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During the International Conference on Parallel 
Processing, held August IS-19,1994, we convened 
a panel to discuss the state of the art in parallel 
I/O, tools and techniques to address current 
problems, and challenges for the future. The fol- 
lowing is an edited transcript of that panel. 

Dan Reed 
Welcome! I’ve always been a firm believer that 
panels where the members talk for the whole time 
and then leave three minutes for questions at the 
end aren’t very interesting. We’re going to try to 
keep the presentation reasonably brief and leave 
the rest of the time for you to talk about what 
issues are important to you, ask questions, voice 
opinions, and suggest things. Vegetable throw- 
ing is optional, but certainly fair game. 

So, why are we here? Well, think about the 
hardware and software configuration you might 
see on a parallel system-lots of disk arrays, soft- 
ware disk caching, virtual memory, multiple 
high-speed networkinterfaces, and a hierarchical 
file system that involves multiple secondary and 
tertiary storage devices. What kinds of I/O ques- 
tions can we answer in this context? The list is 
pretty short! The list of questions we can’t answer 
is pretty long. 

I believe we need to revisit many of the issues 
that we viewed as closed in the past. A huge flurry 
of I/O research occurred as part of the classic 
operating system work in the sixties and seven- 
ties. With many of those issues, the same answers 
may not apply to parallel systems. 

To whet your appetites, I wrote down a few 
questions that sprang to mind while I generated 
slides. One of them is, what kind of I/O patterns 
can we expect? Going to a river and counting the 
number of swimmers each day to decide if you 

should build a bridge is not a particularly good 
metric. Looking at what people do now is not 
always a good predictor of what they would like 
to do. Most systems’ I/O is more limited by the 
art of the possible than by the art of the desirable. 
You have to determine what people want to do 
as well as what they can do. 

There are other issues related to the kind of 
support we should provide to application devel- 
opers. For example, do we need language inter- 
faces so that people can specify how to distribute 
data across storage devices? Should we give peo- 
ple control over caching and prefetching poli- 
cies? How does the changing balance of network 
and disk speeds affect things? Likewise, the infor- 
mation superhighway means that there will be 
and already are lots of distributed data archives. 

When we look at storage devices, it’s clear that 
data densities are rising faster than access times 
are decreasing. That also has important implica- 
tions. There are already individual applications 
that have terabyte-size data sets. And your l- 
Tbyte disk farm holds a file-ne file-so there 
are tertiary storage problems to face there as well. 
And, once you start mixing scientific data, com- 
pressed audio, and compressed video, a host of 
interesting real-time constraints arise. 

Now let me tell you what we’ve been doing, 
and then I’ll let the rest of the panel do the same. 

i/o CHARACTERIZATION 
The first question I posed earlier was under- 
standing application I/O access patterns. There 
are really two sides to that problem. First, there 
are the application stimuli-what kind of demand 
are we seeing-and then there is how the system 
responds to those stimuli. In the first case you 
would like to understand what people are doing, 
and what they might do, and in the second you’d 
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like to understand how systems are 
responding to those access patterns. This 
tells you what is broken-and plenty of 
things are broken-and it shows you both 
ends of the spectrum so that you can study 
how to fix it. If you have both stimulus and 
response when you modify the file system 
or the application, you can study the 
“before” and the “after” and see the effects 
of your file system changes. 

We’ve been retargeting the Pablo envi- 
ronment and building tools to capture 
application I/O access patterns. Of course, 
real codes run a long time, with “a long 
time” measured in hours or days on high- 
performance machines. Sometimes you 
can capture a detailed trace of every I/O 
activity; other times you can’t. In fact, with 
some codes, trying to trace the I/O activ- 
ity may generate more I/O than the I/O 
does-that usually indicates that the code 
wasn’t written very well! In other cases, the 
I/O operations are larger and less frequent. 
So, it’s pretty obvious you need a variety 
of ways to characterize I/O activity. Some- 
times you want to capture the trace; other 
times you just want a summary. 

Let me show you just one VO charac- 
terization example. As part of a collabora- 
tive National Science Foundation Grand 
Challehge project with Caltech, we 
obtained an electron-scattering code that 
models low-temperature plasmas.’ The 
results of this model are used in semicon- 
ductor foundry work. For our purposes, 
the application’s details aren’t really 
important, except that the problem its 
developers are solving and the problem 
they would like to solve are vastly differ- 
ent. The kind of problem they solve now 
might run all night on a .500-processor par- 
allel system. However, the problem they 
would like to solve might run a week on 
that machine, with an equally impressive 
scaling of the I/O. 

