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Abstract-This paper describes two new ideas by which a High 
Performance Fortran compiler can deal with irregular computa- 
tions effectively. The first mechanism invokes a user specified 
mapping procedure via a set of proposed compiler directives. The 
directives allow use of program arrays to describe graph connec- 
tivity, spatial location of array elements, and computational load. 
The second mechanism is a conservative method for compiling 
irregular loops in which dependence arises only due to reduction 
operations. This mechanism in many cases enables a compiler to 
recognize that it is possible to reuse previously computed infor- 
mation from inspectors (e.g., communication schedules, loop it- 
eration partitions, and information that associates off-processor 
data copies with on-processor buffer locations). This paper also 
presents performance results for these mechanisms from a For- 
tran 90D compiler implementation. 

Index Terms-Runtime support, parallelizing compilers, data 
distributions, high performance Fortran, language directives, 
irregular problems, distributed memory machines. 

I. INTRODUCTION 

A. Background 

T HIS paper addresses a class of irregular problems that 
consists of a sequence of clearly demarcated concurrent 

computational phases where patterns of data access and com- 
putational cost cannot be anticipated until runtime. In this class 
of problems, once runtime information is available, data access 
patterns are known before each computational phase. These 
problems are called irregular concurrent problems [9]. Ex- 
amples of irregular concurrent problems include adaptive and 
self-adaptive explicit, multigrid unstructured computational 
fluid dynamic solvers [29], [ 151, molecular dynamics codes 
(CHARMM [5], AMBER [43], GROMOS [40], etc.), diagonal 
or polynomial preconditioned iterative linear solvers [41], and 
time dependent flame modeling codes [32]. 

This paper focuses on the runtime support, the language 
extensions, and the compiler support required to provide effi- 
cient data and work load distributions. The paper also presents 
methods and a prototype implementation that make it possible 
for compilers to efficiently handle irregular problems coded 
using a set of language extensions closely related to Fortran D 
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[14], Vienna Fortran [45], and High Performance Fortran 
(HPF) [ 191. 

The optimizations that must be carried out to solve irregular 
concurrent problems efficiently on a distributed memory ma- 
chine include: 

1) data partitioning, 
2) partitioning computational work, 
3) software caching methods to reduce communication vol- 

ume, and 
4) communication vectorization to reduce communication 

startup costs. 

Since data access patterns are not known in advance, deci- 
sions about data structure and workload partitioning have to be 
deferred until runtime. Once data and work have been parti- 
tioned between processors, prior knowledge of loop data ac- 
cess patterns makes it possible to predict which data need to be 
communicated between processors. This ability to predict 
communication requirements makes it possible to carry out 
communication optimizations. In many cases, communication 
volume can be reduced by prefetching only a single copy of 
each referenced off-processor datum. The number of messages 
can also be reduced by using data access pattern knowledge to 
allow prefetching quantities of off-processor data. These two 
optimizations are called sofnvare caching and communication 
vectorization. 

Whenever there is a possibility that a loop’s data access 
patterns might have changed between consecutive loop invo- 
cations, it is necessary to repeat the preprocessing needed to 
minimize communication volume and startup costs. When data 
access patterns change, it may also be necessary to repartition 
computational work. Fortunately, in many irregular concurrent 
problems, data access patterns change relatively infrequently. 
This paper presents simple conservative techniques that in 
many cases make it possible for a compiler to verify that data 
access patterns remain unchanged between loop invocations, 
making it possible to amortize the associated costs of software 
caching and communication vectorization. 

Fig. 1 illustrates a simple sequential Fortran irregular loop 
(loop L2) which is similar in form to loops found in unstruc- 
tured computational fluid dynamics (CFD) codes and mo- 
lecular dynamics codes. In Fig. 1, arrays x  and y are ac- 
cessed by indirection arrays edge1 and edge2. Note that 
the data access pattern associated with the inner loop L2 is 
determined by integer arrays edge1 and edge2. Because 
arrays edge1 and edge2 are not modified within loop L2, 
L2’s data access pattern can be anticipated prior to executing 
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L2. Consequently, edge1 and edge2 are used to carry out 
preprocessing needed to minimize communication volume 
and startups. Whenever it can be determined that edgel, 
edge2, and nedges have not been modified between con- 
secutive iterations of outer loop Ll, repeated preprocessing 
can be avoided. 

C Outer Loop Ll 

do n = 1, nheps 

. . . 

C Inner Loop L2 

do i = 1, nedges 

y(edgel(i)) = y(edgel(i)) + f(x(edgel(i)), x(edge2(i))) 

y(edgel(i)) = y(edge2(i)) + g(x(edgel(i)), x(ed@(i))) 

end do 

. . . 

end do 

Fig. 1. An example code with an imgular loop. 

B. Irregular Data Distribution 

On distributed memory machines, large data arrays need to 
be partitioned between local processor memories. These parti- 
tioned data arrays are called distributed arrays. Long term 
storage of distributed array data is assigned to specific proces- 
sor and memory locations in the machine. Many applications 
can be efficiently implemented by using simple schemes for 
mapping distributed arrays. One example of such a scheme 
would be the division of an array into equal sized contiguous 
subarrays and assignment of each subarray to a different proc- 
essor. Another example would be to assign consecutively in- 
dexed array elements to processors in a round-robin fashion. 
These two data distribution schemes are often called BLOCK 
and CYCLIC data distributions [13], respectively. 

Researchers have developed a variety of heuristic methods 
to obtain data mappings that are designed to optimize irregular 
problem communication requirements [39], [44], [27], [25], 
[3], [ 171. The distribution produced by these methods typically 
results in a table that lists a processor assignment for each ar- 
ray element. This kind of distribution is often called an irregu- 
lar distribution. 

Partitioners typically make use of one or more of the follow- 
ing types of information: 

1) a description of graph connectivity, 
2) spatial locations of array elements, and 
3) information that associates array elements with computa- 

tional load. 

Languages such as HPF, Fortran D, and Vienna Fortran al- 
low users to advise the compiler of how array elements should 
be assigned to processor memories. In HPF a pattern of data 
mapping can be specified using the DISTRIBUTE directive. 

Two major types of patterns can be specified this way: BLOCK 
and CYCLIC distributions. For example, 

FUZAL, DIMBNSION(500,500) :: X, Y 
!HPF $ DISTRIBUTE (*, BLOCK) :: X 
!HPF $ DISTRIBUTE (BLOCK, BLOCK) :: Y 

breaks the arrays X and Y into groups of columns and rectan- 
gular blocks, respectively. 

This paper describes an approach where the user does not 
explicitly specify a data distribution. Instead the user specifies: 

1) the type of information to be used in data partitioning and 
2) the irregular data partitioning heuristic to be used. 

Language extensions have been designed and implemented to 
allow users to specify the information needed to produce an 
irregular distribution. Based on user directives, the compiler 
produces code that, at runtime, passes the user specified parti- 
tioning information to a (user specified) partitioner. 

To the best of the authors’ knowledge, the implementation 
described in this paper was the first distributed memory com- 
piler to provide this kind of support. User specified partition- 
ing has recently been implemented in the D System Fortran 
77D compiler [ 161; the CHAOS runtime support described in 
this paper has been employed in this implementation. In the 
Vienna Fortran [45] language definition a user can specify a 
customized distribution function. The runtime support and 
compiler transformation strategies described here can also be 
applied to Vienna Fortran. 

These ideas have been implemented using the Syracuse 
Fortran 90D/HPF compiler [4]. The following assumptions 
have been made: 

1) irregular accesses are carried out in the context of a sin- 
gle or multiple statement parallel loops. In these loops 
dependence between iterations may occur due to reduc- 
tion operations only (e.g., addition, max, min, etc.) and 

2) irregular array accesses occur as a result of a single level 
of indirection with a distributed array that is indexed di- 
rectly by the loop variable. 

C. Organization 

This paper is organized as follows. The context of the work 
is outlined in Section II. Section III describes the runtime 
technique that saves and reuses results from previously per- 
formed loop preprocessing. Section IV describes the data 
structure, the compiler transformations, and the language ex- 
tensions used to control compiler-linked runtime partitioning. 
Section V presents the runtime support developed for coupling 
data partitioners, for partitioning workload and for managing 
irregular data distributions. Section VI presents data to charac- 
terize the methodological performance. Section VII provides a 
summary of related work, and Section VIII concludes. 

