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Abstract—We improve the interpolation accuracy and effi-
ciency of the Delaunay tessellation field estimator (DTFE) for
surface density field reconstruction by proposing an algorithm
that takes advantage of the adaptive triangular mesh for line-
of-sight integration. The costly computation of an intermediate
3D grid is completely avoided by our method and only
optimally chosen interpolation points are computed, thus, the
overall computational cost is significantly reduced.

The algorithm is implemented as a parallel shared-memory
kernel for large-scale grid rendered field reconstructions in our
distributed-memory framework designed for N-body gravita-
tional lensing simulations in large volumes. We also introduce a
load balancing scheme to optimize the efficiency of processing
a large number of field reconstructions. Our results show
our kernel outperforms existing software packages for volume
weighted density field reconstruction, achieving ∼10× speedup,
and our load balancing algorithm gains an additional ∼3.6×
speedup at scales with ∼16k processes.

Keywords-parallel surface density; Delaunay tessellation field
estimator;

I. INTRODUCTION

Reconstructing a continuous field from a discrete point

set is a fundamental operation in scientific data analysis.

From a given set of irregularly distributed points in 3D,

the task is to create a field defined on a regular grid from

some property defined on the points. The property can

be any locally describing quantity [1], e.g., mass density,

with the usual assumption being that the points are acting

as tracers of an underlying continuous field. The gridded

field representation of irregularly distributed points is often

preferred for some tasks such as visualization or applying

certain mathematical operations, e.g., the Fourier transform.

For many applications in astrophysics and cosmology [2] [3],

only the 2D projected field is required, however, practically

all methods for creating a 2D grid compute a costly 3D grid

as an intermediate representation [4].

Our work is motivated by a gravitational lensing [5]

simulation where accurate surface density1 estimation is a

critical and costly step [6], but the techniques developed

generalize to any application requiring high-performance

grid interpolation with low noise properties. For many types

1Surface density is volumetric density integrated along a path, i.e., it is
the mass per unit area.

Figure 1: An example of a typical surface density field

computed during a strong lensing study from an N-body

particle simulation. The DTFE method was used to generate

this 2048×2048 grid representing ∼1.5 million particles

within a sub-volume of (4Mpc h−1)3. This is the largest

structural object in the final snapshot of a 1 billion particle

N-body simulation with volume of (256Mpc h−1)3.

of analysis that involve gathering meaningful statistics [7], it

is common for multiple gridded fields of sub-volumes to be

needed from a much larger domain volume. The configura-

tion of these sub-volumes may represent regions of interest,

such as high particle concentrations, or an arrangement in

some particular geometry, such as co-location along the line

of sight to an observer [8]; depending on the application,

sub-volumes may be completely disjoint, or have significant

overlap. The number of particles within each sub-volume

may also vary considerably. Together, the typically non-

uniform spatial distribution of interesting sub-volumes and

their varying number of particles often cause a significant

load imbalance on the computing resources needed by data-

parallel approaches to large-scale N-body simulations. While

there are a few freely available parallel density estimation

software packages [9] [4], they tend to focus on generating

a single continuous gridded field from the input.

We propose a hybrid (shared/distributed-memory) algo-

rithm that uses the DTFE method [10] to create low-noise

gridded field representations of specified sub-volumes. Our

distributed memory parallelization strategy uses a uniform
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volume decomposition of the data with ghost zones that

replicate particles in adjacent volumes. The ghost zones

are large enough such that any region of interest can be

computed independently by the process owning the volume

where the region is located, using our shared memory

kernel. The density kernel was algorithmically optimized

for computing surface density by identifying the mathemat-

ically optimal points for interpolation when using the DTFE

method. In cases where there is an expected computational

load imbalance across processes, we propose an algorithm

for determining an a priori communication pattern for work

sharing that is based on modeling the total computation.

