
Parallel I/O:
Getting Ready for Prime Time
Dan Reed, University of Illinois
Charles Catlett, National Centerfor Supercomputing Applications
Alok Cboudhary, Syracuse University
David Katz, Dartmouth College
Marc Snir, IBM T.J. Watson Research Center

International Conference
on Parallel Processing
August 15-l 9, 1994
St. Charles, III.

During the International Conference on Parallel
Processing, held August IS-19,1994, we convened
a panel to discuss the state of the art in parallel
I/O, tools and techniques to address current
problems, and challenges for the future. The fol-
lowing is an edited transcript of that panel.

Dan Reed
Welcome! I’ve always been a firm believer that
panels where the members talk for the whole time
and then leave three minutes for questions at the
end aren’t very interesting. We’re going to try to
keep the presentation reasonably brief and leave
the rest of the time for you to talk about what
issues are important to you, ask questions, voice
opinions, and suggest things. Vegetable throw-
ing is optional, but certainly fair game.

So, why are we here? Well, think about the
hardware and software configuration you might
see on a parallel system-lots of disk arrays, soft-
ware disk caching, virtual memory, multiple
high-speed networkinterfaces, and a hierarchical
file system that involves multiple secondary and
tertiary storage devices. What kinds of I/O ques-
tions can we answer in this context? The list is
pretty short! The list of questions we can’t answer
is pretty long.

I believe we need to revisit many of the issues
that we viewed as closed in the past. A huge flurry
of I/O research occurred as part of the classic
operating system work in the sixties and seven-
ties. With many of those issues, the same answers
may not apply to parallel systems.

To whet your appetites, I wrote down a few
questions that sprang to mind while I generated
slides. One of them is, what kind of I/O patterns
can we expect? Going to a river and counting the
number of swimmers each day to decide if you

should build a bridge is not a particularly good
metric. Looking at what people do now is not
always a good predictor of what they would like
to do. Most systems’ I/O is more limited by the
art of the possible than by the art of the desirable.
You have to determine what people want to do
as well as what they can do.

There are other issues related to the kind of
support we should provide to application devel-
opers. For example, do we need language inter-
faces so that people can specify how to distribute
data across storage devices? Should we give peo-
ple control over caching and prefetching poli-
cies? How does the changing balance of network
and disk speeds affect things? Likewise, the infor-
mation superhighway means that there will be
and already are lots of distributed data archives.

When we look at storage devices, it’s clear that
data densities are rising faster than access times
are decreasing. That also has important implica-
tions. There are already individual applications
that have terabyte-size data sets. And your l-
Tbyte disk farm holds a file-ne file-so there
are tertiary storage problems to face there as well.
And, once you start mixing scientific data, com-
pressed audio, and compressed video, a host of
interesting real-time constraints arise.

Now let me tell you what we’ve been doing,
and then I’ll let the rest of the panel do the same.

i/o CHARACTERIZATION
The first question I posed earlier was under-
standing application I/O access patterns. There
are really two sides to that problem. First, there
are the application stimuli-what kind of demand
are we seeing-and then there is how the system
responds to those stimuli. In the first case you
would like to understand what people are doing,
and what they might do, and in the second you’d

64 IEEE Parallel & Distributed Technology

like to understand how systems are
responding to those access patterns. This
tells you what is broken-and plenty of
things are broken-and it shows you both
ends of the spectrum so that you can study
how to fix it. If you have both stimulus and
response when you modify the file system
or the application, you can study the
“before” and the “after” and see the effects
of your file system changes.

We’ve been retargeting the Pablo envi-
ronment and building tools to capture
application I/O access patterns. Of course,
real codes run a long time, with “a long
time” measured in hours or days on high-
performance machines. Sometimes you
can capture a detailed trace of every I/O
activity; other times you can’t. In fact, with
some codes, trying to trace the I/O activ-
ity may generate more I/O than the I/O
does-that usually indicates that the code
wasn’t written very well! In other cases, the
I/O operations are larger and less frequent.
So, it’s pretty obvious you need a variety
of ways to characterize I/O activity. Some-
times you want to capture the trace; other
times you just want a summary.

Let me show you just one VO charac-
terization example. As part of a collabora-
tive National Science Foundation Grand
Challehge project with Caltech, we
obtained an electron-scattering code that
models low-temperature plasmas.’ The
results of this model are used in semicon-
ductor foundry work. For our purposes,
the application’s details aren’t really
important, except that the problem its
developers are solving and the problem
they would like to solve are vastly differ-
ent. The kind of problem they solve now
might run all night on a .500-processor par-
allel system. However, the problem they
would like to solve might run a week on
that machine, with an equally impressive
scaling of the I/O.

