with the traditional approach, which stripes file across all OSTs. For the same reason,
we do not perform the bandwidth probing to detect individual I/O server’s performance
as we have to read the data regardless of the existence of I/O variation unless the files
are replicated. To ensure data are read from the storage nodes, all caches are flushed
before each run.

Figure 13 shows that the normal (i.e., without subfiling) file case is not scalable,
while our subfiling scheme shows much higher performance improvement than the
write case. Also, the observed read throughput is about 30% lower than that of the
write throughput. Our TAU profiling result indicates a notable increase in read I/O
time; reading from the normal file is about 6× slower than reading from subfiles. We
attribute this to the pretty aggressive read-aheadmechanism used in Lustre file system.
In the case of reading from non-subfiled files on all OSTs and given the default stripe
size of 1MB, the majority of prefetched data by an aggregator is irrelevant parts of
the data, thus slowing down the overall performance. In our subfile case, the read-
ahead mechanism is entirely reading from a single OST, so the benefit of read-ahead
is maximized. We note that the read-ahead is per-file basis. Because of our 1-to-1
mapping between subfiles and I/O nodes, there are no data prefetched from a different
OST; in other words, there are no unused read-ahead data.

Overhead Our subfiling approach introduces additional communication during
memory-to-file layout transformation time: MPI_Isend, MPI_
Irecv(), MPI_Alltoall(), and MPI_wait(). To quantify this overhead, we
have measured time spent on those additional communication costs using TAU. The
results indicate that the coordination overhead incurred by the additional communi-
cation is negligible; the extra communication overhead accounts for less 1% of the
collective I/O operations. The time spent on the all-to-all communication is small
because, during that phase, we only exchange each process’s requests to each subfile.
The buffer exchange phase also does not incur much overhead because only partic-
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ipating process pairs exchange small amount of buffer. Since our algorithm selects
the delegation process in other subprocess groups in a balanced manner, the pairwise
communication is also mostly balanced.

5.3 Application I/O performance

5.3.1 FLASH

FLASH [22,62] is a block-structured adaptive mesh hydrodynamics code that solves
the compressible Euler equations on a block structured adaptivemesh and incorporates
the necessary physics to describe the environment, including the equation of state,
reaction network, and diffusion [11]. The problem domain is divided into blocks
distributed among a number of processes. A block is a three-dimensional array with
additional 4 elements as guard cells in eachdimensiononboth sides to hold information
from its neighbors. There are 24 data variables per array element, and about 80 blocks
on each MPI process. A variation in block numbers per process is used to generate a
slightly unbalanced I/O load. Because of the fixed number of blocks for each process,
an increase in the number of processes linearly increases the aggregate I/O amount
as well. The main I/O routine in FLASH is to write checkpoint files and plot files for
visualization, which contain centered and corner data. Checkpoint files are the largest
of the three output data sets, the I/O time of which dominates the entire I/O routines.
We set the block size to be 16 × 16 × 16, which is about 64 MB of data per process.
All 24 variables are written using collective write calls. During write, every process
writes a contiguous chunk of a variable, appended to the data written by the previous
ranked process. In our experiments, we have evaluated the performance of writhing
both checkpoint and plot files.

To understand howwe partitioned the data, we next describe the FLASH I/O format.
By default, all mesh variables (including density, pressure and temperature) arewritten
to the same dataset (variable) in the output file. This file format is used for both
checkpointing and plot files. In case of checkpoint files, only 10 variables (out of
entire 24) are those mesh variables, each of which is a four-dimensional (4D) array of
double-precision. All unknown variables are defined as a 5D array, the first dimension
being the number of unknown variables. Since this dimension length is only 10, we
partition these unknown variables along the second most significant dimension. We
partition only unknown variables in our experiments; therefore, other variables are
stored in the master file without subfiling. The plot files have three mesh variables and
we again applied subfiling for the unknown variables only.

Figure 14 shows the aggregate I/O bandwidth of FLASH for the non-subfiled case
and our two approaches. As expected, using a non-subfiled file did not scale well
with increased process counts. The maximum aggregate I/O bandwidth we observed
is about 8 GB/s when it is run with 8,192 processes. This is significantly below the
maximum I/O bandwidth on Hopper. The subfiles with all OSTs slightly outperform
the non-subfiled case, by 28% on average, but there is higher deviation with larger
process counts. Overall, the subfiles with selected OSTs can achieve about 70% I/O
bandwidth improvement than the non-subfiled case.
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Fig. 14 FLASH I/O write
throughput
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5.3.2 S3D

S3D [39] simulates turbulent combustion using direct numerical simulation of a com-
prehensive Navier–Stokes flow. The domain is decomposed among processes in 3D.
All processes periodically participate in writing out a restart file. This file can be used
both as a mechanism to resume computation and as an input for visualization and
post-simulation analysis. We used 50 × 50 × 50 fixed subarrays.

The checkpoint files consist of four global arrays: two 3-dimensional, temp (z, y,
x) and pressure (z, y, x) in double precision, and two 4-dimensional arrays [double
yspecies (nsc, z, y, x) and double u (three, z, y, x)]. Since the sizes of the most
significant dimension in4Dvariables are relatively small, 3 and11 forthree andnsc,
respectively, we partition these variables along the second most significant dimension,
z.