II. OVERVIEW 
A. Problem Partitioning and Application Codes 

It is useful to describe application codes to introduce the 
motivation behind preprocessing. This section first describes 
two application codes (an unstructured Euler solver and a 
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molecular dynamics code) that consist of a sequence of loops 
with indirectly accessed arrays; these are loops analogous to 
those depicted in Fig. 1. This section then describes a com- 
bustion code with a regular data access pattern but with 
highly nonuniform computational costs. In that code, compu- 
tational costs vary dynamically and cannot be estimated until 
runtime. 

A. 1. Codes With Indirectly Accessed Arrays 

The first application code is an unstructured Euler solver 
used to study the flow of air over an airfoil [29], [21]. Com- 
plex aerodynamic shapes require high resolution meshes and, 
consequently, large numbers of mesh points. A mesh vertex is 
an abstraction represented by Fortran array data structures. 
Physical values (e.g., velocity, pressure) are associated with 
each mesh vertex. These values are called flow variables and 
are stored in arrays. Calculations are carried out using loops 
over the list of edges that define the connectivity of the verti- 
ces. For instance, Fig. 1 sweeps over nedges mesh edges. Loop 
iteration i carries out a computation involving the edge that 

_ connects vertices edgel and edge2(i). 
To parallelize an unstructured Euler solver, one needs to 

partition mesh vertices (i.e., arrays that store flow variables). 
Since meshes are typically associated with physical objects, a 
spatial location can often be associated with each mesh point. 
The spatial locations of the mesh points and the connectivity 
of the vertices are determined by the mesh generation strategy 
[421, [28]. Fig. 2 depicts a mesh generated by such a process. 
This is an unstructured mesh representation of a three dimen- 
sional aircraft wing. 

The way in which the vertices of such an irregular compu- 
tational mesh are numbered frequently does not have a useful 
correspondence to the connectivity pattern (edges) of the 
mesh. Mesh points are partitioned to minimize communication. 

Fig. 2. An example unstructured mesh. 

Recently, promising heuristics have been developed that can 
use one or several of the following types of information: 1) 
spatial locations of mesh vertices, 2) connectivity of the verti- 
ces, and 3) estimates of the computational load associated with 
each mesh point. For instance, a user might choose a parti- 
tioner that is based on coordinates [3] to partition data. A co- 
ordinate bisection partitioner decomposes data using the spa- 
tial location of vertices in the mesh. If the user chooses a graph 
based partitioner, such as the spectral partitioner [39], the con- 
nectivity of the mesh could be used to decompose the data. 

The next step in parallelizing this application involves as- 
signing equal amounts of work to processors. An unstructured 
Euler solver consists of a sequence of loops that sweep over a 
mesh, Computational work associated with ‘each loop must be 
partitioned between processors to balance load. The approach 
used in this paper is to assign all work associated with a given 
loop iteration to a single processor. Consider a loop that 
sweeps over mesh edges, closely resembling the loop depicted 
in Fig. 1. Mesh edges would be partitioned so that 1) good 
load balance is obtained and 2) computations mostly employ 
locally stored data. 

Other unstructured problems have analogous indirectly 
accessed arrays. For instance, consider the nonbonded force 
calculation in the molecular dynamics code CHARMM [5]. 
Fig. 4 depicts the nonbonded force calculation loop. Force 
components associated with each atom are stored as Fortran 
arrays. The outer loop Ll sweeps over all atoms; in this dis- 
cussion, it is assumed that Ll is a parallel loop. Each itera- 
tion of Ll is carried out on a single processor, so loop L2 
need not be parallelized. 

All atoms within a given cutoff radius interact with each 
other, The array Partners ( i , * ) lists all the atoms that 
interact with atom i. Inside the inner loop, the three force com- 
ponents (x, y, z) between atom i and atomj are calculated (van 
der Waal’s and electrostatic forces). They are then added to 
the forces associated with the atom i and subtracted from the 
forces associated with the atomj. 

Atoms are partitioned to reduce interprocessor communi- 
cation in the nonbonded force calculation loop (Fig. 4). Fig. 
3 depicts two possible distributions of atoms of a Myoglobin 
molecule to four processors in which shading is used to rep- 
resent the assignment of atoms to processors. Data sets as- 
sociated with sequential versions of CHARMM associate 
each atom with an arbitrary index number. Fig. 3a shows a 
distribution that assigns consecutively numbered sets of at- 
oms to each processor (i.e., a BLOCK distribution). Since 
nearby atoms interact, the choice of a BLOCK distribution is 
likely to result in a large volume of communication. Con- 
sider instead a distribution based on the spatial locations of 
atoms. Fig. 3b depicts a distribution of atoms to processors 
carried out using an inertial bisection partitioner [3]. Fig. 3b 
has a much smaller amounts of surface area between the 
portions of the molecule associated with each processor 
compared to that of Fig. 3a. 

Table I summarizes the application area specific terminol- 
ogy used to describe data array elements, loop iterations, array 
distributions and loop iteration partition. 
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A.2. A Code With Time Varying Computational Costs 

This section describes a type of application code that is 
qualitatively different from the unstructured Euler and mo- 
lecular dynamics codes previously discussed. This type of 
code is used to carry out detailed time dependent, multidi- 
mensional flame simulations. The calculation cycles between 
two distinct phases. The first phase (convection) calculates 
fluid convection over a Cartesian mesh. The second phase 
(reaction) solves the ordinary differential equations used to 
represent chemical reactions and energy release. During the 
reaction phase, a set of local computations are carried out at 
each mesh point. The computational costs associated with 
the reaction phase varies from mesh point to mesh point 
since at each mesh point an adaptive method is used to solve 
the system of ordinary differential equations. Arrays in this 
application are not indirectly accessed as in the previous two 
example applications. 

Fig. 5 presents a simplified one dimensional version of this 
code. The convection phase (loop nest L2) consists of a sweep 
over a structured mesh involving array elements located at 
nearest neighbor mesh points. The reaction phase (loop nest 

TABLE I 
APPLICATION AREA SPECIFIC TERMINOLOGY 

Program Representation 1 Unstructured M&I 1 Molecular Dynamics 
I 1 

Data hay Elements Physical State for 
Each Mesh Vertex 

Force Components 
for Each Atom 

(a)  BLOCK DisLr3butic.n 

Fig. 3. Distribution of atoms on four processors. 

Ll: do i = 1, NATOMS 

L2: do index = 1, INB(i) 

j = Partnera(i, index) 

Calculate dF (x, y and I components). 

Subtract dF from Fj. 

Add dF to F; 

end do 

end do 

Fig. 4. Nonbonded force calculation loop from CHARMM. 

L3) involves only local calculations. The computational cost 
associated with the function Adaptive-Solver depends on the 
value of x(i). It is clear that the cost of Adaptive-Solver can 
vary from mesh point to mesh point. The cost of Adap- 
tive-Solver at a given mesh point changes slowly between it- 
erations of the outer loop Ll. 

There are a number of strategies that can be used in parti- 
tioning data and work associated with this flame code. If the 
convection calculations comprise the bulk of the computation 
time, it would be reasonable to partition the mesh (arrays x, y, 
and z in Fig. 5) into equal sized blocks. 

However,  the reaction calculations (loop nest L3 in Fig. 5) 
usually comprise at least half of the total computational cost. A 
majority of the work associated with the reaction phase of the 
calculation is carried out on a small fraction of the mesh 
points. The current approach involves maintaining a block 
mapping of the mesh (arrays x, y, and z) during the convec- 
tion phase. In order to ensure a good load balance during the 
reaction phase, only expensive reaction calculations are redis- 
tributed. In Fig. 5, array element x(i) must be transmitted in 
order to redistribute the reaction calculation for mesh point i. 
Once the reaction calculation is carried out, the solution z(i) is 
returned to the processor to which it is assigned. At a given 
mesh point, the cost associated with a reaction calculation 
generally varies gradually as a problem progresses. This prop- 
erty provides a way to estimate reaction calculation costs in the 
subsequent computation step. 

Ll: do time = 1, t imeatepe 

C Convection Phase: 

L2: do i = 1, NPOINTS 

x(i) = 4) + Q(i), y(i-11, y(i), y(i+l), z(i)) 

end do 

y(l:NPOINTS) = x(l:NPOINTS) 

C Reaction Phase: 

L3: do i = 1, NPOINTS 

z(i) = AdaptiveSolver(x(i)) 

end do 

end do 

Fig. 5. Overview-combustion code. 

