
I High-Performance I/O
for Massively Parallel
Computers
Problems and Prospects

Juan Miguel de1 Rosario and Alok N. Choudhary

Syracuse University

The effectiveness of
teraflops parallel

computers for solving
many Grand Challenge

and other large
problems will be

severely limited unless
I/O support and
performance are

drastically improved.

March 1994

ver the past two decades, advances in semiconductor and integrated cir-
cuit technology have fueled the drive toward faster, ever more efficient
computational machines. Today, the most powerful supercomputers can

perform computation at billions of floating-point operations per second
(gigaflops). This represents a growth of two to three orders of magnitude over the
past decade.

Much of this computational capacity is being harnessed to undertake large-scale
mathematical modeling and simulation of various physical, chemical, and biologi-
cal phenomena in connection with a broad range of theoretical and practical
endeavors. For example, scientists are attaining unprecedented levels of clarity
and detail in areas such as climate prediction and control, air and water pollution
and quality management, lattice gauge theory, quantum chromodynamics, large-
scale structure and galaxy formation, vision, and cognition. In engineering, com-
putational techniques are being applied to the design and test of anticancer agents,
anti-AIDS drugs, aircraft wingfoils, modern combustion engines, oil reservoir
simulations, and the like. This increase in capability is intensifying the demand for
even more powerful machines. Computational limits for the largest supercomput-
ers are expected to exceed the teraflops barrier in the coming years.

I/O in Grand Challenge applications. Many supercomputer applications, like
those mentioned above, are among a set of scientific and technical Grand
Challenges, an annual list initiated about a decade ago by Nobel prize-winning
physicist Kenneth Wilson.’ Aside from being extremely complex and requiring
significant amounts of processing time, these applications often deal with enor-
mous quantities of data. Current near-term high-performance applications involve
from 1 gigabyte to 4 terabytes of data per run.

Although the main memory regions of supercomputers are extremely large,
some applications manipulate more data than these memories can hold. Such
applications are appearing more frequently and have very high I/O requirements.
For example, current archival sizes for a Grand Challenge group typically range
from 500 Mbytes to 500 Gbytes of storage, with a peak of 10 Tbytes. Scientists

59

Table 1. I/O reauirements for Grand Challenge applications.
Y __

Application

Environmental and Earth Sciences

l/O Requirements Storage

Eulerian air-quality modeling

4D data assimilation

Current 1 Gbyteimodel, 100 Gbytesiapplication:
projected 1 Tbyteiapplication.

10 Tbytes at 100 model runs/application.
100 Mbytes-l Gbyte/run.
3-Tbyte database. Expected to increase by

orders of magnitude with the Earth Observing
System - 1 Tbyteiday.

Secondary

Archival
Secondary
Archival

Computational Physics

Particle algorithms in cosmology
and astrophysics

Radio synthesis imaging

Computational Biology

I-10 Gbytesifile; IO-100 files/run.
20-200 MBps.
l-10 Gbytes.
HiPPl bandwidths minimum.
1 Tbyte.

Secondary
I/O bandwidth
Secondary
I/O bandwidth
Archival

Computational quantum
materials

150 Mbytes (time-dependent code)
3 Gbytes (Lanczos code).

40-100 MBps.

Secondary

I/O bandwidth

Computational Fluid and Plasma Dynamics

High-performance aircraft
simulation

Computational fluid and
combustion dynamics

4 Gbytes of data/4 hrs.
40 Mbytes to 2 GBps disk, 50-100

MBps disk to 3-inch storage
(comparable to HiPPl/Ultra).

1 Tbyte.
0.5 GBps to disk, 45 MBps to disk

for visualization.

Secondary
I/O bandwidth

Archival
Ii0 bandwidth

anticipate that by the time teraflops
machines with terabytes of memory
appear, these l/O requirements will
increase dramatically. in some cases
more than lOO-fold (as with climate
modeling), reaching 10 petabytes per
Grand Challenge group.

But memory capacity is not the only
consideration. Supercomputers are
commonly interfaced with various
peripheral devices (such as external
disk storage systems, mass storage
devices, visualization devices, video
cameras, networks, and other super-
computers) for pre- and postprocessing
of data, or simply for additional work-
ing storage.

