
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. a, AUGUST 1995 al5

Runtime Support and Compilation Methods for
User-Specified Irregular Data D istributions

Ravi Ponnusamy, Joel Saltz, Alok Choudhary, Member, IEEE Computer Society,
Yuan-Shin Hwang, and Geoffrey Fox

Abstract-This paper describes two new ideas by which a High
Performance Fortran compiler can deal with irregular computa-
tions effectively. The first mechanism invokes a user specified
mapping procedure via a set of proposed compiler directives. The
directives allow use of program arrays to describe graph connec-
tivity, spatial location of array elements, and computational load.
The second mechanism is a conservative method for compiling
irregular loops in which dependence arises only due to reduction
operations. This mechanism in many cases enables a compiler to
recognize that it is possible to reuse previously computed infor-
mation from inspectors (e.g., communication schedules, loop it-
eration partitions, and information that associates off-processor
data copies with on-processor buffer locations). This paper also
presents performance results for these mechanisms from a For-
tran 90D compiler implementation.

Index Terms-Runtime support, parallelizing compilers, data
distributions, high performance Fortran, language directives,
irregular problems, distributed memory machines.

I. INTRODUCTION

A. Background

T HIS paper addresses a class of irregular problems that
consists of a sequence of clearly demarcated concurrent

computational phases where patterns of data access and com-
putational cost cannot be anticipated until runtime. In this class
of problems, once runtime information is available, data access
patterns are known before each computational phase. These
problems are called irregular concurrent problems [9]. Ex-
amples of irregular concurrent problems include adaptive and
self-adaptive explicit, multigrid unstructured computational
fluid dynamic solvers [29], [151, molecular dynamics codes
(CHARMM [5], AMBER [43], GROMOS [40], etc.), diagonal
or polynomial preconditioned iterative linear solvers [41], and
time dependent flame modeling codes [32].

This paper focuses on the runtime support, the language
extensions, and the compiler support required to provide effi-
cient data and work load distributions. The paper also presents
methods and a prototype implementation that make it possible
for compilers to efficiently handle irregular problems coded
using a set of language extensions closely related to Fortran D

Manuscript received Dec. 31.1993; revised Sept. 26, 1994.
R. Ponnusamy is with the UMIACS and Computer Science Department,

University of Maryland, College Park, MD 20742 and the Northeast Parallel
Architectures Center, Syracuse University, Syracuse, NY 13244.

J. Saltz and Y.-S. Hwang are with the UMIACS and Computer Science De-
partment, University of Maryland, College Park, MD 20742.

A. Choudhary and G. Fox are with the Northeast Parallel Architectures
Center, Syracuse University, Syracuse, NY 13244.

IEEECS Log Number D95010.

[14], Vienna Fortran [45], and High Performance Fortran
(HPF) [191.

The optimizations that must be carried out to solve irregular
concurrent problems efficiently on a distributed memory ma-
chine include:

1) data partitioning,
2) partitioning computational work,
3) software caching methods to reduce communication vol-

ume, and
4) communication vectorization to reduce communication

startup costs.

Since data access patterns are not known in advance, deci-
sions about data structure and workload partitioning have to be
deferred until runtime. Once data and work have been parti-
tioned between processors, prior knowledge of loop data ac-
cess patterns makes it possible to predict which data need to be
communicated between processors. This ability to predict
communication requirements makes it possible to carry out
communication optimizations. In many cases, communication
volume can be reduced by prefetching only a single copy of
each referenced off-processor datum. The number of messages
can also be reduced by using data access pattern knowledge to
allow prefetching quantities of off-processor data. These two
optimizations are called sofnvare caching and communication
vectorization.

Whenever there is a possibility that a loop’s data access
patterns might have changed between consecutive loop invo-
cations, it is necessary to repeat the preprocessing needed to
minimize communication volume and startup costs. When data
access patterns change, it may also be necessary to repartition
computational work. Fortunately, in many irregular concurrent
problems, data access patterns change relatively infrequently.
This paper presents simple conservative techniques that in
many cases make it possible for a compiler to verify that data
access patterns remain unchanged between loop invocations,
making it possible to amortize the associated costs of software
caching and communication vectorization.

Fig. 1 illustrates a simple sequential Fortran irregular loop
(loop L2) which is similar in form to loops found in unstruc-
tured computational fluid dynamics (CFD) codes and mo-
lecular dynamics codes. In Fig. 1, arrays x and y are ac-
cessed by indirection arrays edge1 and edge2. Note that
the data access pattern associated with the inner loop L2 is
determined by integer arrays edge1 and edge2. Because
arrays edge1 and edge2 are not modified within loop L2,
L2’s data access pattern can be anticipated prior to executing

10459219/95$04.00 Q 1995 IEEE

816 IEEETRANSACTIONSONPARALLELANDDISTRIBUTEDSYSTEMS, VOL. 6, N0.8, AUGUST 1995

L2. Consequently, edge1 and edge2 are used to carry out
preprocessing needed to minimize communication volume
and startups. Whenever it can be determined that edgel,
edge2, and nedges have not been modified between con-
secutive iterations of outer loop Ll, repeated preprocessing
can be avoided.

C Outer Loop Ll

do n = 1, nheps

. . .

C Inner Loop L2

do i = 1, nedges

y(edgel(i)) = y(edgel(i)) + f(x(edgel(i)), x(edge2(i)))

y(edgel(i)) = y(edge2(i)) + g(x(edgel(i)), x(ed@(i)))

end do

. . .

end do

Fig. 1. An example code with an imgular loop.

B. Irregular Data Distribution

On distributed memory machines, large data arrays need to
be partitioned between local processor memories. These parti-
tioned data arrays are called distributed arrays. Long term
storage of distributed array data is assigned to specific proces-
sor and memory locations in the machine. Many applications
can be efficiently implemented by using simple schemes for
mapping distributed arrays. One example of such a scheme
would be the division of an array into equal sized contiguous
subarrays and assignment of each subarray to a different proc-
essor. Another example would be to assign consecutively in-
dexed array elements to processors in a round-robin fashion.
These two data distribution schemes are often called BLOCK
and CYCLIC data distributions [13], respectively.

Researchers have developed a variety of heuristic methods
to obtain data mappings that are designed to optimize irregular
problem communication requirements [39], [44], [27], [25],
[3], [171. The distribution produced by these methods typically
results in a table that lists a processor assignment for each ar-
ray element. This kind of distribution is often called an irregu-
lar distribution.

Partitioners typically make use of one or more of the follow-
ing types of information:

1) a description of graph connectivity,
2) spatial locations of array elements, and
3) information that associates array elements with computa-

tional load.

Languages such as HPF, Fortran D, and Vienna Fortran al-
low users to advise the compiler of how array elements should
be assigned to processor memories. In HPF a pattern of data
mapping can be specified using the DISTRIBUTE directive.

Two major types of patterns can be specified this way: BLOCK
and CYCLIC distributions. For example,

FUZAL, DIMBNSION(500,500) :: X, Y
!HPF $ DISTRIBUTE (*, BLOCK) :: X
!HPF $ DISTRIBUTE (BLOCK, BLOCK) :: Y

breaks the arrays X and Y into groups of columns and rectan-
gular blocks, respectively.

This paper describes an approach where the user does not
explicitly specify a data distribution. Instead the user specifies:

1) the type of information to be used in data partitioning and
2) the irregular data partitioning heuristic to be used.

Language extensions have been designed and implemented to
allow users to specify the information needed to produce an
irregular distribution. Based on user directives, the compiler
produces code that, at runtime, passes the user specified parti-
tioning information to a (user specified) partitioner.

To the best of the authors’ knowledge, the implementation
described in this paper was the first distributed memory com-
piler to provide this kind of support. User specified partition-
ing has recently been implemented in the D System Fortran
77D compiler [161; the CHAOS runtime support described in
this paper has been employed in this implementation. In the
Vienna Fortran [45] language definition a user can specify a
customized distribution function. The runtime support and
compiler transformation strategies described here can also be
applied to Vienna Fortran.

These ideas have been implemented using the Syracuse
Fortran 90D/HPF compiler [4]. The following assumptions
have been made:

1) irregular accesses are carried out in the context of a sin-
gle or multiple statement parallel loops. In these loops
dependence between iterations may occur due to reduc-
tion operations only (e.g., addition, max, min, etc.) and

2) irregular array accesses occur as a result of a single level
of indirection with a distributed array that is indexed di-
rectly by the loop variable.

C. Organization

This paper is organized as follows. The context of the work
is outlined in Section II. Section III describes the runtime
technique that saves and reuses results from previously per-
formed loop preprocessing. Section IV describes the data
structure, the compiler transformations, and the language ex-
tensions used to control compiler-linked runtime partitioning.
Section V presents the runtime support developed for coupling
data partitioners, for partitioning workload and for managing
irregular data distributions. Section VI presents data to charac-
terize the methodological performance. Section VII provides a
summary of related work, and Section VIII concludes.

II. OVERVIEW
A. Problem Partitioning and Application Codes

It is useful to describe application codes to introduce the
motivation behind preprocessing. This section first describes
two application codes (an unstructured Euler solver and a

PONNUSAMY ET AL.: RUNTIME SUPPORT AND COMPILATION METHODS FOR USER-SPECIFIED IRREGULAR DATA DISTRIBUTIONS 817

molecular dynamics code) that consist of a sequence of loops
with indirectly accessed arrays; these are loops analogous to
those depicted in Fig. 1. This section then describes a com-
bustion code with a regular data access pattern but with
highly nonuniform computational costs. In that code, compu-
tational costs vary dynamically and cannot be estimated until
runtime.

A. 1. Codes With Indirectly Accessed Arrays

The first application code is an unstructured Euler solver
used to study the flow of air over an airfoil [29], [21]. Com-
plex aerodynamic shapes require high resolution meshes and,
consequently, large numbers of mesh points. A mesh vertex is
an abstraction represented by Fortran array data structures.
Physical values (e.g., velocity, pressure) are associated with
each mesh vertex. These values are called flow variables and
are stored in arrays. Calculations are carried out using loops
over the list of edges that define the connectivity of the verti-
ces. For instance, Fig. 1 sweeps over nedges mesh edges. Loop
iteration i carries out a computation involving the edge that

_ connects vertices edgel and edge2(i).
To parallelize an unstructured Euler solver, one needs to

partition mesh vertices (i.e., arrays that store flow variables).
Since meshes are typically associated with physical objects, a
spatial location can often be associated with each mesh point.
The spatial locations of the mesh points and the connectivity
of the vertices are determined by the mesh generation strategy
[421, [28]. Fig. 2 depicts a mesh generated by such a process.
This is an unstructured mesh representation of a three dimen-
sional aircraft wing.