Here’s the bad news. This code is
indicative of the problem I mentioned ear-
lier: namely, the difference between what
people would do and what they can do. It
turns out that the straightforward way to
do I/O with this code is to parallelize both
reads and writes-it can be completely
parallel with very little synchronization.
But, the current system software makes

that difficult.
Let me show you some

performance data to illus-
trate that (see Figure 1). In
this version of the elec-
tron-scattering code, all
processors attempt to con-
currently read some ini-
tialization files. Then, they
begin a cycle of computa-
tion and writes, where a

Elapsed Time (seconds)

single processor writes Figure 1. Electron-scattering code read durations.

data to’a group of files.
Performance measure-
ments show a great deal of
contention when 12 8 processors are con-
currently fighting to open and read the ini-
tialization files.

We showed the application developers
this performance data, and they said, “We
can fix this,” and they did. Having found
that reads were a bottleneck, they sequen-
tialized those and parallelized the writes.
This fixed the read problem and broke the
writes! So, what can you conclude from
that? Basically, the things you think would
be reasonable don’t always work-appli-
cation developers can spend a great deal of
time programming their way around prob-
lems rather than doing the science they
want to do.

This also has implications for perfor-
mance instrumentation. Getting perfor-
mance data is harder than it looks-to get
data you are using the same I/O facilities
the application developers are using. If
they are having trouble doing I/O, you as
a performance analyst are having trouble
doing I/O too.

From looking at a range of application
codes,* we’ve concluded that there is wide
variability in I/O access patterns and that
performance is highly sensitive those pat-
terns. The software implication is that, in
the short to medium term, we need mech-
anisms that let users control how the sys-
tem manages I/O, how it distributes data
across the storage devices, when and what
it prefetches, and what caching algorithms
it uses.

Let me conclude with three thoughts.
First, many of the problems are economic,

not technical. I don’t mean to minimize
the significance of the technical problems.
They are real, they are severe, and they
deserve lots of work, but many of the prob-
lems are economic. In an academic con-
text it is possible to work on I/O problems,
but it is difficult because you need access to
real system-the problems of interest are
problems of large scale.

The second is really a variation on what
I have, with some self-aggrandizement,
taken to calling “Reed’s Law”: the more
you are willing to pay for a system, the
more limited the software options are. This
observation relates to the size of the user
base. If you buy a PC you can go to a mall
and buy all the software you want at $50 a
copy. If you are willing to spent $30 mil-
lion for your machine, you will probably
have to write most of the software yourself.
That is just the hard economic reality: at
the high end, economics drive the soft-
ware’s capabilities in some fairly significant
ways, This makes collaboration among aca-
demic researchers, government laborato-
ries, and vendors especially important.

Finally, some of us, including several
people on this panel, are involved in a new
project called the Scalable I/O Initiative.
It consists of a group of operating systems,
language, performance analysis, and appli-
cations researchers who are mounting a
concerted attack on the I/O problem,
looking at it from end to end. There are
two major testbeds-the Intel Paragon
XP/S and the IBM SP-2-but other ven-
dors are involved as well. On that note, I’ll
let Charlie Catlett talk.

(For information on performance

Summer 1995 65

instrumentation and the Scalable I/O
Initiative, access http://www-pablo,cs.
uiuc.edu/ and http://www.cgsf.caltech.
edu/SIO/SIO.html.)

Charles Catlett

I would like to talk about three general
application areas where the National Cen-
ter for Supercomputing Applications has
encountered I/O problems. One is trans-
action processing, another is bulk transfer,
and the third is real-time interaction
between computers and between comput-
ers and users. In these areas, we want to
see improvement in I/O from a host-inter-
face and an operating-systems standpoint.

TRANSACITION PROCESSING
The enormous growth of the World Wide
Web and of NCSA’s Mosaic browser is evi-
dent in the growth of Web traffic on the
Internet and at the NCSA server, the
busiest Web server on the Internet. Since
Mosaic’s release in early 1993, Web traffic
on the Internet has increased exponentially,
from under 100 Mbytes to over 1.2 Tbytes
per month, with continuing rapid growth.
At the NCSA Web server, the number of
connections per month has grown from
under 400,000 in July 1993 to over
10,000,000 in July 1994.3 The growth is
essentially linear, with no evidence of a
plateau in sight. Each connection is a typi-
cal TCP connection. Somebody clicks on
something with Mosaic or some other
browser. The browser then starts a TCP
connection to the server, grabs the data, and
then closes the connection. The amount of
data being transferred varies from a few tens
of bytes to approximately 18 Mbytes.

Initially, the NCSA server was a single
workstation. At a million connections per
month we went to a server-class system.
Shortly thereafter we moved to multiple
servers in a cluster. We changed it each
time because we thought we were running
into load problems on machines, in the tra-
ditional sense of CPU or I/O load. Because
users couldn’t connect to the servers, we
thought these machines were overloaded.
Yet, if we looked at the performance the
way we looked at a file server or a compute
server, the servers appeared to be very

lightly loaded. Actually, a very large num-
ber of people were requesting transactions,
which were hitting all at once.