In many cases, the speed of access to
data can determine the rate at which
the supercomputer can complete an

assigned job. (Such jobs, for which I/O
- not computation - is the bottle-
neck, are said to be I/O bound.) The
need to access data via network-
connected remote devices introduces
significant delays over access to the
internal l/O subsystem. The expansion
of support for global computing para-
digms amplifies the severity of this
problem. Today, most high-perfor-
mance applications involve l/O rates of
1 to 40 Mbytes per second for sec-
ondary storage and 0.5 to 6 MBps for
archival storage. Application develop-
ers indicate that probably 1 GBps to
secondary storage and 100 MBps to
archival store will be required in the
near future.2 To better understand the
need for such high data-transfer rates,
we provide the examples that follow.

Imaging of planetary data. The space-
craft Magellan has been collecting data
from the surface of Venus since
September 15, 1990. Using radar to
penetrate surrounding Venusian cloud
cover and to scan the surface for struc-
tural information, Magellan has trans-
mitted to earth in excess of 3 Tbytes of
data. Producing a 3D surface rendering
at 200 Mbytes of data per frame would
require more than 13 Gbytes per sec-
ond at 50 frames per second. This far
exceeds the l/O capacity of today’s
machines. Rendering a portion of the
Venusian surface on a 512-node Intel
Touchstone Delta takes several days.”

Climate prediction. Research efforts
in climate and global change, long-
range weather prediction, and land-

60 COMPUTER

surface processes are crucial to under-
standing geographic. oceanic, and
atmospheric systems. The most com-
plex of these are the general circulation
models of the atmosphere and ocean
that must be capable of simulating geo-
physical fluid dynamics on appropriate
scales. Current atmosphere/ocean mod-
els have certain requirements on an
Intel Touchstone Delta. For a 1(X-year
atmosphere run with Xl&square kilo-
meters resolution and 0.2 simulated
year per machine hour. the simulation
takes three weeks runtime and gen-
erates 1,144 Gbytes of data at 38
Mbytes per simulation minute. For a
1 ,OOO-year coupled atmosphere-ocean
run with a 150.square kilometer reso-
lution, the atmospheric simulation
takes about 30 weeks and the oceanic
simulation 27 weeks. The process pro-
duces 40 Mbytes of data per simulation
minute, or a total of 20 Tbytes of data
for the entire simulation.”

Table 1 summarizes the I/O re-
quirements for several Grand Chal-
lenge applications. The data is based on
presentations by scientists at the Grand
Challenge Applications and Software
Technology Workshop in Pittsburgh in
May 199X?

High-performance distributed com-
puting. Today, many scientists share
a vision for the future of high-

performance distributed computing
(HPDC): they envision a nationwide
heterogeneous distributed-computing
environment in which information and
data will be shared, processed, and
stored in a seamless, globally oriented
manner.

The term mefacotnputing, originally
used in the 1980s. refers to the concept
of having several machines work coop-
eratively on a single problem. The
recent popularity of this computing
paradigm stems from the fact that a
supercomputer’s execution rate for a
given application is a function of how
closely the problem domain maps to
the computer’s architecture. Meta-
computing allows the assignment of
each task in a problem to the machine
that can execute it optimally.

Figure 1 shows how a high-per-
formance computing infrastructure
might appear, with computational cen-
ters composed of various combinations
of vector computers. massively parallel
computers. multiprocessors. high-
resolution visualization systems, tens to
hundreds of workstations, mass storage
and archival systems, and so forth. con-
nected by network links of varying dis-
tances and capacities. The distributed
nature of this computational paradigm
would place a high premium on the I/O
capacities within and between process-
ing centers.

The nature of I/O
in MPPs

I/O requirement characterization.
The parallel I/O problem can be
viewed from several perspectives: lan-
guages, compilers. file and runtime sys-
tems. networking systems, operating
systems services, storage systems, and
so forth. Crockett” classifies parallel file
organizations into a number of cate-
gories based on a global and internal
view of the access pattern. Existing par-
allel file systems such as Intel’s CFS
and Ncube’s file system provide sup-
port for some subset of these file
organizations.

The use of parallel computers is
becoming more sophisticated. so it is
important to reexamine what we un-
derstand about the nature of the 110
requirements. In particular, the follow-
ing concerns arise. Our understanding
of I/O requirements for scientific pur-
poses stems primarily from past ex-
perience with supercomputing appli-
cations or very basic (in terms of I/O)
parallel applications. Parallel I/O on
distributed-memory systems will vary
greatly from supercomputer I/O
because of the difference in underlying
hardware. The basic model for current
parallel I/O systems includes an I/O
subsystem architecture that is dis-

Ncube/2 TMC CM-5 Convex C3880 workstation

Figure 1. High-performance distributed computing network.