The way in which the vertices of such an irregular compu-
tational mesh are numbered frequently does not have a useful
correspondence to the connectivity pattern (edges) of the
mesh. Mesh points are partitioned to minimize communication.

Fig. 2. An example unstructured mesh.

Recently, promising heuristics have been developed that can
use one or several of the following types of information: 1)
spatial locations of mesh vertices, 2) connectivity of the verti-
ces, and 3) estimates of the computational load associated with
each mesh point. For instance, a user might choose a parti-
tioner that is based on coordinates [3] to partition data. A co-
ordinate bisection partitioner decomposes data using the spa-
tial location of vertices in the mesh. If the user chooses a graph
based partitioner, such as the spectral partitioner [39], the con-
nectivity of the mesh could be used to decompose the data.

The next step in parallelizing this application involves as-
signing equal amounts of work to processors. An unstructured
Euler solver consists of a sequence of loops that sweep over a
mesh, Computational work associated with ‘each loop must be
partitioned between processors to balance load. The approach
used in this paper is to assign all work associated with a given
loop iteration to a single processor. Consider a loop that
sweeps over mesh edges, closely resembling the loop depicted
in Fig. 1. Mesh edges would be partitioned so that 1) good
load balance is obtained and 2) computations mostly employ
locally stored data.

Other unstructured problems have analogous indirectly
accessed arrays. For instance, consider the nonbonded force
calculation in the molecular dynamics code CHARMM [5].
Fig. 4 depicts the nonbonded force calculation loop. Force
components associated with each atom are stored as Fortran
arrays. The outer loop Ll sweeps over all atoms; in this dis-
cussion, it is assumed that Ll is a parallel loop. Each itera-
tion of Ll is carried out on a single processor, so loop L2
need not be parallelized.

All atoms within a given cutoff radius interact with each
other, The array Partners (i , *) lists all the atoms that
interact with atom i. Inside the inner loop, the three force com-
ponents (x, y, z) between atom i and atomj are calculated (van
der Waal’s and electrostatic forces). They are then added to
the forces associated with the atom i and subtracted from the
forces associated with the atomj.

Atoms are partitioned to reduce interprocessor communi-
cation in the nonbonded force calculation loop (Fig. 4). Fig.
3 depicts two possible distributions of atoms of a Myoglobin
molecule to four processors in which shading is used to rep-
resent the assignment of atoms to processors. Data sets as-
sociated with sequential versions of CHARMM associate
each atom with an arbitrary index number. Fig. 3a shows a
distribution that assigns consecutively numbered sets of at-
oms to each processor (i.e., a BLOCK distribution). Since
nearby atoms interact, the choice of a BLOCK distribution is
likely to result in a large volume of communication. Con-
sider instead a distribution based on the spatial locations of
atoms. Fig. 3b depicts a distribution of atoms to processors
carried out using an inertial bisection partitioner [3]. Fig. 3b
has a much smaller amounts of surface area between the
portions of the molecule associated with each processor
compared to that of Fig. 3a.

Table I summarizes the application area specific terminol-
ogy used to describe data array elements, loop iterations, array
distributions and loop iteration partition.

818 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 8, AUGUST 1995

A.2. A Code With Time Varying Computational Costs

This section describes a type of application code that is
qualitatively different from the unstructured Euler and mo-
lecular dynamics codes previously discussed. This type of
code is used to carry out detailed time dependent, multidi-
mensional flame simulations. The calculation cycles between
two distinct phases. The first phase (convection) calculates
fluid convection over a Cartesian mesh. The second phase
(reaction) solves the ordinary differential equations used to
represent chemical reactions and energy release. During the
reaction phase, a set of local computations are carried out at
each mesh point. The computational costs associated with
the reaction phase varies from mesh point to mesh point
since at each mesh point an adaptive method is used to solve
the system of ordinary differential equations. Arrays in this
application are not indirectly accessed as in the previous two
example applications.

Fig. 5 presents a simplified one dimensional version of this
code. The convection phase (loop nest L2) consists of a sweep
over a structured mesh involving array elements located at
nearest neighbor mesh points. The reaction phase (loop nest

TABLE I
APPLICATION AREA SPECIFIC TERMINOLOGY

Program Representation 1 Unstructured M&I 1 Molecular Dynamics
I 1

Data hay Elements Physical State for
Each Mesh Vertex

Force Components
for Each Atom

(a) BLOCK DisLr3butic.n

Fig. 3. Distribution of atoms on four processors.

Ll: do i = 1, NATOMS

L2: do index = 1, INB(i)

j = Partnera(i, index)

Calculate dF (x, y and I components).

Subtract dF from Fj.

Add dF to F;

end do

end do

Fig. 4. Nonbonded force calculation loop from CHARMM.

L3) involves only local calculations. The computational cost
associated with the function Adaptive-Solver depends on the
value of x(i). It is clear that the cost of Adaptive-Solver can
vary from mesh point to mesh point. The cost of Adap-
tive-Solver at a given mesh point changes slowly between it-
erations of the outer loop Ll.

There are a number of strategies that can be used in parti-
tioning data and work associated with this flame code. If the
convection calculations comprise the bulk of the computation
time, it would be reasonable to partition the mesh (arrays x, y,
and z in Fig. 5) into equal sized blocks.

However, the reaction calculations (loop nest L3 in Fig. 5)
usually comprise at least half of the total computational cost. A
majority of the work associated with the reaction phase of the
calculation is carried out on a small fraction of the mesh
points. The current approach involves maintaining a block
mapping of the mesh (arrays x, y, and z) during the convec-
tion phase. In order to ensure a good load balance during the
reaction phase, only expensive reaction calculations are redis-
tributed. In Fig. 5, array element x(i) must be transmitted in
order to redistribute the reaction calculation for mesh point i.
Once the reaction calculation is carried out, the solution z(i) is
returned to the processor to which it is assigned. At a given
mesh point, the cost associated with a reaction calculation
generally varies gradually as a problem progresses. This prop-
erty provides a way to estimate reaction calculation costs in the
subsequent computation step.

Ll: do time = 1, t imeatepe

C Convection Phase:

L2: do i = 1, NPOINTS

x(i) = 4) + Q(i), y(i-11, y(i), y(i+l), z(i))

end do

y(l:NPOINTS) = x(l:NPOINTS)

C Reaction Phase:

L3: do i = 1, NPOINTS

z(i) = AdaptiveSolver(x(i))

end do

end do

Fig. 5. Overview-combustion code.

B. Solving Irregular Problems

This section describes how irregular problems can be solved
efficiently on distributed memory machines. On distributed
memory machines the data and the computational work must
be divided between individual processors. The criteria for
partitioning are minimizing the volume of interprocessor data
communication and good load-balancing.

Once distributed arrays have been partitioned, each proces-
sor ends up with a set of globally indexed distributed array
elements. Each element in a size N distributed array, A, is as-
signed to a particular home processor. In order for other proc-
essors to be able to access a given element A(i) of the distrib-
uted array, the home processor and local address of A(i) must

PONNUSAMY ET AL.: RUNTIME SUPPORT AND COMPILATION METHODS FOR USER-SPECIFIED IRREGULAR DATA DISTRIBUTIONS 819

be determined. A translation table is built that lists the home
processor and the local address for each array element.

Memory considerations make it clear that it is not always
feasible to place a copy of the translation table on each proces-
sor, so the translation table must be distributed between proc-
essors. This is accomplished by distributing the the translation
table in blocks, i.e., putting the first N/F elements on the first
processor, the second N/P elements on the second processor,
etc., where P is the number of processors. When an element
A(m) of distributed array A is accessed, the home processor
and local offset are found in the
translation table stored in processor e

ortion of the distributed
((m - 1)/N) x PA + 1. The

translation table lookup aimed at discovering the home proces-
sor and the offset associated with a global distributed array
index is called a dereference request.

Consider the irregular loop L2 in Fig. 1 that sweeps over the
edges of a mesh. In this case, distributing data arrays x and y
corresponds to partitioning the mesh vertices; partitioning loop
iterations corresponds to partitioning edges of the mesh.
Hence, each processor gets a subset of loop iterations (edges).
An edge i that has both end points (edgel and edge2(i)) in-
side the same partition (processor) requires no outside infor-
mation. On the other hand, edges which cross partition
boundaries require data from other processors. Before execut-
ing the computation for such an edge, a processor must re-
trieve the required data from other processors.

There is typically a nontrivial communication latency, or
message startup cost, in distributed memory machines. Com-
munication is vectorized to reduce the effect of communication
latency and software caching is carried out to reduce commu-
nication volume. To carry out either optimization, it is ex-
tremely helpful to have a priori knowledge of data access pat-
terns. In irregular problems, it is generally not possible to
predict data access patterns at compile time. For example, the
values of indirection arrays edge1 and edge2 of loop L2 in
Fig. 1 are known only at runtime because they depend on the
input mesh. During program execution, preprocessing exam-
ines the data references of distributed arrays. Each processor
precomputes which data need to be exchanged. The result of
this preprocessing is a communication schedule [30].

Each processor uses communication schedules to exchange
required data before and after executing a loop. The same
schedules can be used repeatedly, as long as the data reference
patterns remain unchanged. In Fig. 1, loop L2 is carried out
many times inside loop Ll. As long as the indirection arrays
edge1 and edge2 are not modified within Ll, it is possible
to reuse communication schedules for L2. Schedule reuse will
be discussed in detail in Section III.

C. Communication Vectorization and Software Caching

The process of generating and using schedules to carry out
communication vectorization and software caching can be de-
scribed with the help of the example shown in Fig. 1. The ar-
rays x, y. edgel, and edge2 are partitioned between the
processors of the distributed memory machine. Assume that
arrays x and y are distributed in the same fashion. Array dis-
tributions are stored in a distributed translation table. These

local indirection arrays are passed to the procedure localize as
shown in statement Sl in Fig. 6.

Fig. 6 contains the preprocessing code for the simple irregu-
lar loop L2 shown in Fig. 1. In this loop, values of array Y are
updated using the values stored in array x. Hence, a processor
may need an off-processor array element of x to update an
element of y and it may update an off-processor array element
of y. The goal is to compute 1) a gather schedule-a commu-
nication schedule that can be used for fetching off-processor
elements of x, and 2) a scatter schedule-a communication
schedule that can be used to send updated off-processor ele-
ments of y. However, the arrays x and y are referenced in an
identical fashion in each iteration of the loop L2, so a single
schedule that represents data references of either x or y can be
used for fetching off-processor elements of x and sending off-
processor elements of y.

c create the required m.lmdula (Inspector)

Sl Collect indirection array trsces and call CHAOS procedure locallm to compute arheduls

C The actual computation (Executor)

S3 tall gather(x(beginJmffer), x, schedule)

S4 do i=l, nlocdxdges

S5 y(local&el(i)) = y(locdsdgel(i)) + f(x(localzdgel(i)), x(locahdge2(i)))

SB y(locdicdge2(i)) = y(locdsdgeZ(i)) + g(x(localxdgel(i)), x(loaLedge!2(i)))

S? end do

Sg call reatteradd(y(begin4u~er), y, schedule)

Fig. 6. Node code for simple irregular loop.