Figure 15 shows the aggregate I/O bandwidth of S3D for all three cases we evalu-
ated. We have observed that the non-subfiled file case scales to only a limited extent.
We note that all MPI-IO optimizations such as collective buffering including aggrega-
tion are already applied to the base case as enabling those MPI-IO features is known

Fig. 15 S3D I/O write
throughput
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to give the best possible performance when testing with PnetCDF output to a single
file using collective I/O [23,26,47]. Therefore, we attribute this marginal scalability
to I/O interference at the file servers. The subfiles using all OSTs can achieve higher
performance improvement than the non-subfiled file case up to 2048 processes, but
only marginal improvement beyond that point. The subfiles case with selected OSTs,
on the other hand, consistently outperforms than the non-subfiled file case, by 60%
on average. We also observed that the subfiles with all OSTs performed better than
the subfiles with selected OSTs in case of 1,024 and 2,048 processes. This is because
when the smaller sized jobs were run, there were less chances of interfering with other
applications’ I/O because I/O time is relatively short. The reason why the subfile with
selected OSTs did not perform in 1,024 and 2,048 process cases is that there were
fairly higher I/O variation between the time the probing module is executed and the
time actual I/O occurred. The subfile with selected OSTs, however, still showed less
variations on the observedwrite bandwidth although the peak bandwidth suffered from
unexpected slower I/O performance on certain I/O nodes.

5.3.3 GCRM

The GCRM is a climate application framework designed to simulate the circulations
associatedwith large convective clouds [37]. It uses geodesic parallel I/O (GIO) library,
which interfaces PnetCDF. In our experiments, we exclude non-grid variables, as
they are written individually, which generates uneven file access degrees. GCRM-IO
partitions a semi-structured geodesic mesh between processes, each of which writes
a sub-block of the mesh in its partition. There are 38 grid variables, each of which
is approximately evenly partitioned among all processes. The grid and sub-domain
resolution are controlled by the user and we evaluate 4 cases: 640 processed with
resolution level 8, 2560 processes with level 9, 10,240 processes with level 10, and
40,960 processes with resolution level 11. The resolution levels correspond to the
geodesic grid refinement at about 31.27, 15.64, 7.819, and 3.909 km, respectively. The
GCRM is run with the direct I/O mode and all grid variables are written to a single
file for both base and our approach. When our partitioning is applied, all variables are
partitioned along with the second most significant dimension because all variables in
GCRM are record variables.

Figure 16 shows the I/O throughout results for GCRM with and without our
approach. Again, we have observed that I/O throughput without subfiles suffers from
I/O variability significantly while both subfile cases scale with increased number of
processes.We also observed that, while the impact of subfiles is similar to S3D,GCRM
showsmore consistent results among different schemes.Wenote thatGCRMis already
optimized for high I/O rates while still writing to shared files. That is, the aggregator
processes consolidate writes into large chunks of data, making additional improve-
ments in the underlying MPI-IO libraries and PFS easier. Therefore, in Fig. 16, the
performance differences are mainly from the impact of I/O variability. Specifically,
the normal files with all OSTs exhibit a significant bandwidth drop in case of 40,960
processes because the file is striped across all OSTs. While the subfiles with all OSTs
are more scalable than without subfiles, it shows a huge variation on the observed
bandwidth. The subfile with selected OSTs showed not only scalable write bandwidth
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Fig. 16 GCRM I/O bandwidth
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but also very less variation on the observed write bandwidth. These results clearly
demonstrate that our approach is less susceptible to I/O variability.

6 Related work

PLFS [3] introduced a virtual layer that remaps an application’s preferred data layout
into one optimized for the underlying PFS. Like PLFS, split writing and hierarchical
striping [59] also use a library approach to reduce contention from concurrent access
at runtime. However, the split files are merged at close time, preventing later accesses
from leveraging the benefits of subfiles. It also requires application modification. Yu
and Vetter proposed an augmented collective I/O, called ParColl, with file area parti-
tioning and I/O aggregator distribution [58]. PIDX [19,20] is a parallelization of IDX
data format, and uses a novel aggregation technique to improve its scalability. Dick-
ens and Logan [7] demonstrated that the collective I/O operations on Lustre perform
poorly because of high communication overhead to make and write large, contigu-
ous blocks of data. They then proposed a new approach, called Y-Lib, to collective
I/O in Lustre, which improves performance by reducing contention among processes
participating in collective operations.