March 1994 61

62

mpute processor

(b)

Figure 4. Tightly coupled secondary storage (a) versus loosely coupled secondary storage (h) compute and I/O systems.

Parallel files are distributed among
the set of disks in the I/O subsystem by
declustering the data across the disk
array (a technique known as striping),
as shown in Figure 3. Load-balance
issues arise from the degree of corre-
spondence between the application-
defined data decomposition and the
data-storage mapping defined by the
stripe size. We discuss the relationship
between stripe size and load balance in
the next section.

Another major concern in parallel
I/O architectures involves the data
transfer bandwidth to and from I/O
devices. This bandwidth is limited by
the size and number of communication
channels between the computational
array and the I/O devices. In general,
we can view the interconnection model
as illustrated in Figure 2. The number
of I/O channels Cio between the com-
putational array and the I/O devices is
given by

where D is the number of I/O devices,
and Crp represents the number of con-
nections from the ith disk to the com-
putational array. P is the number of
computational processors, and C,, rep-
resents the number of connections (1 or
0) from the ith processor to an I/O
device. The greater Ci,o is, the greater
the subsystem’s data transfer capacity.

In an extension of the tightly coupled
storage device model to general-pur-
pose parallel machines, the disk units
would be integral to the computational
array. As shown in Figure 4. each disk
unit is closely coupled to a processing
unit, resulting in very low transfer times
between the processor and its local

March 1994

disks and in higher overall I/O band-
widths. Reddy et al. discuss the prob-
lem of embedding I/O nodes in parallel
computers in detail.’

Before such models can be com-
pletely adopted, however, the following
questions must be addressed:

(1) What are the effects on compute
performance of the extra I/O
processing required of processors
within the computational array?

(2) What limits are imposed by addi-
tional memory requirements for
I/O buffering?

(3) What are the effects of additional
contention in the interconnection
network arising from increased
I/O traffic within the computa-
tional array?

(4) How will latency-reduction issues
(arising from reduced possibili-
ties for overlapping I/O with
computation) be addressed? and

(5) How are external devices (for
instance, tape silos and networks)
to be connected?

Operating and file
systems

Providing the necessary support for
parallel I/O at the lower levels of sys-
tem software requires investigating
existing algorithms for file management
in distributed-memory parallel environ-
ments. Benchmark studies conducted
on existing file systems let us identify
deficiencies that must be addressed in
our attempts to construct better paral-
lel file systems.

Communication latency. Communi-
cation latency to the I/O nodes con-

tributes greatly to the poor perfor-
mance of existing systems. High latency
dominates the overall transfer time of a
sequence of small- to moderate-size
requests. Hence, requests for data must
be made in large chunks if they are to
be efficiently serviced. This efficiency is
incurred at the expense of using an
access mapping with a more natural
correspondence to the computational
decomposition.

Another concern pertains to object-
oriented operating systems such as the
Intel Paragon OSFII. Here, the object
structures impose additional processing
overhead, thereby increasing communi-
cation latency.

A reduction in overall application
execution time may sometimes be pos-
sible by overlapping computation with
I/O, which an asynchronous message-
passing protocol makes possible.

Data tlecompo.sition. In constructing
parallel file systems, we are concerned
with providing support for user appli-
cations. A common programming
paradigm in scientific computing
involves decomposing the problem
domain. This decomposition is trans-
lated into a data-domain mapping over
the computational array (see the next
section). In conducting 110, the appli-
cation must be able to preserve some
correspondence between this mapping
and the mapping of data over storage
devices (for example, disks). The file
system must accomplish this in an effi-
cient manner. Current parallel file sys-
tems have little support for data de-
composition or control over stripe
size. Recent benchmark results show
that existing file systems are extremely
sensitive to I/O access patterns and
that performance varies greatly as a
function of data decomposition.s

63

- Column-Block. 16 processors. 16 Mbyte?, - Column-Block. 16 processors. 16 Mbyte?,
b-A Column-Block 64 processors, 16 Mbyte?. b-A Column-Block 64 processors, 16 Mbyte?.
D 17 Row-Cycle 64 processors, 16 Mbytes D 17 Row-Cycle 64 ~rocess~~rs, 16 Mbytes
V-----V Row-Black. 64 processors, 16 Mbytes V-----V Row-Black. 64 processors, 16 Mbytes

,..,............’ ,..,............’ yy . yy .