Here’s the bad news. This code is 
indicative of the problem I mentioned ear- 
lier: namely, the difference between what 
people would do and what they can do. It 
turns out that the straightforward way to 
do I/O with this code is to parallelize both 
reads and writes-it can be completely 
parallel with very little synchronization. 
But, the current system software makes 

that difficult. 
Let me show you some 

performance data to illus- 
trate that (see Figure 1). In 
this version of the elec- 
tron-scattering code, all 
processors attempt to con- 
currently read some ini- 
tialization files. Then, they 
begin a cycle of computa- 
tion and writes, where a 

Elapsed Time (seconds) 

single processor writes Figure 1. Electron-scattering code read durations. 

data to’a group of files. 
Performance measure- 
ments show a great deal of 
contention when 12 8 processors are con- 
currently fighting to open and read the ini- 
tialization files. 

We showed the application developers 
this performance data, and they said, “We 
can fix this,” and they did. Having found 
that reads were a bottleneck, they sequen- 
tialized those and parallelized the writes. 
This fixed the read problem and broke the 
writes! So, what can you conclude from 
that? Basically, the things you think would 
be reasonable don’t always work-appli- 
cation developers can spend a great deal of 
time programming their way around prob- 
lems rather than doing the science they 
want to do. 

This also has implications for perfor- 
mance instrumentation. Getting perfor- 
mance data is harder than it looks-to get 
data you are using the same I/O facilities 
the application developers are using. If 
they are having trouble doing I/O, you as 
a performance analyst are having trouble 
doing I/O too. 

From looking at a range of application 
codes,* we’ve concluded that there is wide 
variability in I/O access patterns and that 
performance is highly sensitive those pat- 
terns. The software implication is that, in 
the short to medium term, we need mech- 
anisms that let users control how the sys- 
tem manages I/O, how it distributes data 
across the storage devices, when and what 
it prefetches, and what caching algorithms 
it uses. 

Let me conclude with three thoughts. 
First, many of the problems are economic, 

not technical. I don’t mean to minimize 
the significance of the technical problems. 
They are real, they are severe, and they 
deserve lots of work, but many of the prob- 
lems are economic. In an academic con- 
text it is possible to work on I/O problems, 
but it is difficult because you need access to 
real system-the problems of interest are 
problems of large scale. 

The second is really a variation on what 
I have, with some self-aggrandizement, 
taken to calling “Reed’s Law”: the more 
you are willing to pay for a system, the 
more limited the software options are. This 
observation relates to the size of the user 
base. If you buy a PC you can go to a mall 
and buy all the software you want at $50 a 
copy. If you are willing to spent $30 mil- 
lion for your machine, you will probably 
have to write most of the software yourself. 
That is just the hard economic reality: at 
the high end, economics drive the soft- 
ware’s capabilities in some fairly significant 
ways, This makes collaboration among aca- 
demic researchers, government laborato- 
ries, and vendors especially important. 

Finally, some of us, including several 
people on this panel, are involved in a new 
project called the Scalable I/O Initiative. 
It consists of a group of operating systems, 
language, performance analysis, and appli- 
cations researchers who are mounting a 
concerted attack on the I/O problem, 
looking at it from end to end. There are 
two major testbeds-the Intel Paragon 
XP/S and the IBM SP-2-but other ven- 
dors are involved as well. On that note, I’ll 
let Charlie Catlett talk. 

(For information on performance 
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instrumentation and the Scalable I/O 
Initiative, access http://www-pablo,cs. 
uiuc.edu/ and http://www.cgsf.caltech. 
edu/SIO/SIO.html.) 

Charles Catlett 

I would like to talk about three general 
application areas where the National Cen- 
ter for Supercomputing Applications has 
encountered I/O problems. One is trans- 
action processing, another is bulk transfer, 
and the third is real-time interaction 
between computers and between comput- 
ers and users. In these areas, we want to 
see improvement in I/O from a host-inter- 
face and an operating-systems standpoint. 

TRANSACITION PROCESSING 
The enormous growth of the World Wide 
Web and of NCSA’s Mosaic browser is evi- 
dent in the growth of Web traffic on the 
Internet and at the NCSA server, the 
busiest Web server on the Internet. Since 
Mosaic’s release in early 1993, Web traffic 
on the Internet has increased exponentially, 
from under 100 Mbytes to over 1.2 Tbytes 
per month, with continuing rapid growth. 
At the NCSA Web server, the number of 
connections per month has grown from 
under 400,000 in July 1993 to over 
10,000,000 in July 1994.3 The growth is 
essentially linear, with no evidence of a 
plateau in sight. Each connection is a typi- 
cal TCP connection. Somebody clicks on 
something with Mosaic or some other 
browser. The browser then starts a TCP 
connection to the server, grabs the data, and 
then closes the connection. The amount of 
data being transferred varies from a few tens 
of bytes to approximately 18 Mbytes. 