B. Solving Irregular Problems 

This section describes how irregular problems can be solved 
efficiently on distributed memory machines. On  distributed 
memory machines the data and the computational work must 
be divided between individual processors. The criteria for 
partitioning are minimizing the volume of interprocessor data 
communication and good load-balancing. 

Once distributed arrays have been partitioned, each proces- 
sor ends up with a set of globally indexed distributed array 
elements. Each element in a size N distributed array, A, is as- 
signed to a particular home processor. In order for other proc- 
essors to be able to access a given element A(i) of the distrib- 
uted array, the home processor and local address of A(i) must 
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be determined. A translation table is built that lists the home 
processor and the local address for each array element. 

Memory considerations make it clear that it is not always 
feasible to place a copy of the translation table on each proces- 
sor, so the translation table must be distributed between proc- 
essors. This is accomplished by distributing the the translation 
table in blocks, i.e., putting the first N/F elements on the first 
processor, the second N/P elements on the second processor, 
etc., where P is the number of processors. When an element 
A(m) of distributed array A is accessed, the home processor 
and local offset are found in the 
translation table stored in processor e 

ortion of the distributed 
((m - 1)/N) x PA + 1. The 

translation table lookup aimed at discovering the home proces- 
sor and the offset associated with a global distributed array 
index is called a dereference request. 

Consider the irregular loop L2 in Fig. 1 that sweeps over the 
edges of a mesh. In this case, distributing data arrays x and y 
corresponds to partitioning the mesh vertices; partitioning loop 
iterations corresponds to partitioning edges of the mesh. 
Hence, each processor gets a subset of loop iterations (edges). 
An edge i that has both end points (edgel and edge2(i)) in- 
side the same partition (processor) requires no outside infor- 
mation. On  the other hand, edges which cross partition 
boundaries require data from other processors. Before execut- 
ing the computation for such an edge, a processor must re- 
trieve the required data from other processors. 

There is typically a nontrivial communication latency, or 
message startup cost, in distributed memory machines. Com- 
munication is vectorized to reduce the effect of communication 
latency and software caching is carried out to reduce commu- 
nication volume. To carry out either optimization, it is ex- 
tremely helpful to have a priori knowledge of data access pat- 
terns. In irregular problems, it is generally not possible to 
predict data access patterns at compile time. For example, the 
values of indirection arrays edge1 and edge2 of loop L2 in 
Fig. 1 are known only at runtime because they depend on the 
input mesh. During program execution, preprocessing exam- 
ines the data references of distributed arrays. Each processor 
precomputes which data need to be exchanged. The result of 
this preprocessing is a communication schedule [30]. 

Each processor uses communication schedules to exchange 
required data before and after executing a loop. The same 
schedules can be used repeatedly, as long as the data reference 
patterns remain unchanged. In Fig. 1, loop L2 is carried out 
many times inside loop Ll. As long as the indirection arrays 
edge1 and edge2 are not modified within Ll, it is possible 
to reuse communication schedules for L2. Schedule reuse will 
be discussed in detail in Section III. 

C. Communication Vectorization and Software Caching 

The process of generating and using schedules to carry out 
communication vectorization and software caching can be de- 
scribed with the help of the example shown in Fig. 1. The ar- 
rays x, y. edgel, and edge2 are partitioned between the 
processors of the distributed memory machine. Assume that 
arrays x  and y are distributed in the same fashion. Array dis- 
tributions are stored in a distributed translation table. These 

local indirection arrays are passed to the procedure localize as 
shown in statement Sl in Fig. 6. 

Fig. 6 contains the preprocessing code for the simple irregu- 
lar loop L2 shown in Fig. 1. In this loop, values of array Y are 
updated using the values stored in array x. Hence, a processor 
may need an off-processor array element of x  to update an 
element of y  and it may update an off-processor array element 
of y. The goal is to compute 1) a gather schedule-a commu- 
nication schedule that can be used for fetching off-processor 
elements of x, and 2) a scatter schedule-a communication 
schedule that can be used to send updated off-processor ele- 
ments of y. However,  the arrays x and y are referenced in an 
identical fashion in each iteration of the loop L2, so a single 
schedule that represents data references of either x  or y  can be 
used for fetching off-processor elements of x  and sending off- 
processor elements of y. 

c create the required m.lmdula (Inspector) 

Sl Collect indirection array trsces and call CHAOS procedure locallm to compute arheduls 

C The actual computation (Executor) 

S3 tall gather(x(beginJmffer), x, schedule) 

S4 do i=l, nlocdxdges 

S5 y(local&el(i)) = y(locdsdgel(i)) + f(x(localzdgel(i)), x(locahdge2(i))) 

SB y(locdicdge2(i)) = y(locdsdgeZ(i)) + g(x(localxdgel(i)), x(loaLedge!2(i))) 

S? end do 

Sg call reatteradd(y(begin4u~er), y, schedule) 

Fig. 6. Node code for simple irregular loop. 

A sketch of how the procedure localize works is shown in 
Fig. 7. The globally indexed reference pattern used to access 
arrays x and y is stored in the array part-edge. The proce- 
dure localize dereferences and translates part-edge so that 
valid references are generated when the loop is executed. The 
buffer for each data array immediately follows the on- 
processor data for that array. For example, the buffer for data 
array y  begins at y (begin-buffer ) . Hence, when localize 
translates part-edge to local-edge, the off-processor 
references are modified to point to buffer addresses. The pro- 
cedure localize uses a hash table to remove any duplicate ref- 
erences to off-processor elements so that only a single copy of 
each off-processor datum is transmitted. When the off- 
processor data are collected into the buffer using the schedule 
returned by localize, the data are stored in a way such that exe- 
cution of the loop using the local-edge accesses the cor- 
rect data. 

The executor code starting at S2 in Fig. 6 carries out the 
actual loop computation. In this computation the values stored 
in the array y  are updated using the values stored in x. During 
the computation, accumulations to off-processor locations of 
array y  are carried out in the buffer associated with array y. 
This makes it necessary to initialize the buffer corresponding 
to off-processor references of y. To perform this action, the 
function zero-out-buffer shown in statement S2 is called. Af- 
ter the loop computation, the data in the buffer location of ar- 



820 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 8, AUGUST 1995 

Partitioned global 

reference list 

localize 

1 off+nDcssor 

J 

references 

data array 

31 

local 

data 

buff- off-prowsor data 

Fig. 7. Index translation by localize mechanism. 

ray y  are communicated to the home processors of these data 
elements (scatter&d). There are two potential communica- 
tion points in the executor code, i.e., the gather and the scat- 
ter-udd calls. The gather on each processor fetches all the 
necessary x  references that reside off-processor. The scut- 
ter-udd call accumulates the off-processor y  values. A de- 
tailed description of the functionality of these procedures is 
given in Ponnusamy [33]. 

D. Overview of CHAOS 

Efficient runtime support has been developed to deal with 
problems that consist of a sequence of clearly demarcated con- 
current computational phases. The project is called CHAOS; the 
runtime support is called the CHAOS library [33]. The CHAOS 
library is a superset of the PARTI library [30], [38], [ll]. 

Solving concurrent irregular problems on distributed mem- 
ory machines using CHAOS runtime support involves five 
major steps (Fig. 8). The first three steps in the figure concern 
mapping data and computations onto processors. This section 
provides a brief description of these steps and will discuss 
them in detail in later sections. 

Initially, the distributed arrays are decomposed into a 
known regular manner. 

1) The first step is to decompose the distributed array ir- 
regularly with the user provided information. When the 
user chooses connectivity as a piece of information to be 
used for data partitioning, preprocessing is required to 
generate GeoCoL graph (see Section V) before informa- 
tion can be passed to a partitioner. In Phase A of Fig. 8, 
CHAOS procedures can be called to do the necessary 
preprocessing. For example, the user may employ a par- 
titioner that uses the connectivity of the mesh shown in 
Fig. 2 or may use a partitioner that uses the spatial infor- 
mation of the mesh vertices. The partitioner calculates 
how data arrays should be distributed. 