A sketch of how the procedure localize works is shown in
Fig. 7. The globally indexed reference pattern used to access
arrays x and y is stored in the array part-edge. The proce-
dure localize dereferences and translates part-edge so that
valid references are generated when the loop is executed. The
buffer for each data array immediately follows the on-
processor data for that array. For example, the buffer for data
array y begins at y (begin-buffer) . Hence, when localize
translates part-edge to local-edge, the off-processor
references are modified to point to buffer addresses. The pro-
cedure localize uses a hash table to remove any duplicate ref-
erences to off-processor elements so that only a single copy of
each off-processor datum is transmitted. When the off-
processor data are collected into the buffer using the schedule
returned by localize, the data are stored in a way such that exe-
cution of the loop using the local-edge accesses the cor-
rect data.

The executor code starting at S2 in Fig. 6 carries out the
actual loop computation. In this computation the values stored
in the array y are updated using the values stored in x. During
the computation, accumulations to off-processor locations of
array y are carried out in the buffer associated with array y.
This makes it necessary to initialize the buffer corresponding
to off-processor references of y. To perform this action, the
function zero-out-buffer shown in statement S2 is called. Af-
ter the loop computation, the data in the buffer location of ar-

820 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 8, AUGUST 1995

Partitioned global

reference list

localize

1 off+nDcssor

J

references

data array

31

local

data

buff- off-prowsor data

Fig. 7. Index translation by localize mechanism.

ray y are communicated to the home processors of these data
elements (scatter&d). There are two potential communica-
tion points in the executor code, i.e., the gather and the scat-
ter-udd calls. The gather on each processor fetches all the
necessary x references that reside off-processor. The scut-
ter-udd call accumulates the off-processor y values. A de-
tailed description of the functionality of these procedures is
given in Ponnusamy [33].

D. Overview of CHAOS

Efficient runtime support has been developed to deal with
problems that consist of a sequence of clearly demarcated con-
current computational phases. The project is called CHAOS; the
runtime support is called the CHAOS library [33]. The CHAOS
library is a superset of the PARTI library [30], [38], [ll].

Solving concurrent irregular problems on distributed mem-
ory machines using CHAOS runtime support involves five
major steps (Fig. 8). The first three steps in the figure concern
mapping data and computations onto processors. This section
provides a brief description of these steps and will discuss
them in detail in later sections.

Initially, the distributed arrays are decomposed into a
known regular manner.

1) The first step is to decompose the distributed array ir-
regularly with the user provided information. When the
user chooses connectivity as a piece of information to be
used for data partitioning, preprocessing is required to
generate GeoCoL graph (see Section V) before informa-
tion can be passed to a partitioner. In Phase A of Fig. 8,
CHAOS procedures can be called to do the necessary
preprocessing. For example, the user may employ a par-
titioner that uses the connectivity of the mesh shown in
Fig. 2 or may use a partitioner that uses the spatial infor-
mation of the mesh vertices. The partitioner calculates
how data arrays should be distributed.

2) In Phase B, the newly calculated array distributions are

Phase A
Germate G&L Graph
Pa&ion GmCoL Graph

PIIWOB
Gaaate Iteration Grrph
Patitioo Itaatlon Graph

P8rtition

> DU

PiUtkiOn

>
Loop
ItaatiUU

PbSSCC
Remap Arrays and Loop Itaatioru > Rasp

PhaseD
Pre-p0ce.u Loops

PlueE
Execute Loops

Fig. 8. Solving irregular problems.

used to decide how loop iterations are to be partitioned
among processors. This calculation takes into account the
processor assignment of the distributed array elements
accessed in each iteration. A loop iteration is assigned to
the processor that has the maximum number of local dis-
tributed arrays elements accessed in that iteration. Once
data are distributed, based on the access patterns of each
iteration and data distribution, the runtime routines for
this step determine on which processor each iteration will
be executed.

3) Once new data and loop iteration distributions are de-
termined, Phase C carries out the actual remapping of ar-
rays from the old distribution to the new distribution.

4) In Phase D, the preprocessing needed for software caching,
communication vectorization and index translation is car-
ried out. In this phase, communication schedules are gen-
erated that can be used to exchange data among processors.

5) Finally, in Phase E, information from the earlier phases is
used to carry out the computation and communication.

CHAOS and PART1 procedures have been used in a variety
of applications, including sparse matrix linear solvers, adap-
tive computational fluid dynamics codes, molecular dynamics
codes, and a prototype compiler [38] aimed at distributed
memory multiprocessors.

E. Overview of Existing Language Support

While these data decomposition directives are presented in
the context of Fortran D, the same optimizations and analo-
gous language extensions could be used for a wide range of
languages and compilers such as Vienna Fortran, PC++, and
HPF. Vienna Fortran, Fortran D, and HPF provide a rich set of
data decomposition specifications. A definition of such lan-
guage extensions may be found in Fox et al. [14], Loveman et
al. [131, and Chapman et al. [7], [8]. Fortran D and HPF re-
quire that users explicitly define how data are to be distributed.
Vienna Fortran allows users to write procedures to generate
user defined distributions. The techniques described in this
paper are being adapted to implement user defined distribu-
tions in the Vienna Fortran compiler; details of the Vienna
Fortran based work will be reported elsewhere.

Fortran D and Vienna Fortran can be used to explicitly
specify an irregular partition of distributed array elements. Fig.

PONNUSAMY ET AL.: RUNTIME SUPPORT AND COMPILATION METHODS FOR USER-SPECIFIED IRREGULAR DATA DISTRIBUTIONS

9 presents an example of such a Fortran D declaration. In For-
tran D, one declares a template called a distribution that is
used to characterize the significant attributes of a distributed
array. The distribution fixes the size, dimension and way in
which the array is to be partitioned between processors. A dis-
tribution is produced using two declarations. The first declara-
tion is DECOMPOSITION. Decomposit ion fixes the name,
dimensionality and size of the distributed array template. The
second declaration is DISTRIBUTE. Distribute is an execu-
table statement and specifies how a template is to be mapped
onto the processors.

Fortran D provides users with a choice of several regular
distributions. In addition, a user can explicitly specify how a
distribution is to be mapped onto the processors. A specific
array is associated with a distribution using the Fortran D
statement ALIGN. In statement S3, of Fig. 9, two 1D decom-
positions, each of size N, are defined. In statement S4, decom-
position reg is partitioned into equal sized blocks, with one
block assigned to each processor. In statement S5, array map
is aligned with distribution reg. Array map will be used to
specify (in statement S7) how distribution irreg is to be
partitioned between processors. An irregular distribution is
specified using an integer array; when map(i) is set equal to p,
element i of the distribution irreg is assigned to processor p.

The difficulty with the declarations depicted in Fig. 9 is that
it is not obvious how to partition the irregularly distributed
array. The map array that gives the distribution pattern of i r -
reg has to be generated separately by running a partitioner
(the user may supply the partitioner or use one from a library).
The Fortran D constructs are not rich enough for the user to
couple the generation of the map array to the program compi-
lation process. While there are a wealth of partitioning heuris-
tics available, coding such partitioners from scratch can repre-
sent a significant effort. There is also no standard interface
between the partitioners and the application codes. Section IV
will discuss language extensions and compiler support to inter-
face data partitioners.

Sl REAL*8 x(N), y(N)
S2 INTEGER map(N)

S3 DECOMPOSITION reg(N), irreg(N)

S4 DISTRIBUTE reg(block)
S5 ALIGN map with reg

S6 . . . set values of map array using some mapping method . .

S7 DISTRIBUTE irreg(map)
S8 ALIGN x, y with irreg

Fig. 9. Fortran D irregular distribution.

Fig. 10 shows an irregular Fortran 90D Forall loop that is
equivalent to the sequential loop L2 in Fig. 1. The loop Ll
represents a sweep over the edges of an unstructured mesh.
Since the mesh is unstructured, an indirection array has to be
used to access the vertices during a loop over the edges. In

loop Ll, a sweep is carried out over the edges of the mesh and
the reference pattern is specified by integer arrays edge1 and
edge2. Loop Ll carries out reduction operations. That is, the
only type of dependency between different iterations of the
loop is the one in which they may produce a value to be accu-
mulated (using an associative and commutative operation) in
the same array element. Fig. 2 shows an example of an un-
structured mesh over which such computations will be carried
out. For example, the loop Ll represents a sweep over the
edges of a mesh in which each mesh vertex is updated using
the corresponding values of its neighbors (directly connected
through edges). Clearly, each vertex of the mesh is updated as
many times as the number of neighboring vertices.

The definition of the Forall construct in HPF follows copy-
in-copy-out semantics-loop carried dependencies are not
allowed. This implementation allows loop carried dependen-
cies that arise due to reduction operations. The reduction op-
erations in a Forall construct are specified using the Fortran D
REDUCE construct. Reduction inside a Forall construct is
important for representing a considerable set of scientific
computations such as those found in sparse and unstructured
problems [9]. This representation also preserves explicit paral-
lelism available in the underlying computations.

C Sweep over edges: Loop Ll

FORALL i = 1, nedges

Sl REDUCE (SUM, y(edgel(i)), f(x(edgel(i)), x(edge2(i))))

S2 REDUCE (SUM, y(edgea(i)), g(x(edgel(i)), x(edgea(i))))
END FORALL

Fig. 10. Example irregular loop in Fortran D.

III. COMMUNICATION SCHEDULE REUSE

The cost of carrying out an inspector (phases B, C, and D in
Fig. 8) can be amortized when the information produced by the
inspector is computed once and then used repeatedly. The
compile time analysis needed to reuse inspector communica-
tion schedules is touched upon in Das et al. [121.

This paper proposes a conservative method that in many
cases allows reuse of the results from inspectors. The results
from an inspector for loop L can be reused as long as:

l the distributions of data arrays referenced in loop L have
remained unchanged since the last time the inspector was
invoked,

l there is no possibility that the indirection arrays associ-
ated with loop L have been modified since the last in-
spector invocation, and

l the loop bounds of L have not changed.