Our load balancing results show experiments on two large

science quality N-body simulation datasets. The first is a

high mass resolution simulation with 10243 particles and

different distributions for the (1024×1024) grids that need

to be computed. We show that with a high mass resolution

simulation where work imbalance becomes problematic, we

can regain much of the performance loss with our load

balancing algorithm, showing a speedup of ∼2.8 with 240

MPI processes (6 OpenMP threads/process) on an InfiniBand

analysis/visualization cluster. The second larger volume sim-

ulation with less mass resolution has 32003 particles. We

demonstrate scaling up to 16,384 MPI processes (4 OpenMP

threads/process) on an IBM BG/Q supercomputer and show

a load balancing speedup of ∼3.6. We also evaluated our

method against existing parallel software without enabling

our load balancing functionality. As mentioned, since these

software packages construct a single large gridded field, the

datasets are restricted to a much smaller size on the order of

106 particles. We ran our implementation in single-process-
multiple-thread mode and show that our grid rendering

kernel is more efficient for computing surface density by

∼10× when compared to available shared-memory parallel

software. To compare against distributed-memory parallel

software, we ran in multiple-process-single-thread mode and

decomposed the single large gridded field into multiple sub-

grids, showing ∼8× improvement in execution time.

The rest of the paper is organized as follows. In Sec-

tion II we describe existing density estimation software

and the parallelization strategy used. In Section III we

provide essential background on the DTFE method and

point location, performing a brief analysis of point location

strategies. We then discuss surface density and the typical

approach for rendering gridded fields. In Section IV, we

describe our kernel algorithm for gridded surface density

using the DTFE method and our load balancing algorithm.

Section V describes our experiments and the performance

improvements we achieved. Finally, in Section VI we discuss

future work and provide concluding remarks.

II. RELATED WORK

The DTFE public software [9] is a freely available C++

code for rendering fields defined on a grid from point sets.

While the software can not directly produce a surface density

field, it can compute the 3D density field, which can be

converted into surface density as described in Section III.

The code was designed to implement the DTFE method

and uses the CGAL [11] computational geometry library

for constructing the Delaunay triangulation. Grid rendering

is done using the walking algorithm described in Section

III. The DTFE public software uses OpenMP to parallelize

computation in shared memory architectures implementing

an equal volume decomposition with ghost particle regions.

Computation on the sub-volumes is performed by individual

threads and the resulting density fields are recombined to

produce the final result. No attempt is made to balance

workloads because the intention of the software is for large

volume analyses in cosmology where the distribution of par-

ticles becomes mostly homogeneous at the scales of interest.

Significant thread imbalance is noticed when small volumes

are parallelized, as is needed by high mass resolution N-body

simulations, since parallelization is limited to the memory

of a single computing node.

The TESS Density Estimator [4] is a freely available C++

MPI software for computing surface density. Like the DTFE

public software, the TESS Density Estimator runs in two

stages: constructing a Voronoi tessellation with the Qhull

library [12], followed by estimating density at grid points

covered by Voronoi cells. In both codes, the two stages

are executed in parallel, however, the primary difference is

that TESS constructs a global tessellation [13], rather than

overlapping triangulations, to interpolate the gridded density

field. The advantage to this method is that ghost zones do not

need to be specified by a user, but, additional interprocess

communication is required. Another fundamental difference

is the interpolation method; TESS uses a zero-order inter-

polation rather than a first-order linear interpolation. The

software allows for the data partitioning to be specified, and

we will use this feature to make a comparison with our

implementation.

A. Complexity Analysis

Throughout the paper we use the following notation when

discussing complexity: N , the number of particles (points in

3D), and Ng , the number of grid cells per grid dimension.

We describe the computational complexity of both software

packages together here since the two stages they both im-

plement are very similar. The CGAL library uses a flip algo-

rithm for constructing a Delaunay triangulation with overall

complexity of O(N2), and Qhull computes the Delaunay

triangulation by computing the convex hull of the points

projected onto a higher dimensional paraboloid, also with

overall complexity of O(N2). Both software packages either

incrementally or fully construct the 3D density grid and

require O(Ng
3) operations. Thus, the total computational

complexity for both methods is O(N2 +Ng
3).
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III. BACKGROUND

A. DTFE Method

DTFE is a first order multi-dimensional interpolation

method that relies on a Delaunay triangulation of the input

to obtain the local gradients of a function. First proposed by

Bernardeau and van de Weygaert [1] for producing volume-

weighted velocity fields, the gradient within a tetrahedron

is assumed constant, and discontinuous at its boundaries.

The field value for a d -dimensional point x is interpolated

using the Delaunay vertices x0, x1, ...xd of the containing

tetrahedron by

f̂(x) = f(x0) + ∇̂f |Del · (x− x0) (1)

where ∇̂f |Del is the estimated constant field gradient using

the known field values f (x0), f (x1), ...f (xd). For density

field reconstruction, the on-site density values are estimated

by the inverse volume of the contiguous Voronoi cell,

thereby ensuring mass conservation. The estimated density

for each input, xi, is given by

̂ρ(xi) =
(d+ 1)m∑NT ,i

j=1 V (Tj,i)
(2)

where NT ,i denotes the number of tetrahedra Tj,i having xi

as a vertex, m is the mass, and (d + 1) is the tetrahedral

volume normalization factor.