2) In Phase B, the newly calculated array distributions are 

Phase A 
Germate G&L Graph 
Pa&ion GmCoL Graph 

PIIWOB 
Gaaate Iteration Grrph 
Patitioo Itaatlon Graph 

P8rtition 

> DU 

PiUtkiOn 

> 
Loop 
ItaatiUU 

PbSSCC 
Remap Arrays and Loop Itaatioru > Rasp 

PhaseD 
Pre-p0ce.u Loops 

PlueE 
Execute Loops 

Fig. 8. Solving irregular problems. 

used to decide how loop iterations are to be partitioned 
among processors. This calculation takes into account the 
processor assignment of the distributed array elements 
accessed in each iteration. A loop iteration is assigned to 
the processor that has the maximum number of local dis- 
tributed arrays elements accessed in that iteration. Once 
data are distributed, based on the access patterns of each 
iteration and data distribution, the runtime routines for 
this step determine on which processor each iteration will 
be executed. 

3) Once new data and loop iteration distributions are de- 
termined, Phase C carries out the actual remapping of ar- 
rays from the old distribution to the new distribution. 

4) In Phase D, the preprocessing needed for software caching, 
communication vectorization and index translation is car- 
ried out. In this phase, communication schedules are gen- 
erated that can be used to exchange data among processors. 

5) Finally, in Phase E, information from the earlier phases is 
used to carry out the computation and communication. 

CHAOS and PART1 procedures have been used in a variety 
of applications, including sparse matrix linear solvers, adap- 
tive computational fluid dynamics codes, molecular dynamics 
codes, and a prototype compiler [38] aimed at distributed 
memory multiprocessors. 

E. Overview of Existing Language Support 

While these data decomposition directives are presented in 
the context of Fortran D, the same optimizations and analo- 
gous language extensions could be used for a wide range of 
languages and compilers such as Vienna Fortran, PC++, and 
HPF. Vienna Fortran, Fortran D, and HPF provide a rich set of 
data decomposition specifications. A definition of such lan- 
guage extensions may be found in Fox et al. [14], Loveman et 
al. [ 131, and Chapman et al. [7], [8]. Fortran D and HPF re- 
quire that users explicitly define how data are to be distributed. 
Vienna Fortran allows users to write procedures to generate 
user defined distributions. The techniques described in this 
paper are being adapted to implement user defined distribu- 
tions in the Vienna Fortran compiler; details of the Vienna 
Fortran based work will be reported elsewhere. 

Fortran D and Vienna Fortran can be used to explicitly 
specify an irregular partition of distributed array elements. Fig. 
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9 presents an example of such a Fortran D declaration. In For- 
tran D, one declares a template called a distribution that is 
used to characterize the significant attributes of a distributed 
array. The distribution fixes the size, dimension and way in 
which the array is to be partitioned between processors. A dis- 
tribution is produced using two declarations. The first declara- 
tion is DECOMPOSITION. Decomposit ion fixes the name, 
dimensionality and size of the distributed array template. The 
second declaration is DISTRIBUTE. Distribute is an execu- 
table statement and specifies how a template is to be mapped 
onto the processors. 

Fortran D provides users with a choice of several regular 
distributions. In addition, a user can explicitly specify how a 
distribution is to be mapped onto the processors. A specific 
array is associated with a distribution using the Fortran D 
statement ALIGN. In statement S3, of Fig. 9, two 1D decom- 
positions, each of size N, are defined. In statement S4, decom- 
position reg is partitioned into equal sized blocks, with one 
block assigned to each processor. In statement S5, array map 
is aligned with distribution reg. Array map will be used to 
specify (in statement S7) how distribution irreg is to be 
partitioned between processors. An irregular distribution is 
specified using an integer array; when map(i) is set equal to p, 
element i of the distribution irreg is assigned to processor p. 

The difficulty with the declarations depicted in Fig. 9 is that 
it is not obvious how to partition the irregularly distributed 
array. The map array that gives the distribution pattern of i r - 
reg has to be generated separately by running a partitioner 
(the user may supply the partitioner or use one from a library). 
The Fortran D constructs are not rich enough for the user to 
couple the generation of the map array to the program compi- 
lation process. While there are a wealth of partitioning heuris- 
tics available, coding such partitioners from scratch can repre- 
sent a significant effort. There is also no standard interface 
between the partitioners and the application codes. Section IV 
will discuss language extensions and compiler support to inter- 
face data partitioners. 

Sl REAL*8 x(N), y(N) 
S2 INTEGER map(N) 

S3 DECOMPOSITION reg(N), irreg(N) 

S4 DISTRIBUTE reg(block) 
S5 ALIGN map with reg 

S6 . . . set values of map array using some mapping method . . 

S7 DISTRIBUTE irreg(map) 
S8 ALIGN x, y with irreg 

Fig. 9. Fortran D irregular distribution. 

Fig. 10 shows an irregular Fortran 90D Forall loop that is 
equivalent to the sequential loop L2 in Fig. 1. The loop Ll 
represents a sweep over the edges of an unstructured mesh. 
Since the mesh is unstructured, an indirection array has to be 
used to access the vertices during a loop over the edges. In 

loop Ll, a sweep is carried out over the edges of the mesh and 
the reference pattern is specified by integer arrays edge1 and 
edge2. Loop Ll carries out reduction operations. That is, the 
only type of dependency between different iterations of the 
loop is the one in which they may produce a value to be accu- 
mulated (using an associative and commutative operation) in 
the same array element. Fig. 2 shows an example of an un- 
structured mesh over which such computations will be carried 
out. For example, the loop Ll represents a sweep over the 
edges of a mesh in which each mesh vertex is updated using 
the corresponding values of its neighbors (directly connected 
through edges). Clearly, each vertex of the mesh is updated as 
many times as the number of neighboring vertices. 

The definition of the Forall construct in HPF follows copy- 
in-copy-out semantics-loop carried dependencies are not 
allowed. This implementation allows loop carried dependen- 
cies that arise due to reduction operations. The reduction op- 
erations in a Forall construct are specified using the Fortran D 
REDUCE construct. Reduction inside a Forall construct is 
important for representing a considerable set of scientific 
computations such as those found in sparse and unstructured 
problems [9]. This representation also preserves explicit paral- 
lelism available in the underlying computations. 

C  Sweep over edges: Loop Ll 

FORALL i = 1, nedges 

Sl REDUCE (SUM, y(edgel(i)), f(x(edgel(i)), x(edge2(i)))) 

S2 REDUCE (SUM, y(edgea(i)), g(x(edgel(i)), x(edgea(i)))) 
END FORALL 

Fig. 10. Example irregular loop in Fortran D. 

III. COMMUNICATION SCHEDULE REUSE 

The cost of carrying out an inspector (phases B, C, and D in 
Fig. 8) can be amortized when the information produced by the 
inspector is computed once and then used repeatedly. The 
compile time analysis needed to reuse inspector communica- 
tion schedules is touched upon in Das et al. [ 121. 

This paper proposes a conservative method that in many 
cases allows reuse of the results from inspectors. The results 
from an inspector for loop L can be reused as long as: 

l the distributions of data arrays referenced in loop L have 
remained unchanged since the last time the inspector was 
invoked, 

l there is no possibility that the indirection arrays associ- 
ated with loop L have been modified since the last in- 
spector invocation, and 

l the loop bounds of L have not changed. 

The compiler generates code that, at runtime, maintains a rec- 
ord of when the statements or array intrinsics of a Fortran 90D 
loop may have written to a distributed array that is used to 
indirectly reference another distributed array. In this scheme, 
before executing a loop, this runtime record is checked to see 
whether any indirection arrays may have been modified since 
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the last time the loop was invoked. 
In this presentation it is assumed that an inspector is being 

carried out for a Forall loop. Also assumed is that all indirect 
array references to any distributed array y are of the form 
y(ia(i)) where ia is a distributed array and i is a loop index 
associated with the Forall loop. 

The information about an array is stored in a runtime data 
structure called data access descriptor (DAD). A DAD for a 
distributed array contains (among other things) the current 
distribution type of each dimension of the array (e.g., block, 
cyclic) and the size of the array. In order to generate correct 
distributed memory code, whenever the compiler generates 
code that references a distributed array, the compiler must 
have access to the array’s DAD. In this scheme, a global data 
structure is also maintained to keep track of modifications of 
any array with a given DAD. 

A global variable n-mod is maintained that represents the 
cumulative number of Fortran 90D loops, array intrinsics or 
statements that have modified any distributed array. Note that 
this scheme does not count the number of assignments to the 
distributed array, instead it counts the number of times the 
program has executed any block of code that writes to a dis- 
tributed array.* The variable n-mod may be viewed as a 
global time stamp. Each time an array A with a given data ac- 
cess descriptor DAD(A) is modified, a global data structure 
last-mod is updated to associate DAD(A) with the current 
value of the global variable n-mod (i.e., the current global 
time stamp). Thus when a loop, array intrinsic, or statement 
modifies A, last-mod(DAD(A))is set to n-mod. If the array 
A is remapped, it means that DAD(A) changes. In this case, 
n-mod is incremented and then last-mod(DAD(A)) is set to 
n-mod. 