The compiler generates code that, at runtime, maintains a rec-
ord of when the statements or array intrinsics of a Fortran 90D
loop may have written to a distributed array that is used to
indirectly reference another distributed array. In this scheme,
before executing a loop, this runtime record is checked to see
whether any indirection arrays may have been modified since

822 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 8, AUGUST 1995

the last time the loop was invoked.
In this presentation it is assumed that an inspector is being

carried out for a Forall loop. Also assumed is that all indirect
array references to any distributed array y are of the form
y(ia(i)) where ia is a distributed array and i is a loop index
associated with the Forall loop.

The information about an array is stored in a runtime data
structure called data access descriptor (DAD). A DAD for a
distributed array contains (among other things) the current
distribution type of each dimension of the array (e.g., block,
cyclic) and the size of the array. In order to generate correct
distributed memory code, whenever the compiler generates
code that references a distributed array, the compiler must
have access to the array’s DAD. In this scheme, a global data
structure is also maintained to keep track of modifications of
any array with a given DAD.

A global variable n-mod is maintained that represents the
cumulative number of Fortran 90D loops, array intrinsics or
statements that have modified any distributed array. Note that
this scheme does not count the number of assignments to the
distributed array, instead it counts the number of times the
program has executed any block of code that writes to a dis-
tributed array.* The variable n-mod may be viewed as a
global time stamp. Each time an array A with a given data ac-
cess descriptor DAD(A) is modified, a global data structure
last-mod is updated to associate DAD(A) with the current
value of the global variable n-mod (i.e., the current global
time stamp). Thus when a loop, array intrinsic, or statement
modifies A, last-mod(DAD(A))is set to n-mod. If the array
A is remapped, it means that DAD(A) changes. In this case,
n-mod is incremented and then last-mod(DAD(A)) is set to
n-mod.

The first time a Forall loop L is executed, inspector for that
loop is carried out. Assume that L has m data arrays
xi, 1 I i I m, and n indirection arrays, ind!, 1 I j I n.
Each time an inspector for L is carried out, the following in-
formation is stored:

1) DAD(XL) for each unique data array xi, for 1 I i I m,

2) DAD(indL) for each unique indirection array

ind,!, for 15 j I n,

3) last-mod (DAD(indL)), for 1 5 j I n, and

4) the loop bounds of L.

The values of DAD(xi) , DAD(indt) , and last-mod

(DAD(ind/)) stored by L’s inspector are designated as

L.DAD(xk), L.DAD(indi), and L.last-mod (DAD(indi)) ,
respectively.

For a given data array xi and an indirection array ind{ in

1. Note that a Forall construct or an array construct is an atomic operation
from the perspective of language semantics, and therefore, it is sufficient to
consider one write per construct rather than one write per element.

a Forall loop L, two sets of data access descriptors are main-
tained. For instance,

1) DAD(x;), the current global data access descriptor as-

sociated with xi and

2) L.DAD(x;), a record of the data access descriptor that

was associated with xi when L carried out its previous
inspector

are maintained. Each indirection array ind! also maintains
two time stamps:

l last-mod (DAD(ind/)) 1s the global time stamp associ-

ated with the current data access descriptor of indL and

l L.last-mod (DAD(indL)) is the global time stamp of

data access descriptor DAD(indi) , last recorded by L’s

inspector.

The first time L is executed, L’s inspector is carried out, the
following checks are performed before subsequent executions
of L. If any of the following conditions are not met, the inspec-
tor must be repeated for L:

1) DAD(x’,).EQU. L.DAD(x’,), 1 I i I m,

2) DAD(indi).EQU. L.DAD(ind{), 1 I j 5 n,

3) last-mod (DAD(ind/)) .EQU. L.last-mod

(L.DAD(indl)), 1 I j I n, and

4) the loop bounds of L remain unchanged.

As the above algorithm tracks possible array modifications
at runtime, there is potential for high runtime overhead in
some cases. The overhead is likely to be small in most compu-
tationally intensive data parallel Fortran 90 codes (see Section
VI). Calculations in such codes primarily occur in loops or
Fortran 90 array intrinsics, so so it is necessary to record
modifications to a DAD once per loop or array intrinsic call.

The same method is employed to track possible changes to
arrays used in the construction of the data structure produced
at runtime to link partitioners with programs. This data
structure is called a GeoCoL graph, and it will be described
in Section IV.A.l. This approach makes it simple for a
compiler to avoid generating a new GeoCoL graph and car-
rying out a potentially expensive data repartition when no
change has occurred.

IV. COUPLING PARTITIONERS

In irregular problems, it is often desirable to allocate com-
putational work to processors by assigning all computations
that involve a given loop iteration to a single processor [38].
Consequently, both distributed arrays and loop iterations are
partitioned using a two-phase approach (Fig. 8). In the first

PONNUSAMY ET AL.: RUNTIME SUPPORT AND COMPILATION METHODS FOR USER-SPECIFIED IRREGULAR DATA DISTRIBUTIONS 823

phase, termed the data partitioning phase, distributed arrays
are partitioned. In the second phase, called loop iteration
partitioning, loop iterations are partitioned using the informa-
tion from the first phase. This appears to be a practical ap-
proach, as in many cases the same set of distributed arrays are
used by many loops. The following two subsections describe
the phases.

A. Data Partitioning

When distributed arrays are partitioned, loop iterations
have not yet been assigned to processors. Assume that loop
iterations will be partitioned using a user-defined criterion
similar to that used for data partitioning. In the absence of
such a criterion, a compiler will choose a loop iteration par-
titioning scheme, e.g., partitioning loops so as to minimize
nonlocal distributed array references. This approach makes
an implicit assumption that most (although not necessarily
all) computation will be carried out in the processor associ-
ated with the variable appearing on the left-hand side of each
statement-this approach is called the almost owner com-
putes rule [36].

There are many partitioning heuristics methods available
based on physical phenomena and proximity [39], [3], [44],
[17]. Table II lists some of the commonly used heuristics and
the types of information they use for partitioning. Most data
partitioners make use of undirected connectivity graphs and
spatial information. Currently these partitioners must be cou-
pled to user programs manually. This manual coupling is par-
ticularly troublesome and tedious when users wish to make use
of parallelized partitioners. Further, partitioners use different
data structures and are very problem dependent, making it ex-
tremely difficult to adapt to different (but similar) problems
and systems.

COMMON
TABLE II

PARTITIONING H~ms~~cs

Algorithm [27] J 4 J
Inertial

Bisection [31] J 4
Ke&ghm

- Lin P21 J 4 J

A. I. Interface Data Structures for Purtitioners

Partitioners are linked to programs by using a data structure
that stores information on which data partitioning is to be
based. Data partitioners can make use of different kinds of
program information. Some partitioners operate on data struc-
tures that represent undirected graphs [39], [22], [27]. Graph
vertices renresent array indices: nraoh edges reoresent deuend-

encies. Consider the example loop Ll in Fig. 10. The graph
vertices represent the N elements of arrays x and y. The graph
edges of the loop in Fig. 10 are the union of the edges linking
vertices edgel and edge2(i).

In some cases, it is possible to associate geometrical infor-
mation with a problem. For instance, meshes often arise from
finite element or finite difference discretizations. In such cases,
each mesh point is associated with a location in space. Each
graph vertex can be assigned a set of coordinates that describe
its spatial location. These spatial locations can be used to par-
tition data structures [3], [31].

Vertices may also be assigned weights to represent esti-
mated computational costs. In order to accurately estimate the
computational costs, partitioners need information on how
work will be partitioned. One way of deriving weights is to
make the implicit assumption that an owner computes rule will
be used to partition work. Under this assumption, computa-
tional cost associated with executing a statement will be at-
tributed to the processor owning a left-hand side array refer-
ence. The weight associated with a vertex in the loop L2 of
Fig. 10 would be proportional to the degree of the vertex, as-
suming functions f and g have identical computational costs.
Vertex weights can be used as the sole partitioning criterion in
problems in which computational costs dominate. Examples of
such code include the flame simulation code described in Sec-
tion II.A.2 and “embarrassingly parallel problems” [9], where
computational cost predominates.

A given partitioner can make use of a combination of con-
nectivity, geometrical, and weight information. For instance,
sometimes it is important to take estimated computational
costs into account when carrying out coordinate or inertial
bisection for problems where computational costs vary greatly
from node to node. Other partitioners make use of both geo-
metrical and connectivity information [lo].

Since the data structure that stores information on which
data partitioning is to be based can represent Geometrical,
Connectivity and/or Load information, it is called the GeoCoL
data structure.

More formally, a GeoCoL graph G = (V, E, W,, W,, C)
consists of

l)asetofverticesV={vi,~~, vn}, where n = IVI,
2) a set of undirected edges E = {e,, e2, e,], where

m = IEI,
3) a set of vertex weights W, =(Wi , W,’ , . . . , W:},

4)asetofedgeweights W,=(W~,W~,...,W~), and

5) a set of coordinate information, for each vertex, of di-
mensiond, C= 1 < ci, CL>)..., <c; ,...) c;> 1 .

A.2. Generating the GeoCoL Data Structure via a Compiler

This section proposes an executable directive CONSTRUCT
that can be employed to direct a compiler to generate the
GeoCoL data structures. A user can specify spatial information
using the keyword GEOMETRY.

The following is an examnle of a GeoCoL declaration that

824 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6. NO. 8, AUGUST 1995

specifies geometrical information:

C$ CONSTRUCT Gl (N, GEOMETRY& xcord, ycord, zcord)).

This statement def ines a GeoCoL data structure called Gl
having N vertices with spatial coordinate information speci-
fied by arrays xcord, ycord, and zcord. The GEOMETRY
construct is closely related to the geometrical partit ioning or
value-based decomposit ion directives proposed by von
Hanxleden [161.

Similarly, a GeoCoL data structure that specifies only ver-
tex weights can be constructed using the keyword LOAD as
follows.

C$ CONSTRUCT G2 (N, LOAD(weight)).

Here, a GeoCoL structure called G2 consists of N vertices with
vertex i having LOAD weight(i).

The following example illustrates how connectivity infor-
mation is specif ied in a GeoCoL declaration. The integer ar-
rays nl and n2 list the vertices associated with each of E
graph edges and integer arrays nl and n3 list vertices for an-
other set of E edges.

C$ CONSTRUCT G3 (N, LINK(E, nl, n2), LINK(E, nl, n3)).

The keyword LINK is used to specify the edges associated
with the GeoCoL graph. The resultant edges of the GeoCoL
data structure are the union of 1) edges linking nl(i) and n2(i)
and 2) edges linking nl(i) and n3(i).

Any combinat ion of spatial, load, and connectivity informa-
tion can be used to generate the GeoCoL data structures. For
instance, the GeoCoL data structure for a partit ioner that uses
both geometrical and connectivity information can be specif ied
as follows:

C$ CONSTRUCT G4 (N, GEOMETRY
(3, xcord, ycord, zcord), LINK(E, edgel, edge2)) .