The point is that the problem is not I/O
in terms of throughput and it is not CPU
speed. It is the way the operating system is
built, the way the network protocol stack
is implemented, and the assumptions
implementors made about the number of
TCP connections that people would
request during a short period of time.
Today’s systems are not built to take on
50,60, or 100 requests for TCP connec-
tions in a few seconds.

We got around that with some very
coarse parallel I/O. We put a cluster in
place. We changed the domain name sys-
tem (the local copy of the BIND software)
so that when a Web client wants to con-
nect to our server and goes into the DNS
to get the IP address, we perform round-
robin distribution among multiple
machines. So, we spread the load across
these machines in one sense, but because of
the caching in the DNS, it is not done on
a per-client basis. Rather, the load-level-
ing round robin occurs on a per-site basis.
When a client-say, at Stanford-asks for
the IP address of www.ncsa.uiuc.edu, the
Stanford DNS system caches that infor-
mation for other Stanford clients. The
local site (in this case, Stanford) determines
the length of time that information is
cached, but the information sent out also
has a recommended time-to-live. We ini-
tially used a time-to-live of two hours but
eventually lowered that to 15 minutes.

BULK PROCESSING
At the NCSA computing facility, major
machines are connected with both FDDI
and Hippi switches. In this environment,
people do their computation on a super-
computer, store data in the archive system,
and then post-process the data using a
visualization environment-for example,
our Cave Automatic Virtual Environment
(CAVE), driven by a Silicon Graphics
Onyx system.

Over a month, there are many instances
where a user will transfer on the order of
50 Gbytes in or out of the archive during
a single day. Bulk transfer is more impor-
tant as we get to larger data sets. For exam-

ple, our Thinking Machines CM5 has 140
Gbytes of disk space, or what we call scratch
urea. One of the grand-challenge groups
using the CM5 has an application they
want to run for 12 hours, and it produces
enough data to fill that scratch area several
times. Even if that application fills a larger
portion of the supercomputer disk space,
another application will come later and
want to produce a similar amount of data.
This means we’ve got to move the first
application’s output into the archive in a
short time. When we are talking about
moving 100 Gbytes, much less a terabyte,
bulk throughput becomes very important.

Unfortunately, we actually took a step
back in I/O when we went from traditional
vector machines to massively parallel
machines such as the CM5 or the Intel
Delta or Paragon. Back in 1989, when we
started thinking about what we could do
with gigabit networks, we assumed that
the 400-Mbits-per-second user-to-user
throughput we were getting between two
Cray supercomputers was the starting
point. We assumed that as technology
advanced, I/O would also improve, or at
least remain constant. We were dead
wrong. Although we went in five years
from a Cray Y-MP that runs a little over a
gigaflop to a CM5 that is about 50 times
faster, it wasn’t until the CM5 was two
years old (late 1993) that we could get I/O
on it at faster-than-Ethernet rates. Even
now with Hippi on the CMS, we are not
anywhere near where we were four years
ago with the Cray Y-MP. So, compute
power has increased, memory capacity has
gone way up, and disk farms are much
larger, but I/O is still a real problem.

When we consider applications we
could attack with high-speed I/O, we face
the following dilemma. Back when we
were using the Cray Y-MP we had plenty
of I/O, but not enough compute power to
take advantage of it. Now we have plenty
of compute power to take advantage of 400
or 800 Mbps, but we can’t get in and out of
the machine. When this gets fixed we are
really going to be set!

REAL-TIME INTERACTION
On the Blanca gigabit network testbed, our
applications typically involve a user sitting

66 IEEE Parallel & Distributed Technology

at the Universitv of Wisconsin on a Sili- i
con Graphics machine with a code that
runs on a supercomputer at NCSA in Illi-
nois. In some cases, we want to run part of
a distributed application on the SGI at
Wisconsin and part of it on an SGI at
NCSA. As the pipe’s bandwidth increases,
we can make tradeoffs between bandwidth
and latency-actually hiding latency by
clever prefetch schemes, for example. In
other cases-for example, the CAVE vir-
tual environment-we want the SGI at
Wisconsin to be able to respond in real
time to a command given by a user in the
CAVE at NCSA. This means being able
to get control information through the
network at very low latency. This is not to
say we think we can do anything about the
speed of light, but we certainly want to
minimize delays due to queueing or
packet/cell loss and retransmission.

FINAL THOUGHTS
Transaction processing is by far the most
important of these three areas. Improving
transaction processing means fundamen-
tally changing the assumptions made when
an I/O system is developed. A global infor-
mation server on the Internet will be sub-
jected to very different demands than will
a local’group file server or desktop work-
station. Parallel systems are very fast, but
they are useless for bulk processing if you
cannot get data into and out of them at
rates commensurate with their compute
capabilities. For real-time interactions
between systems over networks, mecha-
nisms that hide latency on wide area net-
works will be very useful for distributed
computing, particularly if they are trans-
parent at the application level.