Initially, the NCSA server was a single 
workstation. At a million connections per 
month we went to a server-class system. 
Shortly thereafter we moved to multiple 
servers in a cluster. We changed it each 
time because we thought we were running 
into load problems on machines, in the tra- 
ditional sense of CPU or I/O load. Because 
users couldn’t connect to the servers, we 
thought these machines were overloaded. 
Yet, if we looked at the performance the 
way we looked at a file server or a compute 
server, the servers appeared to be very 

lightly loaded. Actually, a very large num- 
ber of people were requesting transactions, 
which were hitting all at once. 

The point is that the problem is not I/O 
in terms of throughput and it is not CPU 
speed. It is the way the operating system is 
built, the way the network protocol stack 
is implemented, and the assumptions 
implementors made about the number of 
TCP connections that people would 
request during a short period of time. 
Today’s systems are not built to take on 
50,60, or 100 requests for TCP connec- 
tions in a few seconds. 

We got around that with some very 
coarse parallel I/O. We put a cluster in 
place. We changed the domain name sys- 
tem (the local copy of the BIND software) 
so that when a Web client wants to con- 
nect to our server and goes into the DNS 
to get the IP address, we perform round- 
robin distribution among multiple 
machines. So, we spread the load across 
these machines in one sense, but because of 
the caching in the DNS, it is not done on 
a per-client basis. Rather, the load-level- 
ing round robin occurs on a per-site basis. 
When a client-say, at Stanford-asks for 
the IP address of www.ncsa.uiuc.edu, the 
Stanford DNS system caches that infor- 
mation for other Stanford clients. The 
local site (in this case, Stanford) determines 
the length of time that information is 
cached, but the information sent out also 
has a recommended time-to-live. We ini- 
tially used a time-to-live of two hours but 
eventually lowered that to 15 minutes. 

BULK PROCESSING 
At the NCSA computing facility, major 
machines are connected with both FDDI 
and Hippi switches. In this environment, 
people do their computation on a super- 
computer, store data in the archive system, 
and then post-process the data using a 
visualization environment-for example, 
our Cave Automatic Virtual Environment 
(CAVE), driven by a Silicon Graphics 
Onyx system. 

Over a month, there are many instances 
where a user will transfer on the order of 
50 Gbytes in or out of the archive during 
a single day. Bulk transfer is more impor- 
tant as we get to larger data sets. For exam- 

ple, our Thinking Machines CM5 has 140 
Gbytes of disk space, or what we call scratch 
urea. One of the grand-challenge groups 
using the CM5 has an application they 
want to run for 12 hours, and it produces 
enough data to fill that scratch area several 
times. Even if that application fills a larger 
portion of the supercomputer disk space, 
another application will come later and 
want to produce a similar amount of data. 
This means we’ve got to move the first 
application’s output into the archive in a 
short time. When we are talking about 
moving 100 Gbytes, much less a terabyte, 
bulk throughput becomes very important. 

Unfortunately, we actually took a step 
back in I/O when we went from traditional 
vector machines to massively parallel 
machines such as the CM5 or the Intel 
Delta or Paragon. Back in 1989, when we 
started thinking about what we could do 
with gigabit networks, we assumed that 
the 400-Mbits-per-second user-to-user 
throughput we were getting between two 
Cray supercomputers was the starting 
point. We assumed that as technology 
advanced, I/O would also improve, or at 
least remain constant. We were dead 
wrong. Although we went in five years 
from a Cray Y-MP that runs a little over a 
gigaflop to a CM5 that is about 50 times 
faster, it wasn’t until the CM5 was two 
years old (late 1993) that we could get I/O 
on it at faster-than-Ethernet rates. Even 
now with Hippi on the CMS, we are not 
anywhere near where we were four years 
ago with the Cray Y-MP. So, compute 
power has increased, memory capacity has 
gone way up, and disk farms are much 
larger, but I/O is still a real problem. 

When we consider applications we 
could attack with high-speed I/O, we face 
the following dilemma. Back when we 
were using the Cray Y-MP we had plenty 
of I/O, but not enough compute power to 
take advantage of it. Now we have plenty 
of compute power to take advantage of 400 
or 800 Mbps, but we can’t get in and out of 
the machine. When this gets fixed we are 
really going to be set! 