Once the GeoCoL data structure is constructed, data parti-
t ioning is carried out. Assume that there are P processors. At
compile time dependency coupl ing code is generated. This
code generates calls to the runtime support that, when the pro-
gram executes:

1) generates the GeoCoL data structure,
2) passes the GeoCoL data structure to a data partit ioning

procedure where the partit ioner partitions the GeoCoL
into P subgraphs, and

3) passes the new distribution information (the assignment
of GeoCoL vertices to processors) to a runtime procedure
to redistribute data.

The GeoCoL data structure is constructed from the initial
default distribution of the distributed arrays. Once the parti-
t ioner generates a new distribution, the arrays can be redis-
tr ibuted based on it. A communicat ion schedule is built and
used to redistribute the arrays from the default to the new
distribution.

Vienna Fortran [45] provides support for the user to specify
a function for distributing data. W ithin the function, the user
can perform any processing to specify the data distribution.

B. Examples of Linking Data Partitioners

Fig. 11 illustrates a possible set of partit ioner coupl ing di-
rectives for the loop Ll in Fig. 10. Statements Sl to S4 pro-
duce a default initial distribution of data arrays x and y and
the indirection arrays edge1 and edge2 in loop L2. The
statements S5 and S6 direct the generat ion of code to construct
the GeoCoL graph and call the partitioner. Statement S5 indi-
cates that the GeoCoL graph edges are to be generated based
on the indirection arrays edge1 and edge2. This information
is provided by using the keyword LINK in the CONSTRUCT
directive. The motivation for using the indirection arrays to
construct the edges is that they represent the underlying data
access patterns of the arrays x and y in loop Ll. W h e n the
GeoCoL graph with edges represent ing the data access pattern
is passed to the partitioner, the partit ioner tries to break the
graph into subgraphs such that the number of edges cut be-
tween the subgraphs is minimal. Hence, communicat ion be-
tween processors is minimized. The statement S6 in the figure
calls the recursive spectral bisection (RSB) partit ioner with
GeoCoL as input. The user is provided with a library of com-
monly available partit ioners and can choose among them.
Also, the user can link a customized partit ioner as long as the
calling sequence matches that of the partit ioners in the library.
Finally, the distributed arrays are remapped in statement S7
using the new distribution returned by the partitioner.

REAL*8 x(nnodes), y(nnodes)

INTEGER edgel(nedges), edgea(nedges)
Sl DYNAMIC, DECOMPOSITION reg(nnodes),reg2(nedges)
S2 DISTRIBUTE reg(BLOCK), regZ(BLOCK)
S3 ALIGN x, y with reg

S4 ALIGN edgel, edge2 with 1.32

. . . .
call readdata(edge1, edge2, . ..)

S5 CONSTRUCT G(nnodes),LINK(nedges,edgel, edge2))
S6 SET distfmt BY PARTITIONING G USING RSB
S7 REDISTRIBUTE reg(distfmt)
c Loop over edges involving x, y

L2 FORALL i = 1, nedges
REDUCE (SUM, y(edgel(i)), f(x(edgel(i)), x(edge2(i))))

REDUCE (SUM, y(edgea(i)), g(x(edgel(i)), x(edgea(i))))

END FORALL

. . . .

Fig. 11. Example of implicit mapping in Fortran 90D.

Fig. 12 illustrates code similar to that shown in Fig. 11 ex-
cept that the use of geometr ic information is shown. Arrays
xc, Yc, and zc, which carry the spatial coordinates for ele-
ments in x and y, are al igned with the same decomposit ion to
which arrays x and y are aligned. Statement S5’ specifies that
the GeoCoL data structure is to be constructed using geometr ic
information. S6’ specifies that recursive coordinate bisection
(RCB) partit ioner is used to partition the data.

Recall from Section II.A.2 that the computat ion in the com-
bust ion code cycles over a convect ion phase and a reaction
phase. The data access pattern in the convect ion phase in-

PONNUSAMY ET AL.: RUNTIME SUPPORT AND COMPILATION METHODS FOR USER-SPECIFIED IRREGULAR DATA DISTRIBUTIONS 825

S5’ CONSTRUCT G (modes, GEOMETRY(3, XC, yc, ZC))

S6’ SET distfmt BY PARTITIONING G USING RCB

S7’ REDISTRIBUTE reg(distfmt)

Fig. 12. Example of implicit mapping using geometry information in For-
tran 90D.

$1 DYNAMIC, DECOMPOSITION gid(NPOINTS)
S2 DISTRIBUTE grid(BLOCK)
53 ALIGN x(:), J(:), %(:), wt(:) WITH grid(BLOOK)
Kl nt(l :NPOINTS) = 1
K2 do J = 1, nfimeateps

0 Phm 1: N.&r St&a S&u - Convection Phase - BLOCK data distribution
K3 FOBALL i = 1, NPOINTS
K4 x(i) = x(i) + F(y(i), y(i-I), y(i), y&l), z(i))
KS END FOBALL
S4 CONSTRUCT G (NPOINTS, LOAD(
S3 SET mydist BY PARTITIONING G USING BINPACKING
S6 REDISTRIBUTE .qid(mydiit)
C Phase 2: Adaptive ODE Solver - Reaction Phase - IRREGULAR data diatribotion

K6 wt(1:NPOINT.S) = 1
K7 FOBALL i = 1, NPOINTS
K6 s(i) = Ad~ptivesolver(x(i),wt(i))
K9 END FOBALL
S7 REDISTRIBUTE yid(BLOCK)

K10 end do

Fig. 13. An example of adaptive partitioning using Fortran 90D.

volves access to only nearest neighbor array elements. Hence,
dur ing the convect ion phases it is reasonable to make use of a
BLOCK distribution of data for arrays x, y, and z. Statements
Sl through S3 in Fig. 13 produce BLOCK distribution of data
arrays. In the reaction phase, the amount of work done at each
mesh point varies as time progresses, and no communicat ion
occurs. The computat ional cost of the reaction phase at each
mesh point in the current time step is stored in array wt. This
cost information is used to distribute data arrays in the reaction
phase of the next time step. A bin-packing heuristic is invoked
to obtain the data distribution for the reaction phase. The
statements S4 through S6 carry out the data distribution for the
reaction phase.

C. Loop Iteration Partitioning

Once data have been partit ioned, computat ional work can
be partit ioned. One convent ion is to compute a program as-
s ignment statement S in the processor that owns the distributed
array element on S’s left-hand side. This convent ion is nor-
mally referred to as the “owner-computes” rule. (If the left
hand side of S references a replicated variable then the work is
carried out in all processors.) One drawback to the owner-
computes rule in sparse codes is that communicat ion within
loops may be needed, even in the absence of loop carried de-
pendencies. For example, consider the following loop:

FORALLi=l,N
Sl x(ib(i)) =
S2 y(ia(i)) = x(ib(i))

END FORALL

This loop has a loop independent dependence between Sl and
S2, but no loop carried dependencies. If work is ass igned using
the owner-computes rule, for iteration i, statement S 1 would be

computed on the owner of ib(i), OWNER(ib(i)), while state-
ment S2 would be computed on the owner of ia(
OWNER(ia(i)). The value of y(ib(i)) would have to be com-
municated whenever OWNER(ib(i)) # OWNER(ia(i)).

In Fortran D and Vienna Fortran, a user can specify on
which processor to carry out a loop iteration using the ON
clause. For example, in Fortran D, the above loop could be
specif ied as

FORALL i = 1, N ON HOME(x(i))
Sl x(ib(i)) =
S2 y(ia(i)) = x(ib(i))

END FOWL

This means that iteration i must be computed on the processor
on which x(i) resides, OWNER(x(i)), where the sizes of arrays
ia and ib are equal to the number of iterations. Similar ca-
pabilities exist in Vienna Fortran.

W h e n an ON clause is not explicitly specified, it is the com-
piler’s responsibility to determine where to compute each itera-
tion. An alternate policy to the owner computes rule is to assign
all work associated with a loop iteration to a given processor.
The current default is to employ a scheme that executes a loop
iteration on the processor that is the home of the largest number
of distributed array references in an iteration. This scheme is
referred to as the “almost owner computes rule.”

V. RUNTIME SUPPORT

This section briefly discusses the functionality of the run-
time primitives that are used to perform the steps outl ined in
Fig. 8. It should be noted that one of the important features of
the approach taken in this work is the rel iance upon an effi-
cient runtime system.

The runtime support for compi ler -embedded mapping pre-
sented in this paper can be broadly divided into three catego-
ries: 1) general support for communicat ion and distributed data
management , 2) data partitioning, and 3) iteration partit ioning
(work assignment). The following subsect ions briefly descr ibe
these primitives.

A. Data Partitioning

The runtime support associated with data partit ioning in-
c ludes procedures for generat ing the GeoCoL data structure
for partit ioners (that operate on the GeoCoL data structure) to
determine a data distribution, and procedures for remapping
data as specif ied by the partit ioner output.

The data structures describing the problem domain are
specif ied by the CONSTRUCT directive discussed earlier.
Processing this primitive requires generat ing a weighted inter-
action graph represent ing the computat ion load and/or com-
munication dependencies. For example, the connectivity edges
of the GeoCoL graph might reflect the read/write access pat-
terns of the specif ied computation.

W h e n connectivity information for the GeoCoL data struc-
ture is provided in the form of arrays (e.g., indirection arrays
in an irregular loop), preprocessing is required to construct the
connectivity graph. The procedures el iminate-dup-edges and
generate_geocol could be used to do the preprocessing. Given
the data access pattern information in the form of integer ar-

826 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 8, AUGUST 1995

rays nl and n2, the GeoCoL graph is constructed by adding
an undirected edge < nl(i), n2(i) > between nodes nl(i) and
n2(i) of the graph.

Fig. 14 shows the parallel generat ion of connectivity infor-
mation in the GeoCoL data structure when integer indirection
arrays are provided. Each processor generates the local Geo-
CoL data structure using the local set of indirection arrays.
The local g raph is generated by the procedure elimi-
nate-dup-edges. For clarity, the local GeoCoL is shown as an
adjacency matrix. The local graphs are then merged to form a
global distributed graph using the procedure generute-geocol.
During the merge, if the local g raph is v iewed as an adjacency
matrix stored in compressed sparse row format, processor Pa
collects all entries from the first N/P rows in the matrix from
all other processors, where N is the number of nodes (array
size) and P is the number of processors. Processor Pi collects
the next N/P rows of the matrix and so on. Since entries for
each row may come from many processors there may be dupli-
cate entries. Processors remove duplicate entries when they
collect adjacency list entries. The output of procedure gener-
ate_geocol is a GeoCoL data structure with the global connec-
tivity information.