The first time a Forall loop L is executed, inspector for that 
loop is carried out. Assume that L has m data arrays 
xi, 1 I i I m, and n indirection arrays, ind!, 1 I j I n. 
Each time an inspector for L is carried out, the following in- 
formation is stored: 

1) DAD( XL) for each unique data array xi, for 1 I i I m, 

2) DAD(indL) for each unique indirection array 

ind,!, for 15 j I n, 

3) last-mod (DAD(indL)), for 1 5 j I n, and 

4) the loop bounds of L. 

The values of DAD(xi) , DAD(indt ) , and last-mod 

(DAD(ind/)) stored by L’s inspector are designated as 

L.DAD(xk), L.DAD(indi), and L.last-mod (DAD(indi)) , 
respectively. 

For a given data array xi and an indirection array ind{ in 

1. Note that a Forall construct or an array construct is an atomic operation 
from the perspective of language semantics, and therefore, it is sufficient to 
consider one write per construct rather than one write per element. 

a Forall loop L, two sets of data access descriptors are main- 
tained. For instance, 

1) DAD(x;), the current global data access descriptor as- 

sociated with xi and 

2) L.DAD(x;), a record of the data access descriptor that 

was associated with xi when L carried out its previous 
inspector 

are maintained. Each indirection array ind! also maintains 
two time stamps: 

l last-mod (DAD(ind/)) 1s the global time stamp associ- 

ated with the current data access descriptor of indL and 

l L.last-mod (DAD(indL)) is the global time stamp of 

data access descriptor DAD(indi) , last recorded by L’s 

inspector. 

The first time L is executed, L’s inspector is carried out, the 
following checks are performed before subsequent executions 
of L. If any of the following conditions are not met, the inspec- 
tor must be repeated for L: 

1) DAD(x’,).EQU. L.DAD(x’,), 1 I i I m, 

2) DAD(indi).EQU. L.DAD(ind{), 1 I j 5 n, 

3) last-mod (DAD(ind/)) .EQU. L.last-mod 

(L.DAD(indl)), 1 I j I n, and 

4) the loop bounds of L remain unchanged. 

As the above algorithm tracks possible array modifications 
at runtime, there is potential for high runtime overhead in 
some cases. The overhead is likely to be small in most compu- 
tationally intensive data parallel Fortran 90 codes (see Section 
VI). Calculations in such codes primarily occur in loops or 
Fortran 90 array intrinsics, so so it is necessary to record 
modifications to a DAD once per loop or array intrinsic call. 

The same method is employed to track possible changes to 
arrays used in the construction of the data structure produced 
at runtime to link partitioners with programs. This data 
structure is called a GeoCoL graph, and it will be described 
in Section IV.A.l. This approach makes it simple for a 
compiler to avoid generating a new GeoCoL graph and car- 
rying out a potentially expensive data repartition when no 
change has occurred. 

IV. COUPLING PARTITIONERS 

In irregular problems, it is often desirable to allocate com- 
putational work to processors by assigning all computations 
that involve a given loop iteration to a single processor [38]. 
Consequently, both distributed arrays and loop iterations are 
partitioned using a two-phase approach (Fig. 8). In the first 
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phase, termed the data partitioning phase, distributed arrays 
are partitioned. In the second phase, called loop iteration 
partitioning, loop iterations are partitioned using the informa- 
tion from the first phase. This appears to be a practical ap- 
proach, as in many cases the same set of distributed arrays are 
used by many loops. The following two subsections describe 
the phases. 

A. Data Partitioning 

When distributed arrays are partitioned, loop iterations 
have not yet been assigned to processors. Assume that loop 
iterations will be partitioned using a user-defined criterion 
similar to that used for data partitioning. In the absence of 
such a criterion, a compiler will choose a loop iteration par- 
titioning scheme, e.g., partitioning loops so as to minimize 
nonlocal distributed array references. This approach makes 
an implicit assumption that most (although not necessarily 
all) computation will be carried out in the processor associ- 
ated with the variable appearing on the left-hand side of each 
statement-this approach is called the almost owner com- 
putes rule [36]. 

There are many partitioning heuristics methods available 
based on physical phenomena and proximity [39], [3], [44], 
[17]. Table II lists some of the commonly used heuristics and 
the types of information they use for partitioning. Most data 
partitioners make use of undirected connectivity graphs and 
spatial information. Currently these partitioners must be cou- 
pled to user programs manually. This manual coupling is par- 
ticularly troublesome and tedious when users wish to make use 
of parallelized partitioners. Further, partitioners use different 
data structures and are very problem dependent, making it ex- 
tremely difficult to adapt to different (but similar) problems 
and systems. 

COMMON 
TABLE II 

PARTITIONING H~ms~~cs 

Algorithm [27] J 4 J 
Inertial 

Bisection [31] J 4 
Ke&ghm 

- Lin P21 J 4 J 

A. I. Interface Data Structures for Purtitioners 

Partitioners are linked to programs by using a data structure 
that stores information on which data partitioning is to be 
based. Data partitioners can make use of different kinds of 
program information. Some partitioners operate on data struc- 
tures that represent undirected graphs [39], [22], [27]. Graph 
vertices renresent array indices: nraoh edges reoresent deuend- 

encies. Consider the example loop Ll in Fig. 10. The graph 
vertices represent the N elements of arrays x  and y. The graph 
edges of the loop in Fig. 10 are the union of the edges linking 
vertices edgel and edge2(i). 

In some cases, it is possible to associate geometrical infor- 
mation with a problem. For instance, meshes often arise from 
finite element or finite difference discretizations. In such cases, 
each mesh point is associated with a location in space. Each 
graph vertex can be assigned a set of coordinates that describe 
its spatial location. These spatial locations can be used to par- 
tition data structures [3], [31]. 

Vertices may also be assigned weights to represent esti- 
mated computational costs. In order to accurately estimate the 
computational costs, partitioners need information on how 
work will be partitioned. One way of deriving weights is to 
make the implicit assumption that an owner computes rule will 
be used to partition work. Under this assumption, computa- 
tional cost associated with executing a statement will be at- 
tributed to the processor owning a left-hand side array refer- 
ence. The weight associated with a vertex in the loop L2 of 
Fig. 10 would be proportional to the degree of the vertex, as- 
suming functions f and g have identical computational costs. 
Vertex weights can be used as the sole partitioning criterion in 
problems in which computational costs dominate. Examples of 
such code include the flame simulation code described in Sec- 
tion II.A.2 and “embarrassingly parallel problems” [9], where 
computational cost predominates. 

A given partitioner can make use of a combination of con- 
nectivity, geometrical, and weight information. For instance, 
sometimes it is important to take estimated computational 
costs into account when carrying out coordinate or inertial 
bisection for problems where computational costs vary greatly 
from node to node. Other partitioners make use of both geo- 
metrical and connectivity information [lo]. 

Since the data structure that stores information on which 
data partitioning is to be based can represent Geometrical, 
Connectivity and/or Load information, it is called the GeoCoL 
data structure. 

More formally, a GeoCoL graph G  = (V, E, W,, W,, C) 
consists of 

l)asetofverticesV={vi,~~, . . . . vn}, where n = IVI, 
2) a set of undirected edges E = {e,, e2, . . . . e,], where 

m = IEI, 
3) a set of vertex weights W, =(Wi , W,’ , . . . , W:}, 

4)asetofedgeweights W,=(W~,W~,...,W~), and 

5) a set of coordinate information, for each vertex, of di- 
mensiond, C= 1 < ci, . . . . CL> )..., <c; ,...) c;> 1 . 

A.2. Generating the GeoCoL Data Structure via a Compiler 

This section proposes an executable directive CONSTRUCT 
that can be employed to direct a compiler to generate the 
GeoCoL data structures. A user can specify spatial information 
using the keyword GEOMETRY. 

The following is an examnle of a GeoCoL declaration that 
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specifies geometrical information: 

C$ CONSTRUCT Gl (N, GEOMETRY& xcord, ycord, zcord)). 