REAL-TIME INTERACTION 
On the Blanca gigabit network testbed, our 
applications typically involve a user sitting 
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at the Universitv of Wisconsin on a Sili- i 
con Graphics machine with a code that 
runs on a supercomputer at NCSA in Illi- 
nois. In some cases, we want to run part of 
a distributed application on the SGI at 
Wisconsin and part of it on an SGI at 
NCSA. As the pipe’s bandwidth increases, 
we can make tradeoffs between bandwidth 
and latency-actually hiding latency by 
clever prefetch schemes, for example. In 
other cases-for example, the CAVE vir- 
tual environment-we want the SGI at 
Wisconsin to be able to respond in real 
time to a command given by a user in the 
CAVE at NCSA. This means being able 
to get control information through the 
network at very low latency. This is not to 
say we think we can do anything about the 
speed of light, but we certainly want to 
minimize delays due to queueing or 
packet/cell loss and retransmission. 

FINAL THOUGHTS 
Transaction processing is by far the most 
important of these three areas. Improving 
transaction processing means fundamen- 
tally changing the assumptions made when 
an I/O system is developed. A global infor- 
mation server on the Internet will be sub- 
jected to very different demands than will 
a local’group file server or desktop work- 
station. Parallel systems are very fast, but 
they are useless for bulk processing if you 
cannot get data into and out of them at 
rates commensurate with their compute 
capabilities. For real-time interactions 
between systems over networks, mecha- 
nisms that hide latency on wide area net- 
works will be very useful for distributed 
computing, particularly if they are trans- 
parent at the application level. 

Alok Choudhaty 

To achieve high-performance for I/O in 
parallel computers, we have to break away 
from traditional sequential views such as 
“stream of bytes.” We use that view for con- 
venience. If you have the sequential view, 
you can say something about the relation- 
ship between two different elements in your 
file. Dan made this point earlier. Access 
information must flow from a program to 
the data-management (for example, files) 
system. Information must flow from the 
application program to the data-manage- 
ment system, and back. The hardware 
underneath has fast interconnect and a lot 
of disks. The problem is the layer of soft- 
ware on top of the hardware. To exploit the 
hardware’s available bandwidth, the sol&are 
must use the access-pattern information. 

I will focus on the specific I/O problem of The current implementation of file sys- 
running an application on a single parallel tems is a naive extension of sequential files. 
computer. Users demand only high perfor- Access and prefetching do not consider any 
mance, not parallel I/O. Given the technol- information about interleaved access pat- 
ogy, hardware-level parallelism is essential. terns by different processes. This results in a 
So, I would like to concentrate on the tech- lot of thrashing, lost bandwidth, and poor 
nology’s software aspects. The I/O problem performance. Therefore, there must be some 
is like the federal budget deficit. With the way for this access-pattern information to 
budget, the interest part of the deficit bur- flow to the file (and the nmtime) system. 
dens economic growth. Parallel computers That is, a notion of collective accesses should 

can do fast computations, but I/O software 
is pulling their performance down. 

What are the solutions? How do we 
achieve them? Hardware solutions alone 
do not work, if we take lessons from cache 
memory or virtual memory on uniproces- 
sots. Software support-for example, com- 
piler and nmtime support-is necessary. 
For example, to utilize the cache better, a 
compiler has to do a lot of work. 

Improving 
transaction 
processing means 
fundamentally 
changing the 
assumptions made 
when an l/O system 
is developed. 

be built in. At the same time, the interface 
should not be very rigid for this information 
flow. It should be flexible enough to easily 
support different access patterns. 

The type of information provided is also 
important. Users can only specify a certain 
type of information; for example, in High 
Performance Fortran-type languages, users 
provide distribution information. Compil- 
ers provide only static-access information 
based on the computation and distribution. 
The nmtime systems provide dynamic 
information, and so on. Each level of soft- 
ware needs to incorporate the most suit- 
able access information to obtain high per- 
formance at the application level. 

At the file system level, we may need 
metadata describing common access 
patterns likely to be seen on the data 
stored in the file. This approach can be 
extended to I/O in a high-performance 
distributed-computing environment using 
a high-speed network. Let’s say you have 
a gigabytes-per-second network, but to 
communicate on two sides you have to 
sequentialize the data and then send it 
over. Obviously, there is a bottleneck 
where the data is sequentialized. You still 
want to communicate in parallel even 
though fragments may go sequentially on 
this high-speed network. You can achieve 
this by associating some information with 
the data. This information specifies how 
this data is organized, so it can be 
reassembled on the other side. 

I believe that the runtime system has to 
do the most work because compilation 
technology is difficult and is useful only 
for static patterns. We have demonstrated 
how the nmtime system can enhance I/O 
performance by taking the distribution and 
access-pattern information into account 
for scheduling accesses.“,’ The runtime 
system takes information from the appli- 
cation about the application’s distribution 
requirements, and information from the 
file system about the data distribution. 
Using this information, it performs 
accesses collectively, rather than letting 
individual nodes do it all. 