B. Surface Mass Density

The projected 3D density, known as the surface mass den-

sity, is used by the thin lens approximation in gravitational

lensing. The equation for the surface density is given as

Σ(ξ) =

∫
ρ(ξ, z) dz (3)

C. Rendering Gridded Fields

It follows that the projection of a field defined on a regular

uniform 2D grid can be computed from a field defined on

a regular uniform 3D grid in a straightforward manner. The

density value for a grid cell having dimensions (Δx,Δy)
with representative point ξ in the 2D gridded density field

is approximated by

̂Σi,j(ξ) =

Nz∑
k=1

̂ρi,j,k(ξ, zk)Δz (4)

where Nz is the number of 3D grid cells in the z dimen-

sion, and (ξ, zk) is the representative point(s) for the 3D

cell with dimensions Δx,Δy,Δz. Using this method, it is

necessary to determine the containing tetrahedra for all the

representative points of the 3D grid in order to interpolate

their field values. This is usually incrementally done using

the walking method (equation 6) by locating representative

points for adjacent grid cells to minimize the walk length.

The computational complexity is therefore O(Ncell), where

Ncell is the number of 3D grid cells. Note that when

Δx,Δy,Δz are fixed, as in the case for a uniform grid,

there is a tendency to under-sample interpolation points in

regions where the particle spacing is smaller than the grid

spacing. In practice, care must be taken to avoid this issue,

with a common approach to estimate the density of the 3D

cell volume using a Monte Carlo method:

̂Σi,j(ξ) =

Nz∑
k=1

〈 ̂ρi,j,k(ξ, zk)
〉
Δz (5)

While this helps with under-sampling, it does not alleviate

over-sampling in low density regions.
1) Point Location by Walking: In order to interpolate the

field value for a query point, q, the tetrahedra containing

q must be identified. The location of an arbitrary point

inside a triangulation is a classic problem in computational

geometry. It has been very well studied, with several al-

gorithms providing optimal solutions in the literature [14].

In practice, however, algorithms that ‘walk through’ the

triangulation have been widely adopted for their simplicity

and a lack of need for preprocessing and additional storage.

Walking algorithms only require an additional adjacency

matrix for storing neighbor simplices, i.e., simplices that

share a common facet. The general approach begins with

choosing an initial simplex in the triangulation and moving

towards q by moving to a neighbor simplex in the direction

of q until the simplex containing q is identified. A robust

technique for walking in three dimensions, Sambridge et

al. [15], tests if q is on the interior side of a tetrahedral face

by the following test

[(xi − xj) · [(xk − xj)× (xl − xj)]]·
[(q − xj) · [(xk − xj)× (xl − xj)]] ≥ 0,

(6)

moving to the neighbor tetrahedron of a face that fails,

and locating the tetrahedron if all faces pass. The walking

method is guaranteed to converge for a Delaunay triangu-

lation, but may go into an infinite loop with an arbitrary

triangulation; this is because walking moves in the gen-

eral direction of q, which is not always a straight line.

The performance of walking can be greatly improved by

choosing an initial tetrahedra that is close to q, usually done

by randomly sampling tetrahedra vertices and selecting the

tetrahedron with the vertex that is nearest. For a regular grid,

the tetrahedron containing the query point of an adjacent grid

cell is clearly a good initial choice, however, the orientation

tests from equation 6 must still be computed.
2) Ray-Tetrahedron Intersection: Similar to walking,

Mücke et al. [16] proposed the idea of ‘marching’, where

a line, �, is used to traverse the triangulation by identifying

tetrahedra that intersect �. The points of � are the query

point, q, and some initially located vertex p, � = pq.

Algorithms such as the Möller and Trumbore ray-triangle

algorithm [17] are fast and efficient, but usually do not

perform well in practice because of floating point round-

off error. An algorithm proposed by Platis et al. [18]
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using Plücker coordinates has better results, and we use it

for the ray-tetrahedra intersection testing in our algorithm.

The algorithm tests each face individually by checking the

relative orientation of two rays, namely −→pq and a face edge.