Alok Choudhaty

To achieve high-performance for I/O in
parallel computers, we have to break away
from traditional sequential views such as
“stream of bytes.” We use that view for con-
venience. If you have the sequential view,
you can say something about the relation-
ship between two different elements in your
file. Dan made this point earlier. Access
information must flow from a program to
the data-management (for example, files)
system. Information must flow from the
application program to the data-manage-
ment system, and back. The hardware
underneath has fast interconnect and a lot
of disks. The problem is the layer of soft-
ware on top of the hardware. To exploit the
hardware’s available bandwidth, the sol&are
must use the access-pattern information.

I will focus on the specific I/O problem of The current implementation of file sys-
running an application on a single parallel tems is a naive extension of sequential files.
computer. Users demand only high perfor- Access and prefetching do not consider any
mance, not parallel I/O. Given the technol- information about interleaved access pat-
ogy, hardware-level parallelism is essential. terns by different processes. This results in a
So, I would like to concentrate on the tech- lot of thrashing, lost bandwidth, and poor
nology’s software aspects. The I/O problem performance. Therefore, there must be some
is like the federal budget deficit. With the way for this access-pattern information to
budget, the interest part of the deficit bur- flow to the file (and the nmtime) system.
dens economic growth. Parallel computers That is, a notion of collective accesses should

can do fast computations, but I/O software
is pulling their performance down.

What are the solutions? How do we
achieve them? Hardware solutions alone
do not work, if we take lessons from cache
memory or virtual memory on uniproces-
sots. Software support-for example, com-
piler and nmtime support-is necessary.
For example, to utilize the cache better, a
compiler has to do a lot of work.

Improving
transaction
processing means
fundamentally
changing the
assumptions made
when an l/O system
is developed.

be built in. At the same time, the interface
should not be very rigid for this information
flow. It should be flexible enough to easily
support different access patterns.

The type of information provided is also
important. Users can only specify a certain
type of information; for example, in High
Performance Fortran-type languages, users
provide distribution information. Compil-
ers provide only static-access information
based on the computation and distribution.
The nmtime systems provide dynamic
information, and so on. Each level of soft-
ware needs to incorporate the most suit-
able access information to obtain high per-
formance at the application level.

At the file system level, we may need
metadata describing common access
patterns likely to be seen on the data
stored in the file. This approach can be
extended to I/O in a high-performance
distributed-computing environment using
a high-speed network. Let’s say you have
a gigabytes-per-second network, but to
communicate on two sides you have to
sequentialize the data and then send it
over. Obviously, there is a bottleneck
where the data is sequentialized. You still
want to communicate in parallel even
though fragments may go sequentially on
this high-speed network. You can achieve
this by associating some information with
the data. This information specifies how
this data is organized, so it can be
reassembled on the other side.

I believe that the runtime system has to
do the most work because compilation
technology is difficult and is useful only
for static patterns. We have demonstrated
how the nmtime system can enhance I/O
performance by taking the distribution and
access-pattern information into account
for scheduling accesses.“,’ The runtime
system takes information from the appli-
cation about the application’s distribution
requirements, and information from the
file system about the data distribution.
Using this information, it performs
accesses collectively, rather than letting
individual nodes do it all.

This is the “two-phase” access strategy.
For a read operation, in the first phase data
is accessed according to a conforming dis-
tribution. In the second phase, the data is

-- Summer 1995 bl

permuted into appropriate processor,
based on the application’s distribution
requirements. This provides consistent
performance, mostly independent of the
individual node-access patterns.

In summary, to satisfy users, software
support should provide high performance
without burdening them with the low-level
details of the underlying parallelism.

David Kotz
The preceding panelists discussed either
I/O hardware or parallel I/O software. I’ll
tell you a little about each.

In the past, the problem was that we had
no parallel I/O hardware. Now we have
adequate parallel I/O hardware design-
for example, separate I/O nodes with
RAIDS attached to each node. However,
the new problem is that most machines
aren’t configured with enough I/O hard-
ware to meet their needs. I guess people
aren’t willing to spend enough money. The
solution is to face reality and spend the
money to buy enough disks and I/O nodes.

As I see it, the real problem is in the
software: performance, reliability, and
usability.

With current software, as others here
have mentioned, you usually get only a
small fraction of the full bandwidth. So,
even if you do face reality and buy enough
parallel I/O hardware to provide the band-
width you need, you cannot access that
bandwidth.

Even if you have RAIDS, which protect
against disk failure, the overall system reli-
ability is poor. The problem is that the
software is either buggy or not tolerant of
hardware faults, and so is not very reliable.

In most systems today, the file system
and language interfaces are hard to use.
For example, it is very difficult to express
complicated mappings of data from the file
into program data structures that are dis-
tributed among many processor memories.
Even ifyou choose one of the optimal par-
allel-I/O algorithms developed in the the-
ory community, it is very difficult to
express it in a way that translates into high
performance. I think Dan said theory and
practice clash sometimes.