0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.8 0.7 0.8 0.9 1.0 0.9 1.0
Normalized stripe size Normalized stripe size

Figure 5. Read time as a stripe-size function.

Figure 6. Parallel
l/O mapping

functions.

File stream

P processing
elements

D disks

Furthermore. the load balance aspect
of data access becomes critical. If the
data decomposition selected by the
application is incompatible with the
stripe size. it is possible to overload a
particular I/O node with requests. thus
creating a severe bottleneck in the file
system.

with each curve are also normalized by
dividing over the largest read time
taken for that curve. The data was col-
lected from an Ncubei2.”

To illustrate load balance effects for
various data decompositions, Figure 5
shows the time it takes to complete a
read operation as a function of stripe
size. The stripe size, which ranged from
64 bytes to I Mbyte in the actual exper-
iment. is shown as a normalized value
obtained by dividing each stripe si/.e by
I Mbyte. The read times associated

Hence. the file system must be able
to accommodate various data distribu-
tions and efficiently manage various
permutations of data decomposition
versus decluster mappings.

Data mapping in parallel I/O. In pro-
gramming a parallel computer, data
decomposition is often used as a
method of obtaining some degree of
parallelism that is usually easy to man-
age and typically matches the problem
domain closely.

Interfow. Cormen and Kotr surveyed
existing commercial parallel file sys-
tems. evaluating them on the basis of a
proposed set of required capabilities.”
Their results are illustrated in Table 2.
which also includes support for applica-
tion-level specification of data decom-
position (in the last column) as an addi-
tional criterion (considered “n/a” for
SIMD or shared-memory machines).

Their formulation for the set of neces-
sary capabilities is founded on what
might be required in order to perform
a collection of commonly used algo-
rithms. such as sorting. permutations.
matrix transpose. fast Fourier transform.

64 COMPUTER

When I/O has to be performed. each
compute node must have some knowl-
edge of where the data belonging to its
portion of the distributed data structure
is located. In other words, a mapping
function has to be established from the
data structure clement to the relevant
disk block. To establish such a mapping
from the processor array to the dis-
tributed file. two submappings need to
be considercd.‘“The first, Ml, involves
mapping data over the set of processing
elements. File-data organization over
the set of disks reprcscnts the second
mapping. M2.

For parallel I/O to be efficient. both
mappings must bc resolved into a data
transfer strategy. as shown in Figure 6.
The current parallel file system on the
Ncube-2 resolves these mappings inter-
nally into a single data-transfer map-
ping. which computes proper source
and destination addresses during file-
data access. The Intel Touchstone
Delta file system (the CFS) maintains
only the M2 mapping. making the user
responsible for managing the Ml map.
This is called through direct trcce~s.
Problems arise from this approach in
cases where the first and second map-
pings resolve into a data transfer map-
ping (representing an access strategy)
that results in poor I/O performance.
Such problematic mapping pairs are
quite common.”

File system functionality and inter-
face requirements. The file system
design is a key ingredient in determin-
ing the effectiveness of the overall par-
allel I/O subsystem. Through its func-
tionality and interface. the file system
defines the set of l/O operations that
will be available to runtime systems
and compilers.

Table 2. Capabilities of existing commercial parallel file systems.

Ability to
Control Recognize
Over Data Ability to Ability to Ability Ability and Support
Declustering Query the Access to Turn to Turn (Optimize

File or Stripe Current Disk Blocks Caching Parity for) Data
System Factor Configuration Independently On or Off On or Off Distribution

Intel CFS Limited Limited Yes No nla No
Paragon PFS Yes Yes Limited Yes Limited No
Ncube (old) Yes Limited Yes No n/a No
Ncube (new) Yes Limited Yes No nla Limited
KSR-1 No ? Limited No Limited n/a
MasPar No Yes No No No n/a
TMC No Yes No No No n/a

DataVault
TMC SDA No Yes No No No n/a
IBM Vesta Yes Yes Yes No n/a Yes

1

matrix multiplication, and matrix fac-
torization; further support is taken
from the results of previous empirical
studies. Table 2 shows that existing file
systems still have limited functionality.
Until now, members of the high-per-
formance computing community have
not been able to agree on a standard
interface for parallel file systems,
although this is a critical requirement
from a software engineering stand-
point. The key questions in interface
design concern how much information
and control are made available to the
user. It could be that explicit control of
lower level configuration parameters
(for example, block placement, strip-
ing, and prefetching) must also be
made available. These capabilities
enable the user to explicitly adjust for
good performance. Furthermore, the
system’s ability to use additional access
information enables it to perform opti-
mizations instead of relying on gen-
eral-purpose algorithms.

nature of locality. In the traditional
view, locality is established by a
sequential view of data access.
However, in a parallel subsystem, this
view may no longer hold.

lOO-MBps High Performance Parallel
Interface (HiPPl) channels.