For some three dimensional ray, r, determined by a point,

x, with direction, l, the Plücker coordinates representation

is a six-dimensional vector of the form

πr = {l : l× x} = {ur : vr}. (7)

The relative orientation of two rays, r and s is determined

by computing the sign of the permuted inner product:

πr � πs = ur · vs + us · vr (8)

The ray orientation test is performed for each edge of a

tetrahedra face, but shared edge calculations can be reused.

When all the permuted inner products for a face are greater

than zero, r enters the face, if all are less than zero, r
leaves the face, otherwise one of the degeneracy cases 2 has

been encountered. For any intersecting face, the barycentric

coordinates of the intersection is computed by

wi = πr � πei , hi =
wi∑3
i=1 wi

(9)

where πei is the Plücker vector for an edge. The Cartesian

coordinates follow as

xintersect = h0x0 + h1x1 + h2x2 (10)

where x0, x1, and x2 are the vertices of the face.

IV. DESIGN AND IMPLEMENTATION

Our approach follows the principles of data locality and

replication to minimize communication and synchronization

by creating particle ghost zones. Our load balancing scheme

models the computational phases of a small set of test

problems at runtime – drawn randomly from the problem

domain – to estimate the remaining work and determine

an a priori work sharing schedule. The distributed-memory

algorithm consists of four phases: (1) data partitioning and

redistribution, (2) workload modeling, (3) work sharing

scheduling, and (4) execution and communication. These

phases are described in detail after presenting our surface

density kernel.

A. Shared Memory DTFE Kernel

In this subsection, we present the algorithm we designed

for computing a surface mass density field defined on a

2D grid using the DTFE method. The algorithm computes

each 2D grid value by marching through the triangulation

(ray-tetrahedron intersection) along the line-of-sight path of

integration, interpolating values from tetrahedra intersecting

the 3D projection, �, of the 2D grid cell point, ξ.

2Degeneracy cases occur when the ray intersects a vertex, an edge, or is
co-planar to a face.

1) Optimal Line-of-Sight Interpolation: To determine the

optimal points for interpolation along a line of sight, �, we

compute the points of intersection using equations 9 and

10 for each tetrahedron intersecting �. Substituting the 3D

density ρ(ξ, z) with the interpolation function in equation 1,

the integral in equation 3 becomes

̂ΣTi(ξ) =
∫ b

a

̂ρ(x0) + ∇̂ρ|Del ·

⎛
⎝
⎡
⎣ξxξy
z

⎤
⎦− x0

⎞
⎠ dz (11)

where ξ is the 2D projection of �, Ti is a tetrahedron

intersecting �, x0 is an arbitrarily chosen vertex of Ti taken

to compute the gradient, and a, b, are the z components to

the points of intersection of � and Ti. Solving the integral

in equation 11 gives

̂ΣTi(ξ) =
⎡
⎣ ̂ρ(x0) + ∇̂ρ|Del ·

⎛
⎝
⎡
⎣ ξx

ξy
a+ b−a

2

⎤
⎦− x0

⎞
⎠
⎤
⎦ (b− a)

(12)

showing that for any tetrahedra intersecting �, equation 3 is

solved exactly when using linear interpolation by interpolat-

ing at the midpoint of the intersection interval. Equations 11

and 12 are defined on individual tetrahedra, thus, the surface

density for any 2D grid cell is then the sum of all surface

densities obtained from tetrahedra intersecting �, given by

̂Σi,j(ξ) =

NT∑
k=1

̂ΣTk(ξ) (13)

where NT is the number of tetrahedra intersecting �. There

is potential for under-sampling in the x and y dimensions,

as we described in the Section III, however, a Monte Carlo

approximation can also be computed to obtain the mean

surface density for the 2D grid cell, with the advantage

over 3D grid rendering methods being one fewer degree of

freedom in the error of the estimator.

2) Algorithm: Our convention is to integrate along the z
dimension to make calculations simpler, however, in princi-

ple any arbitrary direction can be chosen by a simple rotation

of the triangulation. In order to initiate the march, the

algorithm must determine the first tetrahedron intersecting

�. This is done by constructing a 2D triangulation from the

3D Delaunay triangulation’s convex hull – projecting down

hull facets facing the opposite direction of integration,

nhull · ẑ < 0 (14)

where nhull is the surface normal of a hull face, and ẑ
is the 3D z unit vector. Determining the first tetrahedron

intersecting � (Figure 3 line 5) is done by locating its

projection, ξ, in the 2D triangulation, where any point

location method can be used.