This is the “two-phase” access strategy. 
For a read operation, in the first phase data 
is accessed according to a conforming dis- 
tribution. In the second phase, the data is 
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permuted into appropriate processor, 
based on the application’s distribution 
requirements. This provides consistent 
performance, mostly independent of the 
individual node-access patterns. 

In summary, to satisfy users, software 
support should provide high performance 
without burdening them with the low-level 
details of the underlying parallelism. 

David Kotz 
The preceding panelists discussed either 
I/O hardware or parallel I/O software. I’ll 
tell you a little about each. 

In the past, the problem was that we had 
no parallel I/O hardware. Now we have 
adequate parallel I/O hardware design- 
for example, separate I/O nodes with 
RAIDS attached to each node. However, 
the new problem is that most machines 
aren’t configured with enough I/O hard- 
ware to meet their needs. I guess people 
aren’t willing to spend enough money. The 
solution is to face reality and spend the 
money to buy enough disks and I/O nodes. 

As I see it, the real problem is in the 
software: performance, reliability, and 
usability. 

With current software, as others here 
have mentioned, you usually get only a 
small fraction of the full bandwidth. So, 
even if you do face reality and buy enough 
parallel I/O hardware to provide the band- 
width you need, you cannot access that 
bandwidth. 

Even if you have RAIDS, which protect 
against disk failure, the overall system reli- 
ability is poor. The problem is that the 
software is either buggy or not tolerant of 
hardware faults, and so is not very reliable. 

In most systems today, the file system 
and language interfaces are hard to use. 
For example, it is very difficult to express 
complicated mappings of data from the file 
into program data structures that are dis- 
tributed among many processor memories. 
Even ifyou choose one of the optimal par- 
allel-I/O algorithms developed in the the- 
ory community, it is very difficult to 
express it in a way that translates into high 
performance. I think Dan said theory and 
practice clash sometimes. 

In addition, today’s parallel file systems 

don’t integrate very well with existing sys- 
tems, network file systems, and archival file 
systems, so it is not easy to get data in and 
out of a specialized parallel file system. 

The file system interface is an important 
issue. What do programmers see as a way 
to get at their files? Most systems have 
been based on a Unix-like “read,” “write,” 
and “seek” kind of interface, but that is 
very awkward to use. You often need to 
have each processor calculate seek offsets 
so that it can read and write its own por- 
tions of the file. This constant seeking also 
tends to stress the file cache. The cache 
can get requests for different parts of the 
file from any of the compute nodes at any 
time. There is little semantic information 
flow from the application level down to the 
file system level. All the processor sees is a 
couple of reads, writes, and seeks-not any 
higher-level information about what is 
really going on. 

In recent characterizations ofreal appli- 
cations we found that this kind of interface 
leads to programs that make very small 
requests. For supercomputer applications, 
the typical request size is on the order of 
megabytes. In the parallel scientific appli- 
cations we traced, the typical request size 
was fewer than 200 bytes. We believe that 
these patterns arose because programmers 
were trying to distribute the file data across 
many processors, using an interface that 
limited them to contiguous requests. In 
many patterns, therefore, even though a 
processor needed a large portion of the 
file, each request for each contiguous piece 
of the file was very small. Fortunately, 
because of the regularity of the data dis- 
tributions these requests were very regu- 
lar, with a fixed request size and stride 
between requests. 

Many parallel file systems, like Intel 
CFS, extend the traditional interface with 
“I/O modes” to let users express some of 
these patterns. These extensions are too 
simple to express what users need, and we 
found that users never used them. As a 
result of our studies, we feel that systems 
need to support strided I/O requests so 
that programmers can ask for a large (but 
not necessarily contiguous) amount of data 
in one request. IBM’s Vesta and the pro- 
posed nCube file systems provide this 

capability by letting users set up a mapping 
function between the file and memories. 

Collective I/O interfaces would also 
help. Collective I/O means all the pro- 
cesses in an application cooperate to make 
one (collective) I/O request to the file sys- 
tem. If you are using a single-program, 
multiple-data programming model, gen- 
erating collective I/O requests shouldn’t 
be too hard. A collective request gives the 
file system even more information, and 
lets it do some additional optimization- 
an example of when synchronization can 
be a “good thing.” (In parallel computing 
we usually try to avoid synchronization at 
all costs. However, in some I/O-intensive 
applications, when the processes get 
unsynchronized, the cache starts thrash- 
ing. If you keep them synchronized, they 
can take advantage of interprocess locality 
in the cache.) 

It is important to find ways for the lan- 
guage, compiler, runtime system, operat- 
ing system, and hardware to cooperate to 
allow semantic information to flow. The 
best answer to a problem such as parallel 
I/O is likely to be a holistic solution aris- 
ing from cooperation among experts at all 
levels of the system. 