From the point of view of an l/O
server node, requests may arrive such
that prefetching only every other block
results in improved performance. The
number of messages required to read
the entire file and each request’s
latency cost can be cut in half.

Runtime system and
compilers

Compiler and runtime system sup-
port for parallel l/O will maximize the
system’s ability to exploit user-supplied
or source-level information to optimize
l/O performance. The additional infor-
mation will enable the formulation of
improved l/O access schedules, which
will result in a more effective communi-
cation latency hiding strategy.

Prefetching and caching. Prefetching
and caching of data within the I/O sub-
system involves extending the solution
applied to primary memory. The idea is
to exploit locality of access by tem-
porarily saving (caching) blocks that
contain recently used data, the expecta-
tion being that nearby data also will
soon be accessed. Prefetching is a
predictive extension to caching and is
based on longer distance distributions
of locality. The critical issue here is the

Checkpointing. Users commonly
share portions of parallel machines for
production runs. A problem arises
when the system must be reset due to a
crash in a program sharing the
machine. In this case, programmers
must provide regular state-saving rou-
tines that will let a run start from a
point just prior to the interruption.
Concurrent checkpointing lets long-
running jobs automatically save state at
regular intervals so that they may be re-
started after interruptions without
unduly retarding their progress. This
provides for fault tolerance of hard-
ware and software errors, network mal-
function, and system interruptions.

Suppose we have a program that we
wish to checkpoint in 100 seconds. For
each Gbyte that needs to be check-
pointed, we need a lo9 bytes/IO2 = 10’
Bps = 10 MBps II0 bandwidth. For 1
terabyte of data, this translates to a lo-
GBps I/O bandwidth; to attain such a
bandwidth would require the use of 100

Compilers. Various compiler op-
timizations can enhance l/O per-
formance in parallel programs. Rec-
ognizing and parallelizing l/O
operations are key ingredients here.
We need to develop compiler tech-
niques that will allow l/O operations
to be parallelized for various file types
and data formats. Mechanisms that
permit user expression of l/O data
structures would facilitate program-
ming and functional interpretation of
instructions by the compiler. Analysis
methods similar to those for automatic
decomposition should be investigated
to enable the compiler to reschedule
operations, overlapping l/O with com-
putation. Moreover. compile time
information on the access pattern used
by the application can be supplied to

March 1994 65

Table 3. Direct access versus two-phase access (64 processors lOK*lOK array, time in msec).

Best Read Redistribution Total Read Direct Read
Time Time Time Time Speedup

Distribution lOK*lOK lOK*lOK lOK*lOK lOK*lOK lOK*lOK

Column Block 11,395 11,395 11.395 1 .oo
Column Cyclic 11,395 2,478 13,873 63.400 4.57
Row Block 11,395 1,028 12.423 78.767 6.34
Row Cyclic 11,395 3,092 14,487 n/a >248.50

the runtime system to help generate
efficient access and checkpointing
schedules.

Runtime. Runtime libraries afford a
level of insulation from operating sys-
tem and file system software, making
them attractive as a development envi-
ronment. Providing parallel l/O sup-
port at this level increases the chance of
portability.” Furthermore, by incorpo-
rating a comprehensive interface to
compilers, additional compile-time
information can be harnessed in formu-
lating a data movement strategy for the
application.

Although language extensions help
us to represent data distribution in-
formation in a way that closely matches
the underlying computation, provisions
for language support that will allow
similar specifications to be made with
l/O expressions have not been suffi-
ciently addressed. As a result, it is diffi-
cult and sometimes impossible to per-
form such a parallel l/O mapping in a
manner that yields optimal perfor-
mance. Current work on runtime sys-
tems uses composite mapping tech-
niques to improve parallel l/O
performance.