This statement def ines a  GeoCoL data structure called Gl 
having N vertices with spatial coordinate information speci- 
fied by  arrays xcord, ycord, and  zcord. The  GEOMETRY 
construct is closely related to the geometrical partit ioning or 
value-based decomposit ion directives proposed by  von 
Hanxleden [ 161.  

Similarly, a  GeoCoL data structure that specifies only ver- 
tex weights can be  constructed using the keyword LOAD as 
follows. 

C$ CONSTRUCT G2  (N, LOAD(weight)).  

Here, a  GeoCoL structure called G2  consists of N vertices with 
vertex i having LOAD weight(i). 

The  following example illustrates how connectivity infor- 
mation is specif ied in a  GeoCoL declaration. The  integer ar- 
rays nl and  n2  list the vertices associated with each of E 
graph edges  and  integer arrays nl and  n3  list vertices for an-  
other set of E edges.  

C$ CONSTRUCT G3  (N, LINK(E, nl, n2), LINK(E, nl, n3)). 

The  keyword LINK is used to specify the edges  associated 
with the GeoCoL graph. The  resultant edges  of the GeoCoL 
data structure are the union of 1) edges  linking nl(i) and  n2(i) 
and  2) edges  linking nl(i) and  n3(i). 

Any combinat ion of spatial, load, and  connectivity informa- 
tion can be  used to generate the GeoCoL data structures. For 
instance, the GeoCoL data structure for a  partit ioner that uses 
both geometrical and  connectivity information can be  specif ied 
as  follows: 

C$ CONSTRUCT G4  (N, GEOMETRY 
(3, xcord, ycord, zcord), LINK(E, edgel,  edge2)) .  

Once  the GeoCoL data structure is constructed, data parti- 
t ioning is carried out. Assume that there are P processors.  At 
compile time dependency  coupl ing code is generated.  This 
code generates calls to the runtime support  that, when the pro- 
gram executes:  

1) generates the GeoCoL data structure, 
2) passes the GeoCoL data structure to a  data partit ioning 

procedure where the partit ioner partitions the GeoCoL 
into P subgraphs,  and  

3) passes the new distribution information (the assignment 
of GeoCoL vertices to processors)  to a  runtime procedure 
to redistribute data. 

The  GeoCoL data structure is constructed from the initial 
default distribution of the distributed arrays. Once  the parti- 
t ioner generates a  new distribution, the arrays can be  redis- 
tr ibuted based on  it. A communicat ion schedule is built and  
used to redistribute the arrays from the default to the new 
distribution. 

Vienna Fortran [45] provides support  for the user  to specify 
a  function for distributing data. W ithin the function, the user  
can perform any  processing to specify the data distribution. 

B. Examples of Linking Data Partitioners 

Fig. 11  illustrates a  possible set of partit ioner coupl ing di- 
rectives for the loop Ll in Fig. 10. Statements Sl to S4 pro- 
duce  a  default initial distribution of data arrays x and  y and  
the indirection arrays edge1  and  edge2  in loop L2. The  
statements S5 and  S6 direct the generat ion of code to construct 
the GeoCoL graph and  call the partitioner. Statement S5 indi- 
cates that the GeoCoL graph edges  are to be  generated based 
on  the indirection arrays edge1  and  edge2.  This information 
is provided by  using the keyword LINK in the CONSTRUCT 
directive. The  motivation for using the indirection arrays to 
construct the edges  is that they represent the underlying data 
access patterns of the arrays x and  y in loop Ll. W h e n  the 
GeoCoL graph with edges  represent ing the data access pattern 
is passed to the partitioner, the partit ioner tries to break the 
graph into subgraphs such that the number  of edges  cut be-  
tween the subgraphs is minimal. Hence,  communicat ion be-  
tween processors is minimized. The  statement S6 in the figure 
calls the recursive spectral bisection (RSB) partit ioner with 
GeoCoL as input. The  user  is provided with a  library of com- 
monly available partit ioners and  can choose among them. 
Also, the user  can link a  customized partit ioner as  long as  the 
calling sequence matches that of the partit ioners in the library. 
Finally, the distributed arrays are remapped in statement S7 
using the new distribution returned by  the partitioner. 

REAL*8 x(nnodes), y(nnodes) 

INTEGER edgel(nedges), edgea(nedges) 
Sl DYNAMIC, DECOMPOSITION reg(nnodes),reg2(nedges) 
S2 DISTRIBUTE reg(BLOCK), regZ(BLOCK) 
S3 ALIGN x, y with reg 

S4 ALIGN edgel, edge2 with 1.32 

. . . . 
call readdata(edge1, edge2,  . ..) 

S5 CONSTRUCT G(nnodes),LINK(nedges,edgel, edge2)) 
S6 SET distfmt BY PARTITIONING G USING RSB 
S7 REDISTRIBUTE reg(distfmt) 
c Loop over edges involving x, y 

L2  FORALL i =  1, nedges 
REDUCE (SUM, y(edgel(i)), f(x(edgel(i)), x(edge2(i)))) 

REDUCE (SUM, y(edgea(i)), g(x(edgel(i)), x(edgea(i)))) 

END FORALL 

. . . . 

Fig. 11. Example of implicit mapping in Fortran 90D. 

Fig. 12  illustrates code similar to that shown in Fig. 11  ex- 
cept that the use of geometr ic information is shown. Arrays 
xc, Yc, and  zc, which carry the spatial coordinates for ele- 
ments in x and  y, are al igned with the same decomposit ion to 
which arrays x and  y are aligned. Statement S5’ specifies that 
the GeoCoL data structure is to be  constructed using geometr ic 
information. S6’ specifies that recursive coordinate bisection 
(RCB) partit ioner is used to partition the data. 

Recall from Section II.A.2 that the computat ion in the com- 
bust ion code cycles over  a  convect ion phase  and  a  reaction 
phase.  The  data access pattern in the convect ion phase  in- 
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S5’ CONSTRUCT G (modes, GEOMETRY(3,  XC, yc, ZC)) 

S6’ SET distfmt BY PARTITIONING G USING RCB 

S7’ REDISTRIBUTE reg(distfmt) 

Fig. 12. Example of implicit mapping using geometry information in For- 
tran 90D. 

$1 DYNAMIC, DECOMPOSITION gid(NPOINTS) 
S2 DISTRIBUTE grid(BLOCK) 
53 ALIGN x(:), J(:), %(:), wt(:) WITH grid(BLOOK) 
Kl nt( l :NPOINTS) = 1 
K2 do J = 1, nfimeateps 

0 Phm 1: N.&r St&a S&u - Convection Phase - BLOCK data distribution 
K3 FOBALL i = 1, NPOINTS 
K4 x(i) = x(i) + F(y(i), y(i-I), y(i), y&l), z(i)) 
KS END FOBALL 
S4 CONSTRUCT G  (NPOINTS, LOAD( 
S3 SET mydist BY PARTITIONING G  USING BINPACKING 
S6 REDISTRIBUTE .qid(mydiit) 
C  Phase 2: Adaptive ODE Solver - Reaction Phase - IRREGULAR data diatribotion 

K6 wt(1:NPOINT.S) = 1 
K7 FOBALL i = 1, NPOINTS 
K6 s(i) = Ad~ptivesolver(x(i),wt(i)) 
K9 END FOBALL 
S7 REDISTRIBUTE yid(BLOCK) 

K10 end do 

Fig. 13. An example of adaptive partitioning using Fortran 90D. 

volves access to only nearest  neighbor array elements. Hence,  
dur ing the convect ion phases  it is reasonable to make use of a  
BLOCK distribution of data for arrays x, y, and  z. Statements 
Sl through S3 in Fig. 13  produce BLOCK distribution of data 
arrays. In the reaction phase,  the amount  of work done  at each  
mesh point varies as  time progresses,  and  no  communicat ion 
occurs. The  computat ional cost of the reaction phase  at each  
mesh point in the current time step is stored in array wt. This 
cost information is used to distribute data arrays in the reaction 
phase  of the next time step. A bin-packing heuristic is invoked 
to obtain the data distribution for the reaction phase.  The  
statements S4 through S6 carry out the data distribution for the 
reaction phase.  