In addition, today’s parallel file systems

don’t integrate very well with existing sys-
tems, network file systems, and archival file
systems, so it is not easy to get data in and
out of a specialized parallel file system.

The file system interface is an important
issue. What do programmers see as a way
to get at their files? Most systems have
been based on a Unix-like “read,” “write,”
and “seek” kind of interface, but that is
very awkward to use. You often need to
have each processor calculate seek offsets
so that it can read and write its own por-
tions of the file. This constant seeking also
tends to stress the file cache. The cache
can get requests for different parts of the
file from any of the compute nodes at any
time. There is little semantic information
flow from the application level down to the
file system level. All the processor sees is a
couple of reads, writes, and seeks-not any
higher-level information about what is
really going on.

In recent characterizations ofreal appli-
cations we found that this kind of interface
leads to programs that make very small
requests. For supercomputer applications,
the typical request size is on the order of
megabytes. In the parallel scientific appli-
cations we traced, the typical request size
was fewer than 200 bytes. We believe that
these patterns arose because programmers
were trying to distribute the file data across
many processors, using an interface that
limited them to contiguous requests. In
many patterns, therefore, even though a
processor needed a large portion of the
file, each request for each contiguous piece
of the file was very small. Fortunately,
because of the regularity of the data dis-
tributions these requests were very regu-
lar, with a fixed request size and stride
between requests.

Many parallel file systems, like Intel
CFS, extend the traditional interface with
“I/O modes” to let users express some of
these patterns. These extensions are too
simple to express what users need, and we
found that users never used them. As a
result of our studies, we feel that systems
need to support strided I/O requests so
that programmers can ask for a large (but
not necessarily contiguous) amount of data
in one request. IBM’s Vesta and the pro-
posed nCube file systems provide this

capability by letting users set up a mapping
function between the file and memories.

Collective I/O interfaces would also
help. Collective I/O means all the pro-
cesses in an application cooperate to make
one (collective) I/O request to the file sys-
tem. If you are using a single-program,
multiple-data programming model, gen-
erating collective I/O requests shouldn’t
be too hard. A collective request gives the
file system even more information, and
lets it do some additional optimization-
an example of when synchronization can
be a “good thing.” (In parallel computing
we usually try to avoid synchronization at
all costs. However, in some I/O-intensive
applications, when the processes get
unsynchronized, the cache starts thrash-
ing. If you keep them synchronized, they
can take advantage of interprocess locality
in the cache.)

It is important to find ways for the lan-
guage, compiler, runtime system, operat-
ing system, and hardware to cooperate to
allow semantic information to flow. The
best answer to a problem such as parallel
I/O is likely to be a holistic solution aris-
ing from cooperation among experts at all
levels of the system.

One idea that seems to work is to let the
disks control the timing of data flow, a
technique I call disk-directed I/O. Mem-
ory is a random-access device: it doesn’t
care in what order you do the transfer.
Disks are not really random-access: their
performance depends a lot on the order in
which you do accesses. So, let the disks
decide the order of accesses, and make the
memory respond to random transfer
requests. The disks can also set the pace
according to what is convenient for their
buffering, rather than trying to let the
cache dynamically deal with whatever
requests come at it.

As others have said, we should encour-
age application-specific I/O policies. One
size does not fit all here. A generic cache
policy isn’t going to fit all access patterns.
Perhaps we need to program the I/O
nodes, which until now have generally
been off-limits.

Are we stuck with Unix forever? Unix
has a nice file system, but it is really inap-

68 IEEE Parallel & Distributed Technology

propriate for all the things we are trying to
do with parallel computing.

Should we have file systems at all, or
should we have a scientific database or per-
haps a persistent-object system?

Reliability is still a problem. There is
more to the solution than RAID.

Regarding virtual memory: what we call
“out-of-core” programs do not use the file
system for persistent storage but rather for
temporary storage. Should we have sepa-
rate mechanisms to support out-of-core
programs, or should they continue to use
“files”? Should we support demand pag-
ing? Again, there is typically one manage-
ment policy-a mistake. You need to let
the programmer or the compiler tell you
when to move things in and out. Go back
to the fundamental problem here and try
to deal with it.

If I/O was the orphan of high-perfor-
mance computing, graphics and network
I/O are the orphans of I/O research.

Here is a URL for an archive of pamllel-
I/O resources, including pointers to many
other research projects, a bibliography,
anecdotes about people’s use of parallel
I/O, and even some sample programs:
http://www.cs.dartmouth.edu/pario.html.

Maq Snir
Parallel I/O is a multifaceted problem that
stretches from hardware to systems and
compilers. There is also the issue of exter-
nal connectivity and how that takes advan-
tage of parallel I/O. I am not going to
address all of these issues in nine minutes.
I am not even going to address all the
work going on at the IBM T.J. Watson
Research Center on these issues. I am
going to focus on our activity in parallel
I/O interfaces to compilers and applica-
tions. This is the research group’s work
on the Vesta parallel file system for the SP
machine, which involves five to six
researchers. This technology is now mov-
ing into the SP product, so a fairly large
product-development group is also
involved in parallel I/O.