With high resolution grids and a large number of particles

per volume, it is inevitable that degeneracy cases will be

encountered. The RayTetra subroutine computes equation
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8 and returns a degeneracy status, Err, along with points

of intersection, a, b, and the neighbor of the exit face,

Neighbor. To resolve degeneracy cases, we perturb � with

the subroutine Perturb.

Input: Line �, Tetrahedron T , ε
Output: Line �

1: ξ ← xyProjection(�)
2: v ← getRandomV ertex(T )
3: δ ← xyProjection(v)− ξ
4: if ‖δ‖ > ε then
5: δ ← δ ÷ ‖δ‖
6: δ ← δε
7: end if
8: � ← �+ δ

Figure 2: Perturb

Input: Discrete point set X
Output: 2D grid F

1: D ← Delaunay(X)
2: for all i such that 0 ≤ i < Ncell do
3: Fi ← 0
4: � ← GridLineOfSight(i)
5: T ← HullTetrahedron(D, �)
6: while T do
7: (Err, a, b,Neighbor) ← RayTetra(T , �)
8: if Err then
9: Perturb(�, T , ε)

10: else
11: Fi = Fi + Interpolate(T , �, a, b)
12: T = Neighbor
13: end if
14: end while
15: end for

Figure 3: Kernel

3) Complexity Analysis: Constructing a Delaunay tri-

angulation takes O(N2) operations and contains O(N2)
tetrahedra in 3D. For each Ng

2 2D grid cell, a march

through the triangulation is needed, making the worst case

complexity O(N2 + Ng
2N2) and average case complexity

O(N2 +Ng
2(N2)

1/3
), assuming a cube sub-volume.

B. Data Partitioning and Redistribution

Data partitioning is done using a spatial volume de-

composition where each sub-volume is of equal size and

not guaranteed to have an equal number of particles. The

particle imbalance is strongly dependent on the size of the

sub-volumes – with more imbalance in highly clustered

situations (typically occurring at later simulation times) and

smaller sub-volume scales. Abiding by the principles of

data locality and replication, we create particle ghost zones

large enough such that any surface density field subproblem

within the active region of a process can be completed

without communication to any other process. More formally,

if a surface density field, F, has physical length lF, ghost

zones will contain duplicate particles beyond the sub-volume

boundaries within a distance of lF
2 .

The input particle datasets we used were generated from

N-body simulations run on a supercomputer using a greater

number of processes. Data was written to several files

containing offsets within each file for an individual process’s

particles. The simulation implements an equal size sub-

volume spatial decomposition, thus, on disk the data block

written by a process represents a contiguous sub-volume.

We use MPI-IO to perform a parallel read of the data

using an arbitrary block assignment and spatially redistribute

the particles. Finally, all processes perform a neighbor-to-

neighbor exchange to fill the ghost zones. The set of loca-

tions for computing each surface density field is generally

much smaller, which can be read by a single process to

perform a broadcast; each process discards locations outside

of its local sub-volume.

C. Modeling Workload

We assume all surface density fields to be of the same size

and resolution, which is not unreasonable for many types

of analysis. This allows for the input that defines where

to compute the fields to be specified as a set of points,

with additional parameters for the physical length and grid

resolution. Input points for computing density fields within

the sub-volume of a process are considered its local work

items. All processes estimate the total amount of time needed

to complete their local work by performing the following

steps:

1) Count the number of particles, ni, needed to complete

each local work item.

2) Time the execution of a random local work item, tr.

3) Exchange results, (nr, tr), with all processes.

4) Fit the global timing data to a predictive model, fpre.

5) Estimate the remaining work by fpre(ni)

1) Counting particles: The modeling phase begins with

each process counting the number of particles, ni, needed

for computing each of its surface density fields, Fi. This

is done by centering a cube, with dimensions specified by

an input parameter, on the input point representing the field

location. The number of particles in the cube is ni.

2) Timing: A randomly chosen field is computed by

each process, recording the triangulation time, tdel, and

interpolation time, tinterp.

3) Data Exchange: The result of each process’s test prob-

lem timing, (nr, tdel,r, tinterp,r), is shared with all processes.