Any appropriate data partit ioner may be used to compute
the new data distribution using the GeoCoL graph. Table II
lists many of the candidate partit ioners for determining the
data partitioning. In fact, a user may use any partit ioner as long
as the input and output data structures conform to those re-
quired by other primitives. The output of the partit ioner de-
scribes a mapping of the data satisfying the desired criteria for
load balance and communicat ion minimization.

* Generate local g raph on each processor represent ing
Loop’s array access pattern

L0CB.l

graph

NxN NxN

* Merge local graphs to produce a distributed graph

Fig. 14. Parallel generat ion of GeoCoL graph.

B. Work load Partitioning

Once data are partit ioned, computat ion also must be parti-
t ioned. Work load (computation) partit ioning refers to deter-
mining which processor will evaluate which expressions.
Computat ion partit ioning can be performed at several levels of distributions.

To redistribute data and loop iteration space, a runtime pro-
cedure called remap has been developed. This procedure takes
as input the original and the new distribution in the form of
translation tables and returns a communicat ion schedule. This
schedule can be used to move data between initial and new

granularity. At the finest level, each operat ion may be indi-
vidually ass igned to a processor. At the coarsest level, a block
of iterations may be assigned to a processor, without consider-
ing the data distribution and access patterns. Both approaches
seem expensive since, in the first case, the amount of preproc-
essing overhead can be very high, whereas in the second case
communicat ion cost can be very high. This paper has taken an
approach which represents a compromise. Each loop iteration
is considered individually before assigning it to a processor.

For this purpose, data structures and runtime procedures
have been developed to support iteration partitioning. To par-
tition loop iterations, CHAOS uses a graph called the runtime
iteration graph, or RIG. The RIG associates with each loop
iteration i, all indices of each distributed array accessed during
iteration i. A RIG is generated for every loop that references at
least one irregularly distributed array.

Using the RIG, for each iteration a list containing the num-
ber of distinct data references is computed on each processor.
Primitive deref-rig uses the RIG and the distributed transla-
tion tables to find the processor assignments associated with
each distributed array reference. Subsequently, primitive it-
erutiongartit ioner uses this information to partition iterations.
Currently, the heuristic used for iteration partit ioning is the
“almost owner computes” rule, in which an iteration is as-
s igned to the processor which owns the majority of the ele-
ments participating in that particular iteration,

Note that just as there are many possible strategies that can
be used to partition data, there are also many strategies that
can be used to partition loop iterations, Currently several
techniques have been investigated to specify “workload parti-
t ioners” or “iteration partit ioners” in which a user can provide
a customized heuristic.

C. Data Redistribution

For efficiency in scientific programs, distributions of dis-
tr ibuted data arrays may have to be changed between compu-
tational domains or phases. For instance, as computat ion pro-
gresses in an adapt ive problem, the work load and distributed
array access patterns may change based on the nature of the
problem. This change might result in a poor load balance
among processors. Hence, data must be redistributed periodi-
cally to maintain this balance.

To obtain an irregular data distribution for an irregular con-
current problem, data arrays are initially partit ioned in a known
distribution. Then, a heuristic method is appl ied to obtain an
irregular distribution 6s. Once the new data distribution is ob-
tained, all data arrays associated with distribution 6, must be
transformed to distribution 6s For example, in solving the Euler
equat ions of an unstructured grid, the flow variables are distrib-
uted in this method. Similarly, the loop iterations and the indi-
rection arrays associated with the loop must also be remapped.

PONNUSAMY ET AL.: RUNTIME SUPPORT AND COMPILATION METHODS FOR USER-SPECIFIED IRREGULAR DATA DISTRIBUTIONS 827

VI. EXPERIMENTALRESULTS

This section presents the experimental results for the vari-
ous techniques presented in this paper for compiler and run-
time support for irregular problems. All measurements are
performed on the Intel iPSU860. In particular, this section
presents the per formance improvements obtained by employ-
ing communicat ion schedule reuse, compar ing the perform-
ance of compiler generated code with that of hand coded ver-
sions, and also presents data on the per formance of compiler-
embedded mapping using various partitioners.

A. Communicat ion Schedule Reuse

This section presents per formance data for the schedule
saving technique proposed in Section III for the Fortran
90D/HPF compiler implementation.

These per formance measurements are for a loop over edges
from a 3D unstructured Euler solver [29] for both 10K and
53K mesh points, and for an electrostatic force calculation
loop in a molecular dynamics code for a 648 atom water
simulation [5]. The functionality of these loops’ is equivalent to
the loop Ll in Fig. 10.

Table III presents the per formance results of the compiler
generated code with and without the schedule reuse technique.
The table presents the execut ion times of the loops for 100
iterations with distributed arrays decomposed irregularly using
a recursive coordinate bisection partitioner. Clearly, being able
to reuse communicat ion schedules improves per formance sig-
nificantly. This is because without reuse, schedules must be
regenerated at each time step, and therefore, the cost is pro-
portional to the number of iterations.

B. Performance of the Mapper Coupler
This section presents per formance results that compare the

the costs incurred by the compiler generated mapper coupler
procedures with the cost of a hand embedded partitioner.

TO map arrays, two different kinds of parallel partit ioners
are employed: 1) geometry based partit ioners (coordinate bi-
section [3] and inertial bisection [31]) and 2) a connectivity
based partit ioner (recursive spectral bisection [39]). The per-

TABLE III
PERFORMANCE OF SCHEDULE REUSE

TABLE IV
UNSTRUCTURED MESH TEMPLATE-53K MESH-32 PROCESSORS

mme
Recursive Coordisate Bisection 1 Block Partition
Hand I Corm&r: I Compiler I Hand I Compiler

I &SW) I I Coded No S&d& Schehule Coded
l lmm I Reuse I

Partitionu 1.3 1.3 1.3 0.0 0.0
Inspector k Remap 3.3 286 3.4 3.2 3.4

Executor 13.9 13.9 15.1 36.6 38.2
Total 18.5 301 19.8 39.6 41.6

formance of the compiler embedded mapper and a hand paral-
lelized version are shown in Tables IV and V.

In Tables IV and V, Purt idoner represents the time needed
to partition the arrays, Executor depicts the time needed to
carry out the actual computat ion and communicat ion for 100
iterations (time steps), and Inspector & Remap shows the time
taken to build the communicat ion schedule and redistribute
data to the new distribution.

Table IV presents the per formance of results of the Euler
loop with the compiler-l inked recursive coordinate bisection
partit ioner and the BLOCK distribution for a 53K mesh tem-
plate on 32 processors. Two important observat ions can be
made from Table IV. First, the compiler generated code per-
forms almost as well as the hand written code. In fact, the
compiler generated code is within 15% of the hand coded ver-
sion. The overhead is partly due to bookkeeping done to reuse
schedules and partly due to runtime calculation of loop
bounds. Second, the per formance of the code using the parti-
t ioner is much better than the per formance of the block parti-
t ioned code even when the cost of execut ing the partit ioner is
included.

Table V shows the per formance of compiler generated code
when two additional partit ioners are used; namely, recursive
spectral bisection (RSB) and inertial bisection. In Table V,
Purritioner depicts the time needed to partition the GeoCoL
graph data structure using a parallelized version of Simon’s sin-
gle level spectral partit ioner [39]. Only a modest effort was
made to produce an efficient parallel implementation of the
partit ioner and it is bel ieved that the per formance and the execu-
tion time of the partit ioner can be t remendously improved by
using a multilevel version of the partit ioner [2], [181. The Geo-
CoL graph is partit ioned into a number of subgraphs equal to the
number of processors employed. It should be noted that any
parallelized partit ioner could be used. The Graph Generat ion
time depicts the time required to generate the GeoCoL graph.

Clearly, different partit ioners perform differently in terms of
execut ion time and quality of load balancing. The best load
balancing is obtained by using RSB because the time for the
executor phase is minimized. However, the cost of partit ioning
using RSB is quite high. Thus, the choice of a partit ioner
should depend on how long the solution of a problem is likely
to take (the number of time steps).

Table VI shows the per formance of the compiler generated
code for the Euler and the molecular dynamics loops on vari-
ous numbers of processors. To compare the partit ioner’s per-
formance for different programs, timings for a hand coded
block partit ioned version in Table VII are also included. In the

TABLE V
UNSTRUCTURED MESH TEMPLATE-53K MESH-32 PROCESSORS

828 IEEETRANSACTIONSONpARALLELANDDISTRIBUTEDSYSTEMS, VOL. 6. NO.& AUGUST1995

TABLE VI
PERFORMANCEOFCOMPILER-LINKEDCOORDINATEBISE~IONPARTITIONER

WITHSCHEDLJLEREUSE

TABLE VII

blocked version, each contiguous block of array elements are
assigned to processors using the BLOCK distribution. The use
of either a coordinate bisection partitioner or a spectral bisec-
tion partitioner led to a reduction factor of two to three in the
executor time compared to the use of block partitioning. This
example also points out the importance of the number of ex-
ecutor iterations and choice of partitioner. When compared to
the RCB partitioner, the RSB partitioner is associated with
faster time per executor iteration but also a significantly higher
partitioning overhead. Irregular distribution of arrays performs
significantly better than the existing BLOCK distribution sup-
ported by HPF.

C. Performance of Adaptive Problems

Table VIII presents experimental results for an application
of the type described in Section II.A.2. Recall that this type of
application alternates between two distinct computational
phases. The first phase (convection) consists of structured cal-
culations on a Cartesian mesh. The second phase (reaction)
involves a set of local computations at each mesh point. The
computational cost associated with the reaction phase varies
between mesh points. Fig. 5 in Section II.A.2 depicts the com-
putational structure of this type of application.

The presented results are for a simplified version of the Re-
active Euler solver developed by James Weber at the Univer-
sity of Maryland. This algorithm computes the reaction rates of
various gases, integrates the governing rate equations, and
determines the new number densities in a hypersonic medium.
The thermodynamic quantities, such as temperature, pressure,
and specific heat ratio are evaluated as the reaction mechanism
proceeds. The first phase of the Reactive Euler solver is an
explicit Navier Stokes solver, while the second phase is an
adaptive ordinary differential equation solver.

Fig. 13 depicts the load balancing strategy. In this simplified
example, the mesh is represented as a one dimensional array.
The array is partitioned into equal-size blocks (i.e., a BLOCK
mapping). In order to ensure a good load balance during the

TABLE VIII
PERFORMANCEOFCOMBUSTIONCODEWITHCOMPILER-LINKED

LOADBASEDPART~TIONER

TABLE IX
PERFORMANCEOFCOMPILER-LINKEDPARTITIONERS

reaction phase, only expensive reaction calculations are redis-
tributed. Reaction calculations are redistributed based on the
costs incurred in the previous time step. After the reaction phase,
the remapped data are returned to their original positions.