Our perspective on parallel I/O relates
to the SP system’s structure. This system
has a fast switch with many attached nodes,
with a flexible node configuration. Com-

pute nodes may have few disks attached and
no persistent data on those. But storage
nodes can have a large number of disks
attached and hold persistent data. Long-
term storage of persistent data is outside

One moves a file to be stored not on one

the SP on some storage or archival system,

node, but across multiple storage nodes.
One does this because those nodes, which

so gateways are needed. The internal stor-

are supporting the parallel file system,
should provide access to the file in parallel
with high bandwidth from multiple com-

age is a cache to the external storage, and an

pute nodes, which are doing parallel com-

import-export interface moves data across.

putation. This is a clear design goal. Par-
allel I/O should match parallel computing
to get high performance; one wants paral-
lel access to one logically shared but phys-
ically distributed file.

Another important goal is to avoid a lot
of system activity on the nodes doing the
computation. One does not want to see sys-
tem activities happening randomly on com-
pute nodes. In some benchmarks, we found
that two to three percent of system activ-
ity occurring randomly on the computa-
tion nodes can reduce performance by 40%
at the parallel-application level. So, off-
loading the overhead from system calls to
I/O nodes is an important consideration.

So, what is the Vesta file system? Basi-
cally, it allows one to create files that are
strided across multiple storage nodes. It
gives a fair amount of control in describing
how many storage nodes store the file,
what the basic striding block’s size is, and
so on. When one opens the file, it gives
one control of what is opened. One does
not need to open the entire file; one can
open a subfile. Basically, one can view a
window into the file, so each processor can
open a separate subfile, all processors can
open the entire file and share it, or any-
thing in between.

Vesta maintains atomicity and serializ-
ability of I/O accesses even if they are
spread across multiple I/O nodes: con-
flicting accesses at different nodes will
occur in the same order. This happens
without locking and without communica-
tion between the client compute nodes.
Serializability is achieved by a protocol that

involves communication between the
servers on the storage nodes. The amount
of communication between clients and
servers is minimal. Basically, for each
access from a client to a server there will

With Vesta, one can add more storage
nodes to get more I/O bandwidth, until

be two messages for a write and three for

one saturates the switch. We are also
working on implementing MPIO, a pro-

a read. The system supports asynchronous

gramming interface on top of Vesta that
allows a message-passing style of I/O and

I/O, which is essential to off-load I/O

that supports collective I/O, which is also
important.

overheads to the storage nodes.

I don’t want to go into more technical
detail. Instead, I would like to share what
we learned from this research project and,
more important, from our collaboration
with a development group. Sure, Unix
stream files are the wrong thing for paral-
lel I/O. The sequential nature of stream
files really inhibits the optimizations one
can do if one relinquishes the Unix seman-
tics for parallel files. But, in a product envi-
ronment, the idea of having a file system
that is not Unix-compatible raises a lot of
horror, and not only in a product-devel-
opment environment. Users want com-
patibilitywith existing file systems. So, any
deviation from Unix semantics of stream
files is extremely painful.

When we worked on the Vesta file sys-
tem we developed a non-Unix file system,
which had a lot of performance advan-
tages. We provided an import-export
interface to Unix files, and we provided a
lot of the Unix file system functions. But
the product development people did not
buy that. The product version ofVesta is
a mounted file system that supports Unix
file system interfaces with no change. The
new functions that Vesta introduced are
now available through I/O controls,
which is messier. But this is a worthwhile
tradeoff.

I would also suggest that we stop think-
ing of I/O as communication between a
job and a file. I/O is really communication
between one job and another job. It is
communication in space when jobs run
concurrently and communication in time

Summer 1995 69

when jobs run one after another. This per-
spective might lead to more innovative
approaches to parallel I/O.

Discussion highlights
Reed: We’ve talked for an hour, so it is

your turn to ask questions.

Is there any ongoing work with parallel I/O
and persistent-object storage?

Choudhary: Dave Dewitt at the Uni-
versity of Wisconsin is working on persis-
tent-object stores and parallel I/O. At the
University of Illinois at Chicago, Bob
Grossman is also looking at persistent
object-stores. We are discussing with
Mark Snir how to provide information to
the file system and keep that information
around so that we can improve the perfor-
mance of parallel accesses.

I know there is a lot ofwork going on in per-
sistent-object stores, but I am not aware of any
that ti designed to maximize throughput. Were
you talking specifically about that kind of work,
or simply about general research in persistent-
object storage?

Choudhary: We are interested in
improving the throughput and the perfor-
mance of accessing data from parallel-
object s’torage. Of course, a lot of work is
just for storage management.

Snir: There are really two issues. First,
if a parallel file is not just a stream of bytes,
but a structure, then it is a persistent
object. In that case you need a persistent-
object-management system to manage the
file information, making sure that you
transform it to the right format.