This is implemented with MPI using the MPI_Allgather
function providing implicit synchronization.
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4) Fitting: Each process independently fits two models

for computing the Delaunay triangulation and grid interpola-

tion, both as a function of ni. The Delaunay model is simply

taken from the quickhull algorithm average case complexity

analysis,

ftri(n) = c n log2(n) (15)

where c is the parameter fit for capturing environmental

characteristics. Fitting is performed using ordinary least

squares.

c = (XTX)−1XTtdel (16)

The interpolation model is a power law function,

finterp(n) = α nβ (17)

To fit the function we use the non-linear least squares Gauss-

Newton method. The initial guess is taken from linearly

fitting the log of the data and the log of the function.

D. Work Sharing

Once the timing estimates for each work item have been

completed, the total amount of local work time, ti, can be

computed and shared with all processes, implemented with

MPI_Allgather. Each process computes 〈t〉 to determine

the senders and receivers in the work sharing schedule. We

construct a list of pairs to hold the process ID and total time

for all processes. Pi = (idi, ti)
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Figure 4: Each process independently computes its commu-

nication list; determining if it is a sender or receiver based

on the average total time of all processes.

After executing the CreateCommunicationList rou-

tine, the RecvList contains information on which processes

are going to send work, and in what order messages will

be received. The SendList contains information on which

process, when, and how much work a sender process can

send to a receiver processes. Senders then need to determine

at what point in the computation of their local work they

should pause and send to a free receiver in their list. To

Input: Process data P
Output: SendList, RecvList

1: myProcID = getMyProcID();

2: lr = −1
3: Ps ← SortByT imeDescending(P )
4: for all t in Ps.t do
5: if t > 〈t〉 then
6: lr = lr + 1
7: break
8: end if
9: end for

10: cr = size(Ps)− 1
11: for all i such that 0 ≤ i < lr do
12: while cr ≥ lr and Ps[i].t > 〈t〉 do
13: if (Ps[i].t− 〈t〉) > (〈t〉 − Ps[cr].t) then
14: if myProcID = Ps[i].id then
15: SendList.add(Ps[cr], 〈t〉 − Ps[cr].t)
16: else if myProcID = Ps[cr].id then
17: RecvList.add(Ps[i].id)
18: end if
19: Ps[i].t = Ps[i].t− (〈t〉 − Ps[cr].t)
20: Ps[cr].t = 〈t〉
21: cr = cr − 1
22: else
23: if myProcID = Ps[i].id then
24: SendList.add(Ps[cr], Ps[i]− 〈t〉
25: else if myProcID = Ps[cr].id then
26: RecvList.add(Ps[i].id)
27: end if
28: Ps[cr].t = Ps[cr].t+ Ps[i].t− 〈t〉
29: Ps[i].t = 〈t〉
30: end if
31: end while
32: end for

Figure 5: CreateCommunicationList

do this, senders sort their SendList by send time (Ps.t)
in ascending order. Taking the time difference between

subsequent list items, senders determine which local work

items can be computed to fill time between sending work

sharing messages. We view the time to fill between messages

as work bins, where the objective is to fill them with local

work items. Taking this a step further, the amount of work

to send to a receiver can also be considered a work bin.

We combine the two work bin lists to simultaneously solve

both problems using a greedy first-fit approximation [19] to

the variable bin packing problem, where we sort the work

items in descending order and sort the bins in ascending

order. The result is a permutation of the local work items

that minimize delays in communication. Note that this work

sharing scheme is greedy in minimizing the overall amount

of communication, that is, the senders with the most work

to share send to receivers with the largest ability to receive.
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E. Execution and Communication

Receivers simply execute all their local work and listen

for a message from the next sender in their list. This is

implemented by calling MPI_Recv. When a work sharing

message is received, the process receives a copy of the

sender’s particle set and density field positions. The receiver

process then executes the new local work items. These steps

are repeated until there are no more receive messages in

the list. Senders execute their local work items and call

MPI_Send after iterations determined by the optimization

algorithm.

V. EXPERIMENTAL RESULTS

The DTFE surface density grid rendering kernel described

in this paper is implemented in C using OpenMP to paral-

lelize the loop over the individual grid cell computations.