Table VIII presents the performance of the second reaction
phase for 100 cycles, and a comparison between hand coded
and compiler generated codes. The Load Balance columns
give the time taken to carry out the partitioner and remap the
data. A bin-packing heuristic is used to balance the load in the
combustion phase. The performance of the compiler generated
code is almost as good as that of the hand coded version. Also
note the performance improvements obtained when using a
load based partitioner and adaptivity compared to performing
no load balancing.

Finally, Table IX summarizes the compiler performance for
all the codes and presents a comparison with the hand coded
version. For all problems, the performance of the compiler
generated code is within 15% of the hand coded version.

VII. RELATEDWORK

Research has been carried out by von Hanxleden [16] on
compiler-linked partitioners that decompose arrays based on
distributed array element values; these are called value-based
decomposifions. The GEOMETRY construct can be viewed as
a particular type of value based decomposition. Several re-
searchers have developed programming environments that are
targeted toward particular classes of irregular or adaptive
problems. Williams [44] describes a programming environ-
ment (DIME) for calculations with unstructured triangular
meshes using distributed memory machines. Baden [l] has
developed a programming environment targeted towards par-
ticle computations. This programming environment provides
facilities that support dynamic load balancing.

There are a variety of compiler projects targeting distrib-
uted memory multiprocessors: the Fortran D compiler proj-
ects at Rice and Syracuse [14], [4] and the Vienna Fortran
compiler project [45] at the University of Vienna are two
examples. The Jade project at Stanford [24], the DIN0 proj-
ect at Colorado [37], Kathy Yelick’s work [6] at Berkeley,
and the CODE project at University of Texas, Austin, pro-
vide parallel programming environments. Runtime compila-

PONNUSAMY ET AL.: RUNTIME SUPPORT AND COMPILATION METHODS FOR USER-SPECIFIED IRREGULAR DATA DISTRIBUTIONS a29

tion methods have been employed in four compiler projects:
the Fortran D project [20], the Kali project [23], Marina
Chen’s work at Yale [26], and the PART1 project [30], [38].
The Kali compiler was the first compiler to implement in-
spector/executor type runtime preprocessing 1231, and the
ARF compiler was the first compiler to support irregularly
distributed arrays [38].

In earlier work, a strategy was outl ined that would make it
possible for compilers to generate compiler embedded con-
nectivity based partit ioners directly from marked loops [36].
The approach descr ibed here requires more input from the user
and less compiler support. A short version of the techniques
descr ibed in this paper appeared in a conference proceedings
[35]. Support for irregular data distributions in HPF, using
intrinsic functions, has been proposed by Ponnusamy et al.
[34]. Recently, support for irregular data distribution has been
implemented on the Vienna Fortran Compiler, using CHAOS
runtime procedures, in collaboration with this research group.

VIII. CONCLUSIONS

This paper has descr ibed work that demonstrates two new
mechanisms for deal ing effectively with irregular computa-
tions. The first mechanism invokes a user specif ied mapping
procedure using a set of compiler directives. The second
mechanism is a simple conservat ive method that in many cases
makes it possible for a compiler to recognize the potential for
reusing previously computed results from inspectors (e.g.,
communicat ion schedules, loop iteration partitions, and infor-
mation that associates off-processor data copies with on-
processor buffer locations).

The CHAOS procedures descr ibed here can be v iewed as
forming a port ion of a portable, compiler independent, runtime
support library. The CHAOS runtime support library contains
procedures that

1) support static and dynamic distributed array partitioning,
2) partition loop iterations and indirection arrays,
3) remap arrays from one distribution to another, and
4) carry out index translation, buffer allocation, and com-

munication schedule generat ion.

The prototype compiler has been tested on computat ional
templates extracted from an unstructured mesh computat ional
fluid dynamics code, a molecular dynamics code, and an hy-
personic combust ion code. The hand parallelized codes, where
runtime support routines are embedded by hand, have been
compared against the compiler generated codes. The com-
piler’s per formance on these templates was within 15% of the
hand compiled codes.

In the current implementation, iteration partit ioning of a
Forall loop has been performed using the almost owner com-
putes rule. In general, for data partitioning, a user or compiler
should be able to specify a partit ioner to perform iteration
partitioning. Currently, primitives are been developed to cou-
ple iteration partit ioners with Fortran 90 Forall loops.

The CHAOS procedures descr ibed in this paper are avail-
able for public distribution and can be obtained from netlib or
from the anonymous ftp site hyena.cs.umd.edu.

ACKNOWLEDGMENTS

The authors would like to thank Alan Sussman and Raja
Das for many fruitful discussions; Shamik Sharma and Mus-
tafa Uysal for their part in constructing the CHAOS runtime
support; and Donna Meisel for careful proof reading of this
manuscript.

The authors would like to thank Chuck Koelbel and Sanjay
Ranka for many enlightening discussions about universally
applicable partit ioners and how to embed such partit ioners in
compilers. The authors would also like to thank Ken Kennedy
and Seema Hiranandani for many useful discussions about
integrating Fortran D runtime support for irregular problems.
Special thanks go to Reinhard von Hanxleden for his helpful
suggest ions.

The authors would also like to gratefully acknowledge Zeki
Bozkus and Tom Haupt for the time they spent explaining the
internals of the Fortran 90D compiler. The authors would also
like to thank Horst Simon for the use of his unstructured mesh
partit ioning software.

This work was sponsored in part by ARPA (NAG-l-1485),
NSF (ASC 9213821) and ONR (N00014-93-1-0158, N00014-
94-l-0907). Also suppor ted by NASA Contract No. NASI-
19480 while author Saltz was in residence at ICASE, NASA
Langley Research Center, Hampton, Virginia. Author Choud-
hary was also suppor ted by NSF Young Investigator award
(CCR-9357840) and matching funds Intel SSD division and
IBM Corporation. The content of the information does not
necessari ly reflect the posit ion or the policy of the Government
and no official endorsement should be inferred.

REFERENCES
[I] S. Baden, “Programming abstractions for dynamically partitioning and

coordinating localized scientific calculations running on multiproces-
sors,” SIAM J. Sci. and Sfaf. Computat ion, vol. 12, no. 1, Jan. 1991.

121 ST. Barnard and H. Simon, “A fast multilevel implementat ion of re-
cursive spectral bisection for partitioning unstructured problems,”
Technical Report RNR-92-033, NAS Systems Division, NASA Ames
Research Center, Nov. 1992.

[3] M.J. Berger and S.H. Bokhari, “A partitioning strategy for nonuniform
problems on multiprocessors,” IEEE Trans. on Computers, vol. 36, no.
5, pp. 570-580, May 1987.

[4] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, S. Ranka, and M.-Y. Wu.
“Compil ing Fortran 90DIHPF for distributed memory MIMD comput-
ers,” J. of Parallel and Distributed Computing, vol. 21, no. 1, pp. 15-
26, Apr. 1994.

[S] B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swamina-
than, and M. Karplus, “Charmm: A program for macromolecular en-
ergy, minimization, and dynamics calculations,” J. Computat ional
Chemistry, vol. 4, p. 187, 1983.

[6] S. Chakrabarti and K. Yelick, “Implementing an irregular application on
a distributed memory multiprocessor,” Proc. of the Fourth ACM SIG-
PLAN Symp. on Principles and Practice of Parallel Programming
(PPOPP), ACM SIGPLAN Notices, vol. 28, no. 7, May 1993.

[7] B. Chapman, P. Mehrotra, and H. Zima, “Programming in Vienna For-
tran,” Scientific Programming, vol. 1, no. 1, pp. 31-50, Fall 1992.

[8] B. Chapman, P. Mehrotra, and H. Zima, “Programming in Vienna For-
tran,” Technical Report 92-9, ICASE, NASA Langley Research Center,
Mar. 1992.

[9] A. Choudhary, G. Fox, S. Hiranandani. K. Kennedy, C. Koelbel, S.
Ranka, and J. Sahz. “Software support for irregular and loosely syn-
chronous problems,” Comput ing Systems in Eng., vol. 3, nos. l-4, pp.

830 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 8, AUGUST 1995

43-52, 1992. Papers presented at the Symp. on High-Performance
Computing for Flight Vehicles, Dec. 1992.

[lo] T.W. Clark, R. von Hanxleden, J.A. McCammon, and L.R. Scott,
“Parallelization strategies for a molecular dynamics program,” Intel Su-
percomputer Univ. Partners Co&, Mt. Hood, Oreg., Apr. 1992.

[11] R. Das, D.J. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy, “The
design and implementation of a parallel unstructured Euler solver
using software primitives,” AIAA J., vol. 32, no. 3, pp. 489-496, Mar.
1994.

[12] R. Das, J. Saltz, and R. von Hanxleden, “Slicing analysis and indirect
access to distributed arrays,” Proc. offhe Sixth Workshop on Languages
and Compilers for Parallel Computing, pp. 152-168. New York:
Springer-Verlag. 1993. Also available as Univ. of Maryland Technical
Report CS-TR-3076 and UMlACS-TR-93-42.

[13] D. Loveman, ed., “High performance Fortran language specification,
version 1 .O,” Technical Report CRPC-TR92225, Center for Research on
Parallel Computation, Rice Univ., Jan. 1993.

[14] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng,
and M. Wu, “Fortran D language specification,” Dept. of Computer Sci-
ence, COMP TR90-141, Rice Univ., Dec. 1990.

[15] S. Hammond and T. Barth, “An optimal massively parallel Euler solver
for unstructured grids,” AL44 J., AIAA Paper 91-0441, Jan. 1991.

1161 R. von Hanxleden, K. Kennedy, and J. Saltz, “Value-based distribu-
tions in Fortran D-a preliminary report,” Technical Report CRPC-
TR93365S, Center for Research on Parallel Computation, Rice
Univ., Dec. 1993.

[17] R. von Hanxleden and L.R. Scott, “Load balancing on message passing
architectures,” J. of Parallel and Distributed Computing, vol. 13, pp.
312-324.1991.

[18] B. Hendrickson and R. l-eland, “An improved spectral graph partition-
ing algorithm for mapping parallel computations,“ Technical Report
SAND 92-1460, Sandia National Laboratory, Albuquerque, N. Mex.,
Sept. 1992.

[19] High Performance Fortran Forum, “High performance Fortran language
specification,” Scientific Programming, vol. 2, nos. l-2, pp. l-170,
1993.

1201 S. Hiranandani, K. Kennedy, and C. Tseng, “Compiler support for ma-
chine-independent parallel programming in Fortran D,” J. Saltz and P.
Mehrotra, eds.. Compilers and Runtime Software for Scalable Multi-
processors. Amsterdam, The Netherlands: Elsevier, 1991.