One idea that seems to work is to let the 
disks control the timing of data flow, a 
technique I call disk-directed I/O. Mem- 
ory is a random-access device: it doesn’t 
care in what order you do the transfer. 
Disks are not really random-access: their 
performance depends a lot on the order in 
which you do accesses. So, let the disks 
decide the order of accesses, and make the 
memory respond to random transfer 
requests. The disks can also set the pace 
according to what is convenient for their 
buffering, rather than trying to let the 
cache dynamically deal with whatever 
requests come at it. 

As others have said, we should encour- 
age application-specific I/O policies. One 
size does not fit all here. A generic cache 
policy isn’t going to fit all access patterns. 
Perhaps we need to program the I/O 
nodes, which until now have generally 
been off-limits. 

Are we stuck with Unix forever? Unix 
has a nice file system, but it is really inap- 
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propriate for all the things we are trying to 
do with parallel computing. 

Should we have file systems at all, or 
should we have a scientific database or per- 
haps a persistent-object system? 

Reliability is still a problem. There is 
more to the solution than RAID. 

Regarding virtual memory: what we call 
“out-of-core” programs do not use the file 
system for persistent storage but rather for 
temporary storage. Should we have sepa- 
rate mechanisms to support out-of-core 
programs, or should they continue to use 
“files”? Should we support demand pag- 
ing? Again, there is typically one manage- 
ment policy-a mistake. You need to let 
the programmer or the compiler tell you 
when to move things in and out. Go back 
to the fundamental problem here and try 
to deal with it. 

If I/O was the orphan of high-perfor- 
mance computing, graphics and network 
I/O are the orphans of I/O research. 

Here is a URL for an archive of pamllel- 
I/O resources, including pointers to many 
other research projects, a bibliography, 
anecdotes about people’s use of parallel 
I/O, and even some sample programs: 
http://www.cs.dartmouth.edu/pario.html. 

Maq Snir 
Parallel I/O is a multifaceted problem that 
stretches from hardware to systems and 
compilers. There is also the issue of exter- 
nal connectivity and how that takes advan- 
tage of parallel I/O. I am not going to 
address all of these issues in nine minutes. 
I am not even going to address all the 
work going on at the IBM T.J. Watson 
Research Center on these issues. I am 
going to focus on our activity in parallel 
I/O interfaces to compilers and applica- 
tions. This is the research group’s work 
on the Vesta parallel file system for the SP 
machine, which involves five to six 
researchers. This technology is now mov- 
ing into the SP product, so a fairly large 
product-development group is also 
involved in parallel I/O. 

Our perspective on parallel I/O relates 
to the SP system’s structure. This system 
has a fast switch with many attached nodes, 
with a flexible node configuration. Com- 

pute nodes may have few disks attached and 
no persistent data on those. But storage 
nodes can have a large number of disks 
attached and hold persistent data. Long- 
term storage of persistent data is outside 

One moves a file to be stored not on one 

the SP on some storage or archival system, 

node, but across multiple storage nodes. 
One does this because those nodes, which 

so gateways are needed. The internal stor- 

are supporting the parallel file system, 
should provide access to the file in parallel 
with high bandwidth from multiple com- 

age is a cache to the external storage, and an 

pute nodes, which are doing parallel com- 

import-export interface moves data across. 

putation. This is a clear design goal. Par- 
allel I/O should match parallel computing 
to get high performance; one wants paral- 
lel access to one logically shared but phys- 
ically distributed file. 

Another important goal is to avoid a lot 
of system activity on the nodes doing the 
computation. One does not want to see sys- 
tem activities happening randomly on com- 
pute nodes. In some benchmarks, we found 
that two to three percent of system activ- 
ity occurring randomly on the computa- 
tion nodes can reduce performance by 40% 
at the parallel-application level. So, off- 
loading the overhead from system calls to 
I/O nodes is an important consideration. 

So, what is the Vesta file system? Basi- 
cally, it allows one to create files that are 
strided across multiple storage nodes. It 
gives a fair amount of control in describing 
how many storage nodes store the file, 
what the basic striding block’s size is, and 
so on. When one opens the file, it gives 
one control of what is opened. One does 
not need to open the entire file; one can 
open a subfile. Basically, one can view a 
window into the file, so each processor can 
open a separate subfile, all processors can 
open the entire file and share it, or any- 
thing in between. 