Computing multiple fields is implemented in C++ and par-

allelized using MPI for all interprocess communication. The

kernel comparison with the DTFE software was performed

on a workstation with two Intel Xeon Processors (E5-2620;

15M Cache, 2.00 GHz), 12 physical cores supporting 2

hardware threads per core. The distributed-memory experi-

ment was carried out on Cooley, an InfiniBand data analy-

sis/visualization cluster at Argonne National Laboratory with

two six-core 2.4GHz Intel Haswell processors and 384GB

memory/node. The distributed-memory comparison with the

TESS density estimator [4] was performed on Cooley with-

out OpenMP support. Cooley was also used for our first

shared/distributed-memory experiments on a high resolution

N-body simulation using 6 OpenMP threads/process. The

second shared/distributed-memory experiment was carried

out on Mira, an IBM Blue Gene/Q supercomputer with a

PowerPC A2 1600 MHz processor containing 16 cores and

16 GB memory/node using 4 OpenMP threads/process. For

creating Delaunay triangulations we use the Qhull software

library [12]. In all our experiments, triangulations are

constructed without any threading as this was not the focus

of this work. Our code makes no special use of triangulation

library data structures so substituting the triangulation library

can be performed with little refactoring.

1) Shared-Memory Comparison: For an empirical com-

parison with walking based software, we compared our im-

plementation with the publicly available DTFE software [9]

using the provided demo dataset from a publicly available

N-body simulation software called Gadget [20]. The results

are displayed in Figure 6 for a 10243 grid. The dataset has

650,466 particles in a volume of (100 Mpc/h)3. The timing

comparison is restricted only to the time it takes to interpo-

late the grid and not for generating the triangulation. The

software task is to compute a field defined on a regular grid

using a single point for computing the density at each grid

cell. For clarity, our algorithm did not run using dynamic

grid spacing, but rather an equally spaced grid in all three

dimensions. In this way, both approaches are locating and

interpolating exactly the same number of grid cells. Overall,

as shown in Figure 6, our method is approximately an order

of magnitude faster and threads have a much more evenly

distributed execution time. Both codes were run using 24

threads. The difference in overall performance is attributed

to the pre-factor in time complexity of the algorithms, which

in this case is O(N2+Ng
3). The difference comes from how

the two methods perform point location for determining the

tetrahedra for interpolation; the DTFE public software uses

the ’walking’ method as opposed to our ’marching’ method.
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Figure 6: Comparison of the thread timing from the publicly

available DTFE software [9] and using the kernel algorithm

described here for a single 10243 grid.
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Figure 7: Execution and speedups for TESS, DENS, and the

corresponding steps of our algorithm.

2) Distributed-Memory Comparison: The next experi-

ment is another comparison with the distributed-memory

TESS Density Estimator [4], a freely available C++ MPI

software for computing surface density. The dataset for this

experiment is a 32 Mpc h−1 sub-volume with 1,711,563

particles taken from the large 32003 particle simulation

we use in this paper. The TESS Density Estimator, runs

in two stages: constructing a Voronoi tessellation, TESS,

followed by estimating density at grid points covered by

Voronoi cells, DENSE. Figure 7 presents the execution and

speedup of the corresponding stages of TESS and DENSE

with our algorithm. To compare we ran our implementation

in multiple-process-single-thread mode and decomposed the

single large grid into multiple sub-grids. The results show

∼8× improvement in execution time. In this experiment
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we generated a 4096×4096 surface density grid from the

entire dataset. Shown in Figure 8 are the outputs from single

process runs of the codes.
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Figure 8: The 4096×4096 grids generated by our DTFE

implementation and TESS/DENSE. We show a ratio map

of the fields and the corresponding histogram to understand

any bias between the estimators. The ratio map is calculated

as log10(DTFE/DENSE).

From Figure 8c, we see the density maps produced by the

two different methods are mostly in agreement. The small

differences are largely attributed to the different interpolation

schemes. The bump from Figure 8d is a result of how the

two methods differ in dealing with the asymmetric bias –

due to particle noise [21] – inherent to inverse volume based

density estimators.
3) Shared/Distributed-Memory with Load Balancing:

Our shared/distributed-memory experiments were performed

on N-body simulation datasets generated by HACC (Hard-

ware/Hybrid Accelerated Cosmology Code) [22] [23]. We

use two science quality datasets to demonstrate the overall

performance and load balancing capability of our method.

The first dataset is a simulation called Planck and has

10243 particles in a 256 Mpc h−1 volume. We perform two

experiments on this dataset where we computed thousands

of density fields in different spatial configurations.
Galaxy-Galaxy Lensing Experiment: The next set of

figures were generated by computing 7,209 density fields

centered on the positions of simulated galaxies. Galaxy

positions are assigned to the most dense regions in the

simulation volume by a model for the galaxy distribution.