C. Loop  Iteration Partitioning 

Once  data have been  partit ioned, computat ional work can 
be  partit ioned. One  convent ion is to compute a  program as- 
s ignment statement S in the processor that owns the distributed 
array element on  S’s left-hand side. This convent ion is nor- 
mally referred to as  the “owner-computes” rule. (If the left 
hand  side of S references a  replicated variable then the work is 
carried out in all processors.)  One  drawback to the owner-  
computes rule in sparse codes is that communicat ion within 
loops may be  needed,  even in the absence of loop carried de-  
pendencies.  For example, consider the following loop: 

FORALLi=l,N 
Sl x(ib(i)) = . . . . . . 
S2 y(ia(i)) = x(ib(i)) 

END FORALL 

This loop has  a  loop independent  dependence  between Sl and  
S2, but no  loop carried dependencies.  If work is ass igned using 
the owner-computes rule, for iteration i, statement S 1  would be  

computed on  the owner  of ib(i), OWNER(ib(i)), while state- 
ment  S2 would be  computed on  the owner  of ia( 
OWNER(ia(i)). The  value of y(ib(i)) would have to be  com- 
municated whenever  OWNER(ib(i)) #  OWNER(ia(i)). 

In Fortran D and  Vienna Fortran, a  user  can specify on  
which processor to carry out a  loop iteration using the ON 
clause. For example, in Fortran D, the above  loop could be  
specif ied as  

FORALL i =  1, N ON HOME(x(i)) 
Sl x(ib(i)) =  . . . . . . 
S2 y(ia(i)) =  x(ib(i)) 

END FOWL 

This means  that iteration i must be  computed on  the processor 
on  which x(i) resides, OWNER(x(i)),  where the sizes of arrays 
ia and  ib are equal  to the number  of iterations. Similar ca- 
pabilities exist in Vienna Fortran. 

W h e n  an  ON clause is not explicitly specified, it is the com- 
piler’s responsibility to determine where to compute each itera- 
tion. An alternate policy to the owner  computes rule is to assign 
all work associated with a  loop iteration to a  given processor.  
The  current default is to employ a  scheme that executes a  loop 
iteration on  the processor that is the home of the largest number  
of distributed array references in an  iteration. This scheme is 
referred to as  the “almost owner  computes rule.” 

V. RUNTIME SUPPORT 

This section briefly discusses the functionality of the run- 
time primitives that are used to perform the steps outl ined in 
Fig. 8. It should be  noted that one  of the important features of 
the approach taken in this work is the rel iance upon  an  effi- 
cient runtime system. 

The runtime support  for compi ler -embedded mapping pre- 
sented in this paper  can be  broadly divided into three catego- 
ries: 1) general  support  for communicat ion and  distributed data 
management ,  2) data partitioning, and  3) iteration partit ioning 
(work assignment).  The  following subsect ions briefly descr ibe 
these primitives. 

A. Data Partitioning 

The runtime support  associated with data partit ioning in- 
c ludes procedures for generat ing the GeoCoL data structure 
for partit ioners (that operate on  the GeoCoL data structure) to 
determine a  data distribution, and  procedures for remapping 
data as  specif ied by  the partit ioner output. 

The  data structures describing the problem domain are 
specif ied by  the CONSTRUCT directive discussed earlier. 
Processing this primitive requires generat ing a  weighted inter- 
action graph represent ing the computat ion load and/or com- 
munication dependencies.  For example, the connectivity edges  
of the GeoCoL graph might reflect the read/write access pat- 
terns of the specif ied computation. 

W h e n  connectivity information for the GeoCoL data struc- 
ture is provided in the form of arrays (e.g., indirection arrays 
in an  irregular loop), preprocessing is required to construct the 
connectivity graph. The  procedures el iminate-dup-edges and  
generate_geocol  could be  used to do  the preprocessing. Given 
the data access pattern information in the form of integer ar- 
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rays nl and  n2, the GeoCoL graph is constructed by  adding 
an  undirected edge  < nl(i), n2(i) >  between nodes  nl(i) and  
n2(i) of the graph. 

Fig. 14  shows the parallel generat ion of connectivity infor- 
mation in the GeoCoL data structure when integer indirection 
arrays are provided. Each processor generates the local Geo-  
CoL data structure using the local set of indirection arrays. 
The  local g raph is generated by  the procedure elimi- 
nate-dup-edges.  For clarity, the local GeoCoL is shown as an  
adjacency matrix. The  local graphs are then merged to form a  
global distributed graph using the procedure generute-geocol.  
During the merge, if the local g raph is v iewed as  an  adjacency 
matrix stored in compressed sparse row format, processor Pa 
collects all entries from the first N/P rows in the matrix from 
all other processors,  where N is the number  of nodes  (array 
size) and  P is the number  of processors.  Processor Pi collects 
the next N/P rows of the matrix and  so on. Since entries for 
each  row may come from many  processors there may be  dupli- 
cate entries. Processors remove duplicate entries when they 
collect adjacency list entries. The  output of procedure gener-  
ate_geocol  is a  GeoCoL data structure with the global connec-  
tivity information. 

Any appropriate data partit ioner may be  used to compute 
the new data distribution using the GeoCoL graph. Table II 
lists many  of the candidate partit ioners for determining the 
data partitioning. In fact, a  user  may use any  partit ioner as  long 
as  the input and  output data structures conform to those re- 
quired by  other primitives. The  output of the partit ioner de-  
scribes a  mapping of the data satisfying the desired criteria for 
load balance and  communicat ion minimization. 

* Generate local g raph on  each processor represent ing 
Loop’s array access pattern 

L0CB.l 

graph 

NxN NxN 

* Merge local graphs to produce a  distributed graph 

Fig. 14. Parallel generat ion of GeoCoL graph. 

B. Work load Partitioning 

Once  data are partit ioned, computat ion also must be  parti- 
t ioned. Work load (computation) partit ioning refers to deter- 
mining which processor will evaluate which expressions. 
Computat ion partit ioning can be  performed at several levels of distributions. 

To  redistribute data and  loop iteration space,  a  runtime pro- 
cedure called remap has  been  developed.  This procedure takes 
as  input the original and  the new distribution in the form of 
translation tables and  returns a  communicat ion schedule.  This 
schedule can be  used to move data between initial and  new 

granularity. At the finest level, each  operat ion may be  indi- 
vidually ass igned to a  processor.  At the coarsest level, a  block 
of iterations may be  assigned to a  processor,  without consider- 
ing the data distribution and  access patterns. Both approaches 
seem expensive since, in the first case, the amount  of preproc- 
essing overhead can be  very high, whereas in the second case 
communicat ion cost can be  very high. This paper  has  taken an  
approach which represents a  compromise. Each loop iteration 
is considered individually before assigning it to a  processor.  

For this purpose,  data structures and  runtime procedures 
have been  developed to support  iteration partitioning. To  par- 
tition loop iterations, CHAOS uses a  graph called the runtime 
iteration graph, or RIG. The RIG associates with each loop 
iteration i, all indices of each  distributed array accessed during 
iteration i. A RIG is generated for every loop that references at 
least one  irregularly distributed array. 

Using the RIG, for each  iteration a  list containing the num- 
ber  of distinct data references is computed on  each processor.  
Primitive deref-rig uses the RIG and  the distributed transla- 
tion tables to find the processor assignments associated with 
each distributed array reference. Subsequently,  primitive it- 
erutiongartit ioner uses this information to partition iterations. 
Currently, the heuristic used for iteration partit ioning is the 
“almost owner  computes” rule, in which an  iteration is as- 
s igned to the processor which owns the majority of the ele- 
ments participating in that particular iteration, 

Note that just as  there are many  possible strategies that can 
be  used to partition data, there are also many  strategies that 
can be  used to partition loop iterations, Currently several 
techniques have been  investigated to specify “workload parti- 
t ioners” or “iteration partit ioners” in which a  user  can provide 
a  customized heuristic. 

C. Data Redistribution 

For efficiency in scientific programs, distributions of dis- 
tr ibuted data arrays may have to be  changed between compu-  
tational domains or phases.  For instance, as  computat ion pro- 
gresses in an  adapt ive problem, the work load and  distributed 
array access patterns may change based on  the nature of the 
problem. This change might result in a  poor  load balance 
among processors.  Hence,  data must be  redistributed periodi- 
cally to maintain this balance. 