Our earlier study by Gao et al. [14] is similar to our approach, but it requires user
intervention of how each subfile is partitioned using a set of new APIs. Also, it only
allows partitioning along the most significant dimensions of an array, and does not
support record variables. In our new design and implementation, we remove these
restrictions to enable any further layout transformation between memory and subfiles.
All these data transformations would require sufficiently complicated communication
among processes, which does not occur in the subfiling. Further, unlike the subfiling,
our approach gives more flexibility by allowing application writers to specify per-
variable partitioning. ADIOS’s BP file format [31] is similar to our subfiling, but
ADIOS is restricted in selecting how the data are stored across subfiles. Fu et al. [12,13]
proposed an application-level two-phase I/O, called reduced-blocking I/O (rbIO), and
demonstrated that rbIO performs better than the n to n approach. rbIO is similar to
our approach in that it reduces conflicts using the subfiles and application 2-phase I/O.
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However, the partition in rbIO is done by the application writers, and the coordination
does not cross the partitioned process group. Kendall et al. also used an application-
level 2-phase I/O in order to organize I/O requests to multiple-file dataset [16]. Their
optimization, however, is targeted mainly for visualization workloads, and application
writers manually provide the list of starts and sizes of a block that each process needs
to read or write.

Many recent studies have identified that staggering file servers are one of the
main reasons of inconsistent I/O performance in large petascale and beyond sys-
tems [4,30,55]. Xie et al. [55] characterizes the I/O bottlenecks in supercomputers,
and it demonstrates that slower I/O servers limit the aggregate and striping band-
width and reduce the parallelism. Also, due to locking protocols, lower bandwidths
are observed while writing to a shared file. In [30], it is shown that the I/O load
variation on I/O servers leads to performance degradation, and adaptive I/O methods
are proposed using a grouping approach to balance the workload; i.e., for a group of
writer processes, assign a sub-coordinator to each group, and assign a coordinator for
all the sub-coordinators. In a recent study on Hopper [4], it is shown that once the
I/O stragglers are isolated from the I/O, and using one file for all processes, the per-
formance can be significantly improved. But, this approach is a system-level solution
and requires admin privilege to remove stragglers from the file system. On the other
hand, our solution is completely at user-level. Automatic storage contention allevi-
ation and reduction (ASCAR) system [24] is a storage traffic management system
for improving the bandwidth utilization and fairness of resource allocation. ASCAR
controls I/O traffic from the clients using a rule-based algorithm that manages the con-
gestion window and rate limit. Dai et al. proposed a two-choice randomized dynamic
I/O scheduler that schedules the concurrent I/O operations in a balanced way to avoid
slower I/O servers, thereby achieving high throughput [6]. Our approach does take
the slower I/O servers into account and dynamically isolates these servers from the
collective I/O operation. Using one partition per file server can potentially achieve
better performance by minimizing file system locking contention.

In recent HPC system designs, a new storage layer of faster storage medium such
as non-volatile memory, called a burst buffer (BB), has been introduced to reduce
the contention on the PFSs [2,28,29,40,54]. While BBs are certainly effective lay-
ers to bridge the gap between applications and file systems, it can still suffer from
the interference. To address this problem, recent studies proposed several HPC I/O
scheduling mechanisms [10,50]. Wachs et al. [52] proposed the Argon storage server
that explicitlymanages I/O time slice among sharing jobs. Song et al. [45] applied sim-
ilar time slice coordination across PFS servers, thereby reducing interference in PFS
and achieving QoS of I/O-intensive applications [60]. A high-level scheduler (such as
system-wide schedule [49], or direct coordination between applications [8]) can also
manage inter-application interference by coordinating per-application I/O behaviors,
such as write I/O during checkpoint. A system wide I/O scheduler can also effectively
manage I/O workloads using additional information, such as runtime profiling, that
can be extracted from the I/O applications. Thapaliya et al. [50] showed that adapting
the scheduler to the BB usage model and workloads is crucial to reduce contention on
the BB nodes.

123



2094 S. W. Son et al.

To the best of our knowledge, no prior studies discussed how transparently store
canonically ordered multidimensional dataset into a set of partitioned files, which
themselves are also in self-describing formats. Our partitioning mechanism requires
almost no modifications to existing applications except providing an MPI hint con-
veyed to our proposed softwaremodulewithin PnetCDF. Further, our application-level
file partition and data exchange mechanism automatically coordinate collective I/O
requests across partitioned files, reducing the overhead otherwise incurred to create
large, contiguous I/O requests.

7 Conclusion and future work

We propose a file partitioning approach to accomplishing scalable collective I/O per-
formance while keeping a conventional way of accessing large multi-dimensional
arrays to a user. We employ a dynamic probing technique to estimate relatively slower
I/O nodes and isolate the impact of those nodes, which are the limiting factors to
achieve scalable collective I/O performance at scale. We implement the proposed
technique in PnetCDF and evaluate its effectiveness using several benchmarks and
real I/O-intensive applications on NERSC’s Hopper. Our experimental results demon-
strate that the proposed technique consistently improves the collective I/Operformance
significantly by reducing write I/O time with less variation.

We will continue to evaluate our approach on other platforms like Mira, IBM Blue
Gene/Q, at Argonne National Laboratory [1], and other high-level I/O libraries. We
also plan to compare our approach with similar ones implemented at application layers
or another interface layers such as PIO (parallel I/O) library [9] included inCommunity
Earth SystemModel (CESM). Future research will focus on investigating how the data
exchange mechanism we proposed in this paper can be applied to more general layout
transformation techniques like transposing array dimensions.
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