The more general question is, if you are
moving to the brave new world of object-
oriented programming, what is parallel
object-oriented programming? What does
it mean for an object to be distributed?
How do you manage this distribution?
This last question is more general than
I/O, but the real general question is how
to combine parallelism and object-
oriented approaches, which don’t seem to
marry well.

Kotz: There is another project, led by
Andrew Grimshaw at the University of
V&ginia, that proposed an object-oriented

interface in the file system. The idea was to
build different structures for files, and the
object methods for reading and writing
would have structure-specific caching and
prefetching. The Hurricane file system for
the Hector multiprocessor at the Univer-
sity ofToronto also had an object-oriented
interface.

Will putting the disks or I/O nodes in con-
trol of the order of I/O clash with a carefilly
ordered computation?

Kotz: You use that method when the
application wants to read a large amount
of data. With current interfaces, you usu-
ally must request many small pieces of a
file. With a collective I/O-request mech-
anism, if you make a request to the file sys-
tem, the file system manages that transfer
from the disks to the memory or vice versa
in an order that is convenient for the disks.
If you want to go beyond that and overlap
that I/O with some computation, you have
to compromise between the order that is
convenient for the disk system and the
order that is convenient for the computa-
tion. That is something I want to consider
more.

Reed: Often, we needlessly take our
sequential models into the parallel context.
With a straightforward extension of
sequential access to multiple processors,
there are many cases where you really
don’t care what order your requests come
back from the file. The file is just a repos-
itory of chunks of data, and you want one
of them; you don’t care which one you get
back. That flexibility lets the file system
disk scheduler respond to requests in an
order that is efficient for it.

Sbozlld the application manage the data hy-
out on the disk?

Choudhary: Most parallel applications,
at least those using the SPMD model,
exhibit a highly correlated access pattern.
Once you have highly correlated access
patterns you also have information you can
use to perform those accesses. If you pro-
vide that information with the data stor-
age, the software can use that information.
If you apply this approach to a model
where you assume you have a set of inde-
pendent tasks doing I/O, this won’t work.

But, for all the scientific and information-
processing applications where you have
h’ hi ig y correlated access, this would work,
in my opinion.

Snir: In a sense we are going back in
time. With mainframes of twenty years
ago, you had a lot of control over block
size, how things were laid out on disk, and
how the file system optimized accesses.
Now we’ve moved to Unix, where there is
some control, but nobody knows how to
exercise it. We are trying to build high-
performance systems on top of Unix inter-
faces, and it doesn’t work.

Reed: I agree completely with Marc.
We need to go back and think about the
control we used to have. I remember writ-
ing job control for MVS. At the time I
thought it wasn’t the most elegant lan-
guage in the world, but it provided a phe-
nomenal amount of control over data lay-
out on storage devices and how data was
accessed. We’ve come from a Unix world
where we think the Unix way is the only
way to access data. We need to take our
blinders off and look at the problem again.

Can you comment more on the Scalable I/O
Initiative (SIO)?

Reed: SIO is based on the recognition
that I/O is really the limiting factor for
many applications, and that the problem is
getting worse rather than better. The pro-
ject evolved from a fairly substantial num-
ber of meetings over two years, and
involves 30 to 40 people. SIO brought
together enough people with a broad range
of expertise so that it wouldn’t suffer from
single-person myopia. It involves compiler
experts, operating-systems researchers,
performance analysts, application devel-
opers, and parallel system vendors, with the
goal of transferring ideas into practice.

The project takes an end-to-end
approach, beginning with application and
system characterization. This lets us see
what people are doing now and understand
what they would like to do if I/O were bet-
ter. Given that information, along with the
known problems and a couple of system
testbeds, SIO has three goals. First, pro-
vide better parallel language and file sys-
tem support. Second, determine what
hardware configurations maximize I/O

70 IEEE Parallel & Distributed Technology

:,

performance. Third, involve the applica-
tions people in the process to keep the
rest of us honest. In the end, we want
to emerge with a prototype that can influ-
ence future-generation production sys-
tems. For additional details, access http://
www.ccsf.caltech.edu/SIO/SIO.html.

In languages such as High Performance
Fortran, we are accustomed to data-layout
specifirations that help a particular program
reference memo9 more eficientLy. There is a
problem when you try to do that acrosspro-
grams or even across multiple loops in onepro-
gram. What is optimalfor one program or loop
might not be optimalfor another. What work
has been done about

l tran$omting one layout into another, based
on a requestedstructure of the accesses, and

l finding a way to use knowledge of a file’s
storage layout to go backward through the
compiler and restructure the code’s accm pat-
tent to make it better match the file layout?

Choudhary: The first is essentially a
communication-scheduling problem. (I
am talking about data that is in memory
and not about out-of-core redistribution.)
There is a lot of work going on in this area;
people at Ohio State University, the Uni-
versity-of Illinois, Argonne National Lab-
oratory, and other places have developed
techniques to redistribute the data from
one distribution to another.