Composite mapping strategies.
Experimental results show that file-
system performance can vary greatly as
a selected data-distribution function.
The bandwidth for any given parallel
l/O configuration is highly dependent
on the file size; stripe-size-dependent
factors (for instance, load-balance and
request size) cause widely divergent
access times for most distributions.”

Based on these observations, al-
ternative schemes for conducting paral-
lel l/O have been devised. One
approach, a two-phase access strategy,
uses combinations of mappings that

66

improve average performance and
guarantee greater consistency over a
broader spectrum of data distributions.
The idea behind this strategy involves
dividing the parallel l/O task into two
separate phases.

In the first phase, the parallel data
access is performed using a data distri-
bution that conforms with distribution
of data over the disks. That is, we intro-
duce an intermediate mapping M2’ and
access data with M2’ = Ml. In phase 2,
we redistribute the data at runtime to
match the application’s desired data
distribution (that is, from M2’ to M2).

By using the two-phase redistri-
bution strategy, the costs inherent in
many l/O configurations are avoided.
Selecting a single. “good” configuration
effectively reduces the bottleneck activ-
ity - l/O to the parallel device.
Furthermore, the redistribution phase
improves performance because it can
exploit the higher bandwidths made
available by the higher degree of con-
nectivity present within the computa-
tional array’s interconnection network.
This strategy effectively decouples the
user-selected data-distribution mapping
from the file mapping to the disks (that
is, the declustering mapping); this
results in performance that is much less
dependent on user selected mappings.

Table 3 compares access rates be-
tween the direct-access and two-phase-
access strategies obtained from runs on
an Intel Touchstone Delta.9 Here, the
“Best Read Time” is the time it takes
to read the desired data into the com-
putational array using a distribution
that conforms to the distribution of
data on the disks. This is phase 1.
“Redistribution Time,” the time it
takes to redistribute the data, is phase
2. “Total Read Time,” the sum of the
first and second columns, represents
the complete two-phase access. “Direct

Read Time” is the time it takes to per-
form direct access. The last column
shows the “Speedup” gained from
using two-phase access over the direct:
access method.

Another composite mapping strategy
can be applied to “out-of-core” type
applications. The idea is to extend the
two-phase access with an additional
mapping function that will define the
relationship between portions of the
out-of-core file. This is illustrated in
Figure 7.

Networking
technology

When data has to be transferred out
of a computing environment to an
external device or another remotely
connected supercomputer (for exam-
ple, for pre- or postprocessing, visual-
ization, and so forth), the network’s
capacity becomes a critical considera-
tion. As with l/O devices, network
capacity has lagged behind memory
and processor technology.

In the past few years, a number of
technologies have been developed to
improve network interface and ca-
pacity. The HiPPl standard, for in-
stance, includes a mapping to IEEE
802.2 for supporting common network
protocols like the Transmission-
Control Protocol/ Internet Protocol.
Interfaces to alternative layers are also
under development. For example. the
Intelligent Peripheral Interface (IPI-3)
provides command sets for disk and
tape, and will allow support for striped
disks and tape devices directly con-
nected to HiPPI channels or LANs.

Another technology that IBM is
developing in collaboration with
Lawrence Livermore National Lab-

COMPUTER

Table 4. Network technology.

Type Bandwidth Distance Technology

Fibre Channel 100-l ,000 Mbps
HiPPI 800 Mbps or 1.6 Gbps
Serial-HiPPI 800 Mbps or 1.6 Gbps
SC1 8 Gbps
SonetlATM 55-4.8 Gbps
N-ISDN 64 Kbps, 1.5 Mbps
B-ISDN 1622 Mbps

LAN-Up to sereral meters
WAN-Up to several kilometers

LAN, WAN
125 m
510 Km
LAN
LAN, WAN
WAN
WAN

Fiber optics
Copper cables (32 or 64 lines)
Fiber-optics channel
Copper cables
Fiber optics
Copper cables
Copper cables

oratory is called Fibre Channel. Aside
from the use of an optical (as opposed
to copper) medium, Fibre Channel
encapsulates a more extensive set of
services than does HiPPI. Unlike
HiPPI, it targets up to 4,096 switch
connections for distances of up to sev-
eral kilometers. Furthermore, Fibre
Channel supports multiple connection
types (such as datagram and virtual
circuit) over various physical layers
(for example, coaxial cables, fiber,
lasers, and LEDs) al multiple data
rates.