[21] A. Jameson, T.J. Baker, and N.P. Weatherhill, “Calculation of inviscid
transonic flow over a complete aircraft,” AIAA paper 86-0103, Jan.
1986.

[22] B.W. Kemighan and S. Lin, “An efficient heuristic procedure for parti-
tioning graphs,” Bell System Technical J., vol. 49, no. 2, pp. 291-307,
Feb. 1970.

[23] C. Koelbel, P. Mehrotra, and J. Van Rosendale, ‘Supporting shared data
structures on distributed memory architectures,” Second ACM SIG-
PLAN Symp. on Principles and Practice of Parallel Programming, pp.
177-186, Mar. 1990.

[24] M. Lam, E.E. Rothberg, and M.E. Wolf, “The cache performance and
optimizations of block algorithms,” Proc. of the Fourth Ini’l Conf on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS IV),, pp. 63-74. Washington, D.C.: ACM Press,
1991.

[25] W.E. l-eland, “Load-balancing heuristics and process behavior,” Proc.
of Performance 86 and ACM SIGMETRICS 86, pp. 54-69,1986.

[26] L.C. Lu and M.C. Chen, “Parallelizing loops with indirect array refer-
ences or pointers,” Proc. of the Fourth Workshop on Languages and
Compilers for ParalleI Computing, Santa Clara, Calif., Aug. 1991.

[27] N. Mansour, “Physical optimization algorithms for mapping data to
distributed-memory multiprocessors,” Technical Report, PhD disserta-
tion, School of Computer Science, Syracuse Univ., 1992.

[28] D.J. Mavriplis, “Adaptive mesh generation for viscous flows using
delaunay triangulation,” J. of Computational Physics, vol. 90, no. 2, pp.
271-291, 1990.

1291 D.J. Mavriplis, ‘Three dimensional unstructured multigrid for the Euler
equations,” paper 91-1549~~. AL44 10th Computational Fluid Dynam-
ics Conf, June 1991.

[30] R. Mirchandaney, J.H. Saltz, R.M. Smith, D.M. Nicol, and K. Crowley,
“Principles of runtime support for parallel processors,” Proc. of the
1988ACM Int’l Conf on Supercomputing, pp. 140-152, July 1988.

[31] B. Nour-Omid, A. Raefsky, and G. Lyzenga, “Solving finite element
equations on concurmnt computers,” Proc. of Symp. on Purullel Com-
pututions and the Impact on Mechanics, Boston, Dec. 1987.

[32] G. Patnaik, K.J. laskey, K. Kailasanath, ES. Oran, and T.V. Brun,
“FLIC-a detailed, two-dimensional f lame model,” NRL Report 6555,
Naval Research Laboratory, Washington, D.C., Sept. 1989.

[33] R. Ponnusamy, “A manual for the CHAOS runtime library,” Technical
Report TR93-105, Computer Science Dept., Univ. of Maryland, Dec.
1993 (available at anonymous ftp site hpsl.cs.umd.edu).

[34] R. Ponnusamy, Y.-S. Hwang, R. Das, J. Saltz, A. Choudhary, and G.
Fox, “Supporting irregular distributions using data-parallel languages,”
IEEE Parallel and Disrributed Technology, vol. 3, no. 1, pp. 12-24,
Spring 1995.

[35] R. Ponnusamy, J. Saltz, and A. Choudhaty, “Runtime-compilation
techniques for data partitioning and communication schedule reuse,”
Proc. Supercomputing ‘93, pp. 361-370. Los Alamitos, Calif.: IEEE CS
Press, Nov. 1993. Also available as Univ. of Maryland Technical Report
CS-TR-3055 and UMIACS-TR-93-32.

[36] R. Ponnusamy, J. Saltz, C. Koelbel, and A. Choudhary, “A runtime
mapping scheme for irregular problebms,” Proc. of the Scalable High
Performance Computing ConJ: (SHPCC-92), pp. 216-219, Williams-
burg, Va., Apr. 1992. Los Alamitos, Calif.: IEEE CS Press, 1992.

[37] M. Rosing, R.B. Schnabel, and R.P. Weaver, “The DIN0 parallel pro-
gramming language,” J. of Parallel and Distributed Computing, vol.
13, no. 1, pp. 3&42, Sept. 1991.

[38] J. Saltz, H. Bertyman, and J. Wu, “Runtime compilation for multiproc-
essors,” Concurrency: Practice and Experience, vol. 3, no. 6, pp. 573-
592, 1991.

[39] H. Simon, “Partitioning of unstructured mesh problems for parallel
processing,” Proc. of the Conf on Parallel Methods on Large Scale
Structural Analysis and Physics Applications. Pergamon Press, 1991.

[40] W.F. van Gunsteren and H.J.C. Berendsen, “Gromos: Groningen mo-
lecular simulation software,” Technical Report, Laboratory of Physical
Chemistry, Univ. of Groningen, Nijenborgh, The Netherlands, 1988.

[41] P. Venkatkrishnan, J. Saltz, and D. Mavriplis, “Parallel preconditioned
iterative methods for the compressible navier stokes equations,” 12th
Int’l Conf on Numerical Methods in Fluid Dynamics, Oxford, England,
July 1990.

[42] N.P. Weatherill, ‘The generation of unstructured grids using dirichlet
tessalations,” Report MAE 1715, Princeton Univ., July 1985.

[43] P.K. Weiner and P.A. Kollman, “Amber:assisted model building with
energy refinement: A general program for modeling molecules and their
interactions,” J. of Computational Chemistry, vol. 2, p. 287, 1981.

[44] R. Williams, “Performance of dynamic load balancing algorithms for
unstructured mesh calculations,” Concurrency, Practice and Experi-
ence, vol. 3, no. 5, pp. 457-482, Feb. 1991.

[45] H. Zima, P. Brezany, B. Chapman, P. Mehrotra, and A. Schwald,
“Vienna Fortran-a language specification,” Report ACPC-TR92-4,
Austrian Center for Parallel Computation, Univ. of Vienna, Vienna,
Austria, 1992.

PONNUSAMY ET AL.: RUNTIME SUPPORT AND COMPILATION METHODS FOR USER-SPECIFIED IRREGULAR DATA DISTRIBUTIONS 831

Ravi Ponnusamy received a Bachelor of Engineer-
ing degree in computer science and engineering
from Anna University, Madras, India, in 1987 and a
PhD in computer science from Syracuse University
in 1994. He is a research associate in the Computer
Engineering Department at Syracuse University.
Prior to this, he was a faculty research assistant in
the Computer Science Department at the University
of Maryland, Col lege Park. He has been designing
and developing toolkits and techniques for high
performance Fortran compilers to produce efficient

parallel code for large-scale scientific applications. A paper he coauthored
received the Best Student Paper award at the Supercomput ing 1992 confer-
ence. His research interests include parallel J/O, parallelizing compilers, su-
percomputer applications, and performance evaluation.

Joel Saltz is associate professor of computer science
and director of the High-Performance Systems Soft-
ware Laboratory, University of Maryland. He leads a
research group at the University of Maryland, Col-
lege Park, whose goal is to develop methods that
will make it possible to produce portable compilers
that generate efficient multiprocessor code for ir-
regular scientific problems, i.e., problems that are
unstructured, sparse, adaptive, or block structured.
He collaborates with a wide variety of applications
researchers from areas such as computat ional fluid

dynamics, computat ional chemistry, computat ional biology, environmental
sciences, structural mechanics, and electrical power grid calculations. He
came to the University of Maryland after spending three years at ICASE at the
NASA-Langley Research Center as lead computer scientist and three years at
Yale University as an assistant professor.

AIok Choudhary received his BE (Hons.) in elec-
trical and electronics engineering from Birla Jnsti-
tute of Technology and Science, Pilani, India, in
1982, his MS from the University of Massachusetts,
Amherst, in 1986, and his PhD from the University
of Illinois, Urbana-Champaign, in electrical and
computer engineering in 1989. He joined the De-
partment of Electrical and Computer Engineering at
Syracuse University in 1989, where he is currently
an associate professor. He was a visiting scientist at
IBM’s T.J. Watson Research Center during the

summers of 1987 and 1988. He worked as a system analyst and designer from
1982 to 1984.

Choudhary’s main research interests are in parallel and distributed proc-
essing and in software development environments for parallel computers,
including compilers and runtime support, parallel computer architectures, and
parallel UO systems. He has publ ished over 60 journal and conference papers
in the above areas. He has also coauthored Parallel Architectures and Paml-
lel Algorithms for Integrated Vision Systems, publ ished by Kluwer Academic
Publishing Co., 1990.

Choudhary was a program cochair for the International Conference on
Parallel Processing, 1993. He served as a guest editor for IEEE Computer and
the Journal of Parallel and Distributed Comput ing (JPDC). He is currently a
subject-area editor of JPDC. He is a member of the IEEE Computer Society
and the Association for Comput ing Machinery. He received an IEEE Engi-
neering Foundat ion Award in 1990 and the NSF Young Investigator Award in

Yuan-Shin Hwang received his BS and MS in
electrical engineering from the National Tsing Hua
University, Hsinchu, Taiwan, in 1987 and 1989,
respectively. He is pursuing his PhD degree in
computer science at the University of Maryland,
Col lege Park, where he is currently a research
assistant in the High-Performance Systems Soft-
ware Laboratory. His research interests include
parallel and distributed computing, parallel archi-
tectures and compilers, and runtime support for
sparse and unstructured scientific computat ions

uallel supercomputers.

Geoffrey Fox earned his PhD in theoretical physics
from Cambridge University in 1967. He is currently
professor of computer science and physics at Syra-
cuse University and director of the Northeast Paral-
lel Architectures Center. He is an internationally
recognized expert in the use of parallel architectures
and the development of concurrent algorithms. He
leads a major project to develop prototype high-
performance Fortran (Fortran 90D) compilers. He is
also a leading proponent for the development of
computat ional science as an academic discipline and

a scientific method. His research on parallel comput ing has focused on devel-
opment and use of this technology to solve large-scale computat ional prob-
lems. He directs JnfoMall, which is focused on accelerating the introduction
of parallel comput ing into New York State industry. A cutrent focus is large-
scale mult imedia information systems accessed by the national digital high-
way. He coauthored Solving Problems on Concurrent Processors and edits
Concurrency: Practice and Experience and the International Journal of
Modem Physics: C. His research experience includes work at the Jnstitute for
Advanced Study at Princeton; Lawrence Berkeley Laboratory; Cavendish
Laboratory at Cambridge; Brookhaven National Laboratory; and Argonne
National Laboratory. He has served as dean for educational comput ing and
assistant provost for comput ing at Caltech.

1993.