This configuration of fields is particularly challenging com-

putationally, not only because fields are required in the most

highly concentrated particle regions, but also because the

decomposition sub-volumes become more imbalanced the

more we decompose to achieve higher performance.
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Figure 9: Speedup on up to 240 processes showing the

overall performance scaling to be near linear until 64

processes, at which point the cost of partitioning and the

overhead of modeling and work sharing become apparent.

This experiment computes density fields in the most highly

concentrated regions of particles.

Figure 9 presents the speedup and timing of our parallel

algorithm. To illustrate reasons for the performance drop off

at higher number of processes, we include the speedup of all

phases. We can see that as the number of processes increases,

the partitioning phase is nearly flat, showing we become

bound by the IO operation. Similarly the overhead of mod-

eling becomes apparent since it is nearly constant due to

each process computing a random test problem calculation.

The early improvements are due to estimating the time for

fewer local work items, but this flattens as computing the test

problem dominates the phase. Figure 10 demonstrates how

timing becomes more imbalanced as sub-volumes become

smaller due to particles becoming more imbalanced. The

problem is two-fold since there are more work items in sub-

volumes with higher particle concentrations, and the work

items themselves are more costly.
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standard deviation in compute time (unbalanced estimated

by model prediction) showing the trend for more imbalance

as sub-volumes become smaller. Balanced compute time was

obtained from execution wall time.
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Model Prediction: We characterize the modeling predic-

tive accuracy in Figure 11 to support our speedup and imbal-

ance claims as shown in Figure 10. The error distributions

are symmetric with mean centered near zero.
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Figure 11: Histograms of the error made by work prediction

models fit with 7,209 test samples compared with actual

wall timing from the galaxy-galaxy lensing experiment.

Triangulation model μ = 5.0925 (left) Interpolation model

μ = 12.1209 (right)
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Figure 12: Speedup on up to 220 processes showing the

overall performance scaling to be near linear with only small

deviation. This experiment computes density fields in both

high and low regions of particle concentration.

Multiplane Lensing Experiment: We repeated the experi-

ment on the same dataset using a different configuration for

the density fields. Here we are creating density fields along

an observer’s entire line of sight in the complete volume.

We construct 700 such line-of-sight field configurations for

a total of 9,061 density fields. These fields are a mixture

of high and low density sub-volumes. Interestingly, we see

better overall scalability performance in this experiment.

Looking at the work sharing speedup in Figure 12, we

conclude that there are more small work items to complete

and the variable bin size optimizer can be more efficient,

resulting in less waiting time for blocking MPI messages

to complete. The explanation is rooted in the observation

that more work items were performed while work sharing

message sizes remained the same.

Large Scale Experiment: The second dataset is a sim-

ulation called MiraU, a large volume (1491Mpc h−1)3,

32002 (∼32 billion) particle simulation where we computed

1024×1024 surface density grids centered on the 233,230

most massive objects found by a density based clustering

algorithm. This is similar to the galaxy-galaxy lensing

experiment we performed on the Plank dataset, but simply

at a much larger scale.
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Figure 13: Speedup on up to 16,384 processes showing the

overall performance scaling to be near linear until 16,384

processes, where a few degenerate point configurations make

the model predicted execution time inaccurate. This experi-

ment computes density fields in the most highly concentrated

regions of particles.

From Figure 13 we can see that the speedup is near linear

until 16,384 processes, then, the computing speedup drops

significantly. A closer look indicated that a small number

of degenerate point configurations on a few MPI processes

made the model predicted execution time inaccurate and

delayed sending work to idle processes. This is clearly sup-

ported by the corresponding drop in work sharing speedup

and points out a drawback to our a priori model for work

sharing.

VI. CONCLUSION

Performing high throughput analysis tasks that involve

computing high quality surface density fields in state of the

art N-body cosmological simulations poses computational

challenges primarily related to load distribution. We address

the issue by proposing a fast and accurate grid rendering

kernel for the DTFE method that is readily parallelizable

and computationally efficient, achieving well balanced mul-

tithread performance when compared to existing software

packages. We leverage the computational predictability of

the kernel to achieve well balanced workloads in our dis-

tributed memory framework by accurately modeling com-

putation to determining an a priori work sharing schedule.

Future work will involve kernel optimizations for emerging

hardware such as many-core CPUs and extending the work

sharing algorithm to a more general framework.
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