Vesta maintains atomicity and serializ- 
ability of I/O accesses even if they are 
spread across multiple I/O nodes: con- 
flicting accesses at different nodes will 
occur in the same order. This happens 
without locking and without communica- 
tion between the client compute nodes. 
Serializability is achieved by a protocol that 

involves communication between the 
servers on the storage nodes. The amount 
of communication between clients and 
servers is minimal. Basically, for each 
access from a client to a server there will 

With Vesta, one can add more storage 
nodes to get more I/O bandwidth, until 

be two messages for a write and three for 

one saturates the switch. We are also 
working on implementing MPIO, a pro- 

a read. The system supports asynchronous 

gramming interface on top of Vesta that 
allows a message-passing style of I/O and 

I/O, which is essential to off-load I/O 

that supports collective I/O, which is also 
important. 

overheads to the storage nodes. 

I don’t want to go into more technical 
detail. Instead, I would like to share what 
we learned from this research project and, 
more important, from our collaboration 
with a development group. Sure, Unix 
stream files are the wrong thing for paral- 
lel I/O. The sequential nature of stream 
files really inhibits the optimizations one 
can do if one relinquishes the Unix seman- 
tics for parallel files. But, in a product envi- 
ronment, the idea of having a file system 
that is not Unix-compatible raises a lot of 
horror, and not only in a product-devel- 
opment environment. Users want com- 
patibilitywith existing file systems. So, any 
deviation from Unix semantics of stream 
files is extremely painful. 

When we worked on the Vesta file sys- 
tem we developed a non-Unix file system, 
which had a lot of performance advan- 
tages. We provided an import-export 
interface to Unix files, and we provided a 
lot of the Unix file system functions. But 
the product development people did not 
buy that. The product version ofVesta is 
a mounted file system that supports Unix 
file system interfaces with no change. The 
new functions that Vesta introduced are 
now available through I/O controls, 
which is messier. But this is a worthwhile 
tradeoff. 

I would also suggest that we stop think- 
ing of I/O as communication between a 
job and a file. I/O is really communication 
between one job and another job. It is 
communication in space when jobs run 
concurrently and communication in time 
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when jobs run one after another. This per- 
spective might lead to more innovative 
approaches to parallel I/O. 

Discussion highlights 
Reed: We’ve talked for an hour, so it is 

your turn to ask questions. 

Is there any ongoing work with parallel I/O 
and persistent-object storage? 

Choudhary: Dave Dewitt at the Uni- 
versity of Wisconsin is working on persis- 
tent-object stores and parallel I/O. At the 
University of Illinois at Chicago, Bob 
Grossman is also looking at persistent 
object-stores. We are discussing with 
Mark Snir how to provide information to 
the file system and keep that information 
around so that we can improve the perfor- 
mance of parallel accesses. 

I know there is a lot ofwork going on in per- 
sistent-object stores, but I am not aware of any 
that ti designed to maximize throughput. Were 
you talking specifically about that kind of work, 
or simply about general research in persistent- 
object storage? 

Choudhary: We are interested in 
improving the throughput and the perfor- 
mance of accessing data from parallel- 
object s’torage. Of course, a lot of work is 
just for storage management. 

Snir: There are really two issues. First, 
if a parallel file is not just a stream of bytes, 
but a structure, then it is a persistent 
object. In that case you need a persistent- 
object-management system to manage the 
file information, making sure that you 
transform it to the right format. 

The more general question is, if you are 
moving to the brave new world of object- 
oriented programming, what is parallel 
object-oriented programming? What does 
it mean for an object to be distributed? 
How do you manage this distribution? 
This last question is more general than 
I/O, but the real general question is how 
to combine parallelism and object- 
oriented approaches, which don’t seem to 
marry well. 

Kotz: There is another project, led by 
Andrew Grimshaw at the University of 
V&ginia, that proposed an object-oriented 

interface in the file system. The idea was to 
build different structures for files, and the 
object methods for reading and writing 
would have structure-specific caching and 
prefetching. The Hurricane file system for 
the Hector multiprocessor at the Univer- 
sity ofToronto also had an object-oriented 
interface. 

Will putting the disks or I/O nodes in con- 
trol of the order of I/O clash with a carefilly 
ordered computation? 

Kotz: You use that method when the 
application wants to read a large amount 
of data. With current interfaces, you usu- 
ally must request many small pieces of a 
file. With a collective I/O-request mech- 
anism, if you make a request to the file sys- 
tem, the file system manages that transfer 
from the disks to the memory or vice versa 
in an order that is convenient for the disks. 
If you want to go beyond that and overlap 
that I/O with some computation, you have 
to compromise between the order that is 
convenient for the disk system and the 
order that is convenient for the computa- 
tion. That is something I want to consider 
more. 

Reed: Often, we needlessly take our 
sequential models into the parallel context. 
With a straightforward extension of 
sequential access to multiple processors, 
there are many cases where you really 
don’t care what order your requests come 
back from the file. The file is just a repos- 
itory of chunks of data, and you want one 
of them; you don’t care which one you get 
back. That flexibility lets the file system 
disk scheduler respond to requests in an 
order that is efficient for it. 