The second question was, are there
techniques that let compilers determine
the distribution of the file on disks and
restructure the accesses in a program to
better match the data layout on the disks?
You must be assuming you know the file
layout when your program is compiled;
that is not necessarily true. The data may
come over the network, or you may not
have control over how the data arrives.
The way the data arrives might depend on
how efficiently you can do that part of the
communication. However, at runtime you
can restructure your accesses if you know
the layout of the file.

Katz: There is a bunch of work on out-
of-core algorithms for permuting data on
secondary storage to improve the perfor-
mance of future accesses. Depending on

the kind of permutation, there are differ-
ent time bounds on its cost. Most of that
work is not known outside the small com-
munity of theoretical parallel-I/O algo-
rithms people, but information is spread-
ing. You can find information on these
techniques at the URL I mentioned ear-
lier. I know of at least one project that is
trying to make a compiler recognize per-
mutations and pick the right algorithm
from the known set of optimal algorithms.

REFERENCES
1. C. Winstead and V. McKov. “Studies of

Electron-Molecule Collisions on Massively
Parallel Computers, ” in Modern Electronic
Stnuture Theory, D.R. Yarkony, ed., World
Scientific, Singapore, 1994.

2. P.E. Crandall et al., “Characterization ofa
Suite of Input/Output-Intensive Applica-
tions.” To obtain a copy, contact Dan
Reed at reed@cs.uiuc.edu.

3. T.T. Kwan, R.E. McGrath, and D.A.
Reed. “User Access Patterns to NCSA’s
World Wide Web Server.” To obtain a
copy, contact Dan Reed at reed&s.
uiuc.edu.

4. R. Bordawekar, J. Del Rosario, and A.
Choudhary, “Design and Evaluation of
Primitives for Parallel I/O,” Pmt. Supenom-
puting ‘93, IEEE Computer Society Press,
Los Alamitos, Calif., 1993, pp. 452461.

5. A Choudharv et al., “Passion: Parallel and
Scalable Software for Input-Output,”
Tech. Report CRPC-TR94483-5, Center
for Research on Parallel Computation,
Rice Univ., Houston, Tex., 1994.

Dan Reed is a professor in the Department of
Computer Science at the University of Illinois
at Urbana-Champaign, where he holds a joint
appointment with the National Center for
Supercomputing Applications. He has authored
a plethora of research papers on algorithms,
architectures, and performance evaluation tech-
niques for high-performance computing. He
serves on the boards of IEEE Transactiom on Par-
allel and Distributed Systems, Concuwency Practice
and Experience, and the Intemational~ournal of
High-Speed Computing. He is also the treasurer
for ACM Sigmetrics and a member of the
NASA RIACS Science Council. He received the
1987 National Science Foundation Presidential
Young Investigator Award. He received his BS
in computer scyence from the University of Mis-
souri at Rolla in 1978 and his MS and PhD. also
in computer science, from Purdue University in
1980 and 1983. He can be contacted at
reed@cs.uiuc.edu.

Charles Catlett is the associate director for
computing and communications at the National
Center for Supercomputing Applications,
where he is responsible for the strategic plan-
ning, architecture, installation, and manage-
ment of a national supercomputing facilitv and
local high-performance computing en&on-
ment. He is also a orincinal investinator on the
Blanca gigabit t&bed and a member of the
coordination committee for the ARPA/NSF
national program in gigabit technology. He
received his BS in computer engineering from
the University of Illinois in 1993. He can be
contacted at catlett@ncsa.uiuc.edu.

Alok Choudhary’s biography can be found on
page 39.

David Kotz is an assistant professor of com-
puter science at Dartmouth College. His
research interests include parallel operating sys-
tems and architecture, multiprocessor file sys-
tems, transportable agents, single-address-space
operating systems, parallel computer perfor-
mance momtoring, and parallel computing in
computer-science education. He received his
AB in computer science and physics from Dart-
mouth College in 1986, and his MS and PhD in
computer sci&ce from Duke University in 1989
and 1991. He is a member of the ACM. the
IEEE Computer Society, and Usenix. His e-
mail address is dfk@cs.dartmouth.edu

Marc Snir is a senior manager at the IBM T.J.
Watson Research Center, where he leads
research on scalable parallel software and on
scalable parallel architectures. He led the initial
design and prototyping of the parallel software
for the IBM SPl and SP2. He coauthored the
High Performance Fortran and the Message
Passing Interface standards. He worked on New
York University’s Ultracomputer project from
1980-1982. He has published on computational
complexity, parallel algorithms, parallel archi-
tectures, interconnection networks, and paral-
lel programming environments. He received his
PhD in mathematics from the Hebrew Univer-
sitv ofJerusalem in 1979. He is a member of the
IB-M Academy of Technology, a senior mem-
ber of IEEE. and a member of ACM and SIAM.
He can be reached at snir@watson.ibm.com.

Stimmer 1995 71