The Scalable Coherent Interface
standard allows development of local
area networks with speeds of up to 8
gigabits per second and is about 10
times as fast as Futurebus+. SC1 pro-
vides bus services (read, write, lock,
and so forth) by sending packets over a
large number of point-to-point links.
Table 4 summarizes existing tech-
nologies.

I E3lock-Cyclk Logical temporary stora e
a

D disks
Out-of-core (Block-Bloc)

Figure 7. Composite mapping for parallel I/O.

Over the years, LANs and WANs
have developed along independent,
sometimes divergent, lines. Asyn-
chronous Transfer Mode technology
could provide a driving force to inte-
grate LAN and WAN technologies.
Implemented as the underlying support
layer for B-ISBN, ATM provides a
common framework for public wide-
area networks as it does for local area
networks.

patterns is also expected, and single
resource-management approaches will
likely not suffice. Providing the I/O
infrastructure that will support these
requirements will necessitate research
in operating systems (parallel file sys-
tems, runtime systems, and drivers),
language interfaces to high-perfor-
mance storage systems, high-speed net-
working, graphics and visualization sys-
tems, and new hardware technology for
I/O and storage systems.

puting in general. This article has only
scratched the surface. Other relevant
areas that need to be addressed include
multimedia requirements that place dif-
ferent demands on the I/O system;
database systems; parallel data transfer;
fault-tolerance; distributed file systems
(over an HPDC network); archival
storage; and visualization. n

As a first step in this research, I/O
access patterns must be quantitatively
characterized by instrumenting multiple
platforms and collecting trace data for
large application codes. The knowledge
gained from this step must be integrated
into an evolutionary development cycle
for I/O systems as a whole.

Acknowledgments

T he recurrent themes in the par-
allel I/O problem are the exis-
tence of a great variety in access

patterns and the sensitivity of current
I/O systems to these access patterns.
An increase in the variability of access

The area of parallel I/O is vast, with
aspects related to many areas of com-

This work was sponsored in part by
ARPA under contract No. DABT63-91-G
0028. Alok Choudhary is also supported by
the National Science Foundation Young
Investigators Award (CCR-9357840). The
content of this article does not necessarily
reflect the US government’s position or pol-
icy. and no official endorsement should he
inferred. We also acknowledge the support

March 1994 67

of the Center for Research in Parallel Computing and the
Concurrent Supercomputing Consortium for providing access to
their computing resources.

The following people aided our preparation of this article with
ideas presented in lectures or through informative discussions: Brian
Bershad, Rajesh Bordawekar, Andrew Chien, Tom Corman, David
Dewitt, Denise Ecklund, Ian Foster, Geoffrey Fox, Garth Gibson,
Bill Gropp, Ken Kennedy, Chuck Koelbel, David Katz, Kai Li, Paul
Messina, Regan Moore, David Patterson, David Payne, Larry
Peterson, Terry Pratt, A.L.N. Reddy, Dan Reed, Joel Saltz, Marc
Snir. and Rick Stevens.

References
1. “High-Performance Computing and Communications, Grand

Challenges 1993 Report,” A Report by the Committee on
Physical, Math., and Eng. Sciences Federal Coordinating Council
for Science, Eng. and Technology, Committee on Physical,
Mathematical, and Engineering Sciences Federal Coordinating
Council for Science, Engineering and Technology, Washington,
D.C., 1993, pp. 41-64.

2. A. Brenner et al., “Survey of Principal Investigators of Grand
Challenge Applications: A Summary,” Proc. Workshop Grand
Challenge Applications and Software Technology, Argonne Nat’1
Labs, Chicago, 1993.

3. M. Grossman, “Modeling
Vol. 29, No. 9, pp. 56-60.

Reality,” IEEE Spectrum, Sept. 1 ,992.

4. I. Foster, M. Henderson, and R. Stevens, “Workshop
Introduction,” Proc. Workshop Data Systems for Parallel Climate
Models at Argonne National Laboratory, Argonne Nat’1 Labs,
Chicago, 1991.

IEEE Symposium on Mass
Storage Systems

June 12-16.1994
L’Imperial Palace, Annecy, France

The purpose of the Thirteenth Symposium, “To-
wards Distributed Storage and Data Management
Systems,” is to bring together those individual sci-
entists and researchers committed to increasing
both the capacity and speed of mass storage sys-
tems using a broad array of hardware and
software innovations. The Theme of the meeting,
“Towards Distributed Storage and Data Manage-
ment Systems” recognizes the emergence of global
problems, requiring large-scale and distributed
storage and data management solutions.