Sbozlld the application manage the data hy- 
out on the disk? 

Choudhary: Most parallel applications, 
at least those using the SPMD model, 
exhibit a highly correlated access pattern. 
Once you have highly correlated access 
patterns you also have information you can 
use to perform those accesses. If you pro- 
vide that information with the data stor- 
age, the software can use that information. 
If you apply this approach to a model 
where you assume you have a set of inde- 
pendent tasks doing I/O, this won’t work. 

But, for all the scientific and information- 
processing applications where you have 
h’ hi ig y correlated access, this would work, 
in my opinion. 

Snir: In a sense we are going back in 
time. With mainframes of twenty years 
ago, you had a lot of control over block 
size, how things were laid out on disk, and 
how the file system optimized accesses. 
Now we’ve moved to Unix, where there is 
some control, but nobody knows how to 
exercise it. We are trying to build high- 
performance systems on top of Unix inter- 
faces, and it doesn’t work. 

Reed: I agree completely with Marc. 
We need to go back and think about the 
control we used to have. I remember writ- 
ing job control for MVS. At the time I 
thought it wasn’t the most elegant lan- 
guage in the world, but it provided a phe- 
nomenal amount of control over data lay- 
out on storage devices and how data was 
accessed. We’ve come from a Unix world 
where we think the Unix way is the only 
way to access data. We need to take our 
blinders off and look at the problem again. 

Can you comment more on the Scalable I/O 
Initiative (SIO)? 

Reed: SIO is based on the recognition 
that I/O is really the limiting factor for 
many applications, and that the problem is 
getting worse rather than better. The pro- 
ject evolved from a fairly substantial num- 
ber of meetings over two years, and 
involves 30 to 40 people. SIO brought 
together enough people with a broad range 
of expertise so that it wouldn’t suffer from 
single-person myopia. It involves compiler 
experts, operating-systems researchers, 
performance analysts, application devel- 
opers, and parallel system vendors, with the 
goal of transferring ideas into practice. 

The project takes an end-to-end 
approach, beginning with application and 
system characterization. This lets us see 
what people are doing now and understand 
what they would like to do if I/O were bet- 
ter. Given that information, along with the 
known problems and a couple of system 
testbeds, SIO has three goals. First, pro- 
vide better parallel language and file sys- 
tem support. Second, determine what 
hardware configurations maximize I/O 
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performance. Third, involve the applica- 
tions people in the process to keep the 
rest of us honest. In the end, we want 
to emerge with a prototype that can influ- 
ence future-generation production sys- 
tems. For additional details, access http:// 
www.ccsf.caltech.edu/SIO/SIO.html. 

In languages such as High Performance 
Fortran, we are accustomed to data-layout 
specifirations that help a particular program 
reference memo9 more eficientLy. There is a 
problem when you try to do that acrosspro- 
grams or even across multiple loops in onepro- 
gram. What is optimalfor one program or loop 
might not be optimalfor another. What work 
has been done about 

l tran$omting one layout into another, based 
on a requestedstructure of the accesses, and 

l finding a way to use knowledge of a file’s 
storage layout to go backward through the 
compiler and restructure the code’s accm pat- 
tent to make it better match the file layout? 

Choudhary: The first is essentially a 
communication-scheduling problem. (I 
am talking about data that is in memory 
and not about out-of-core redistribution.) 
There is a lot of work going on in this area; 
people at Ohio State University, the Uni- 
versity-of Illinois, Argonne National Lab- 
oratory, and other places have developed 
techniques to redistribute the data from 
one distribution to another. 

The second question was, are there 
techniques that let compilers determine 
the distribution of the file on disks and 
restructure the accesses in a program to 
better match the data layout on the disks? 
You must be assuming you know the file 
layout when your program is compiled; 
that is not necessarily true. The data may 
come over the network, or you may not 
have control over how the data arrives. 
The way the data arrives might depend on 
how efficiently you can do that part of the 
communication. However, at runtime you 
can restructure your accesses if you know 
the layout of the file. 

Katz: There is a bunch of work on out- 
of-core algorithms for permuting data on 
secondary storage to improve the perfor- 
mance of future accesses. Depending on 

the kind of permutation, there are differ- 
ent time bounds on its cost. Most of that 
work is not known outside the small com- 
munity of theoretical parallel-I/O algo- 
rithms people, but information is spread- 
ing. You can find information on these 
techniques at the URL I mentioned ear- 
lier. I know of at least one project that is 
trying to make a compiler recognize per- 
mutations and pick the right algorithm 
from the known set of optimal algorithms. 
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