A special session is reserved for posters and site
summaries. Space will be made available to profes-
sionals interested in making research oriented
demonstrations. Scientists and computer profes-
sionals are invited to submit a short abstract of
their demonstration, poster or site summary
(deadline: May 1, 1994). Roger Hersch, Ecole Poly-
technic Federale, Lausanne (EPFL), CH-1015
Lausanne, Switzerland, hersch@di.epfl.ch, tele-
phone +4121-693-4357, fax: +4121-693-6263.

A Vendor Kit with additional details and regis-
tration information can be obtained from: Bernard
O’Lear, olear@ncar.ucar.edu, telephone: (303) 497-
1268, fax: (303) 497-1818.

5. T.W. Crockett, “File Concepts for Parallel I/O,” Proc.
Supercomputing 89, IEEE CS Press, Los Alamitos, Calif., Order
No. 2021,1989, pp. 574-579.

6. D. Patterson, G. Gibson, and R. Katz, “A Case for Redundant
Arrays of Inexpensive Disks,” Proc. SIGMod Co@, ACM Press,
New York, 1988, pp. 109-116.

7. A.L.N. Reddy, P. Banerjee, and S.G. Abraham, “I/O Embedding
in Hypercubes,” Proc. Int’l Conf Parallel Processing, IEEE CS
Press, Los Alamitos, Calif., Order No. 889,1988, pp. 331-338.

8. R. Bordawekar, J.M. de1 Rosario, and A. Choudhary, “An
Experimental Performance Evaluation of the Touchstone Delta
Concurrent File System,” Proc. Int’l Conf. Supercomputing,
ACM, New York, 1993. pp. 367-376.

9. R. Bordawekar, J.M. de1 Rosario, and A. Choudhary, “Improved
Parallel I/O Via a Two-Phase Runtime Access Strategy,” Proc.
Workshop Input/Output Parallel Computer Systems, 1993, pp.
56-70.

10. E.P. DeBenedictis and Peter Madams, “Ncube’s Parallel I/O
with Unix Capability,” Sixth Distributed-Memory Computing
Conf., IEEE CS Press, Los Alamitos, Calif., Order No. 2290,
1991, pp. 270-277.

11. T.H. Cormen and D. Kotz, “Integrating Theory and Practice in
Parallel File Systems,” Proc. 1993 Symp. Dartmouth Inst. for
Advanced Graduate Studies and Parallel Computing, Dartmouth
College, Hanover, N.H., 1993, pp. 64-74.

12. High-Performance Fortran Language Specification, Version 0.3,
CRPC Tech. Report, High-Performance Fortran Forum, Rice
Univ., 1992, pp. 6-7.

degree in computer
Francisco. He is a
member.

Juan Miguel de1 Rosario is studying for his
PhD at Syracuse University and is a research
assistant at the university’s Northeast Parallel
Architectures Center. His primary areas of
interest are parallel computer architectures
and parallel I/O systems, parallel operating
systems, languages, and theoretical aspects of
parallel computation and systems.

Del Rosario earned a BS in mathematics,
physics, and chemistry in 1988 and an MS

cience in 1992, both from the University of San
n IEEE Computer Society and ACM student

Alok N. Choudhary joined the Department of
Electrical and Computer Engineering at
Syracuse University in 1989 and is now an
associate professor. His main research inter-
ests are parallel and distributed processing;
software development environments for par-
allel computers, including compilers and run-
time support; parallel computer architectures;
and parallel I/O systems.

Choudhary received a BE in electrical and
electronics engineering with honors from Birla Institute of
Technology and Science in Pilani, India, in 1982; an MS from the
University of Massachusetts, Amherst, in 1986; and a PhD in electri-
cal and computer engineering from the University of Illinois,
Urbana-Champaign, in 1989. He received the National Science
Foundation Young Investigator Award in 1993. He is an IEEE
Computer Society and ACM member.

Readers can contact Del Rosario at the Northeast Parallel
Architectures Center. Svracuse Universitv. 111 Colleee Place. RM 3-
201, Syracuse, NY 13244-4100, e-mail mrosario@n&a.cat.svr.edu;
and Choudhary at the Dept. of Electrical and Computer
Engineering, Syracuse University, 121 Link Hall, Syracuse, NY
13244-1240, e-mail choudhar@cat.syr.edu.

COMPUTER