To  obtain an  irregular data distribution for an  irregular con-  
current problem, data arrays are initially partit ioned in a  known 
distribution. Then,  a  heuristic method is appl ied to obtain an  
irregular distribution 6s. Once  the new data distribution is ob-  
tained, all data arrays associated with distribution 6, must be  
transformed to distribution 6s  For example, in solving the Euler 
equat ions of an  unstructured grid, the flow variables are distrib- 
uted in this method. Similarly, the loop iterations and  the indi- 
rection arrays associated with the loop must also be  remapped.  
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VI. EXPERIMENTALRESULTS 

This section presents the experimental results for the vari- 
ous  techniques presented in this paper  for compiler and  run- 
time support  for irregular problems. All measurements  are 
performed on  the Intel iPSU860. In particular, this section 
presents the per formance improvements obtained by  employ- 
ing communicat ion schedule reuse, compar ing the perform- 
ance of compiler generated code with that of hand  coded ver- 
sions, and  also presents data on  the per formance of compiler- 
embedded  mapping using various partitioners. 

A. Communicat ion Schedule Reuse 

This section presents per formance data for the schedule 
saving technique proposed in Section III for the Fortran 
90D/HPF compiler implementation. 

These per formance measurements  are for a  loop over  edges  
from a  3D unstructured Euler solver [29] for both 10K and  
53K mesh points, and  for an  electrostatic force calculation 
loop in a  molecular dynamics code for a  648  atom water 
simulation [5]. The  functionality of these loops’ is equivalent to 
the loop Ll in Fig. 10. 

Table III presents the per formance results of the compiler 
generated code with and  without the schedule reuse technique. 
The  table presents the execut ion times of the loops for 100  
iterations with distributed arrays decomposed irregularly using 
a  recursive coordinate bisection partitioner. Clearly, being able 
to reuse communicat ion schedules improves per formance sig- 
nificantly. This is because without reuse, schedules must be  
regenerated at each  time step, and  therefore, the cost is pro- 
portional to the number  of iterations. 

B. Performance of the Mapper  Coupler 
This section presents per formance results that compare the 

the costs incurred by  the compiler generated mapper  coupler 
procedures with the cost of a  hand  embedded  partitioner. 

TO map arrays, two different kinds of parallel partit ioners 
are employed: 1) geometry based partit ioners (coordinate bi- 
section [3] and  inertial bisection [31]) and  2) a  connectivity 
based partit ioner (recursive spectral bisection [39]). The  per- 

TABLE III 
PERFORMANCE OF SCHEDULE REUSE 

TABLE IV 
UNSTRUCTURED MESH TEMPLATE-53K MESH-32 PROCESSORS 

mme 
Recursive Coordisate Bisection 1 Block Partition 
Hand I Corm&r: I Compiler I Hand I Compiler 

I &SW ) I I Coded No S&d& Schehule Coded 
l lmm I Reuse I 

Partitionu 1.3 1.3 1.3 0.0 0.0 
Inspector k Remap 3.3 286 3.4 3.2 3.4 

Executor 13.9 13.9 15.1 36.6 38.2 
Total 18.5 301 19.8 39.6 41.6 

formance of the compiler embedded  mapper  and  a  hand  paral- 
lelized version are shown in Tables IV and  V. 

In Tables IV and  V, Purt idoner represents the time needed  
to partition the arrays, Executor depicts the time needed  to 
carry out the actual computat ion and  communicat ion for 100  
iterations (time steps), and  Inspector & Remap shows the time 
taken to build the communicat ion schedule and  redistribute 
data to the new distribution. 

Table IV presents the per formance of results of the Euler 
loop with the compiler-l inked recursive coordinate bisection 
partit ioner and  the BLOCK distribution for a  53K mesh tem- 
plate on  32  processors.  Two important observat ions can be  
made  from Table IV. First, the compiler generated code per- 
forms almost as  well as  the hand  written code.  In fact, the 
compiler generated code is within 15% of the hand  coded ver- 
sion. The  overhead is partly due  to bookkeeping done  to reuse 
schedules and  partly due  to runtime calculation of loop 
bounds.  Second,  the per formance of the code using the parti- 
t ioner is much better than the per formance of the block parti- 
t ioned code even when the cost of execut ing the partit ioner is 
included. 

Table V shows the per formance of compiler generated code 
when two additional partit ioners are used;  namely, recursive 
spectral bisection (RSB) and  inertial bisection. In Table V, 
Purritioner depicts the time needed  to partition the GeoCoL 
graph data structure using a  parallelized version of Simon’s sin- 
gle level spectral partit ioner [39]. Only a  modest  effort was 
made  to produce an  efficient parallel implementation of the 
partit ioner and  it is bel ieved that the per formance and  the execu-  
tion time of the partit ioner can be  t remendously improved by  
using a  multilevel version of the partit ioner [2], [ 181.  The  Geo-  
CoL graph is partit ioned into a  number  of subgraphs equal  to the 
number  of processors employed. It should be  noted that any  
parallelized partit ioner could be  used.  The  Graph Generat ion 
time depicts the time required to generate the GeoCoL graph. 

Clearly, different partit ioners perform differently in terms of 
execut ion time and  quality of load balancing. The  best load 
balancing is obtained by  using RSB because the time for the 
executor  phase  is minimized. However,  the cost of partit ioning 
using RSB is quite high. Thus,  the choice of a  partit ioner 
should depend  on  how long the solution of a  problem is likely 
to take (the number  of time steps). 

Table VI shows the per formance of the compiler generated 
code for the Euler and  the molecular dynamics loops on  vari- 
ous  numbers  of processors.  To  compare the partit ioner’s per- 
formance for different programs, timings for a  hand  coded 
block partit ioned version in Table VII are also included. In the 

TABLE V 
UNSTRUCTURED MESH TEMPLATE-53K MESH-32 PROCESSORS 
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TABLE VI 
PERFORMANCEOFCOMPILER-LINKEDCOORDINATEBISE~IONPARTITIONER 

WITHSCHEDLJLEREUSE 

TABLE VII 

blocked version, each contiguous block of array elements are 
assigned to processors using the BLOCK distribution. The use 
of either a coordinate bisection partitioner or a spectral bisec- 
tion partitioner led to a reduction factor of two to three in the 
executor time compared to the use of block partitioning. This 
example also points out the importance of the number of ex- 
ecutor iterations and choice of partitioner. When compared to 
the RCB partitioner, the RSB partitioner is associated with 
faster time per executor iteration but also a significantly higher 
partitioning overhead. Irregular distribution of arrays performs 
significantly better than the existing BLOCK distribution sup- 
ported by HPF. 

C. Performance of Adaptive Problems 

Table VIII presents experimental results for an application 
of the type described in Section II.A.2. Recall that this type of 
application alternates between two distinct computational 
phases. The first phase (convection) consists of structured cal- 
culations on a Cartesian mesh. The second phase (reaction) 
involves a set of local computations at each mesh point. The 
computational cost associated with the reaction phase varies 
between mesh points. Fig. 5 in Section II.A.2 depicts the com- 
putational structure of this type of application. 

The presented results are for a simplified version of the Re- 
active Euler solver developed by James Weber at the Univer- 
sity of Maryland. This algorithm computes the reaction rates of 
various gases, integrates the governing rate equations, and 
determines the new number densities in a hypersonic medium. 
The thermodynamic quantities, such as temperature, pressure, 
and specific heat ratio are evaluated as the reaction mechanism 
proceeds. The first phase of the Reactive Euler solver is an 
explicit Navier Stokes solver, while the second phase is an 
adaptive ordinary differential equation solver. 

Fig. 13 depicts the load balancing strategy. In this simplified 
example, the mesh is represented as a one dimensional array. 
The array is partitioned into equal-size blocks (i.e., a BLOCK 
mapping). In order to ensure a good load balance during the 

TABLE VIII 
PERFORMANCEOFCOMBUSTIONCODEWITHCOMPILER-LINKED 

LOADBASEDPART~TIONER 

TABLE IX 
PERFORMANCEOFCOMPILER-LINKEDPARTITIONERS 

reaction phase, only expensive reaction calculations are redis- 
tributed. Reaction calculations are redistributed based on the 
costs incurred in the previous time step. After the reaction phase, 
the remapped data are returned to their original positions. 

Table VIII presents the performance of the second reaction 
phase for 100 cycles, and a comparison between hand coded 
and compiler generated codes. The Load Balance columns 
give the time taken to carry out the partitioner and remap the 
data. A bin-packing heuristic is used to balance the load in the 
combustion phase. The performance of the compiler generated 
code is almost as good as that of the hand coded version. Also 
note the performance improvements obtained when using a 
load based partitioner and adaptivity compared to performing 
no load balancing. 

Finally, Table IX summarizes the compiler performance for 
all the codes and presents a comparison with the hand coded 
version. For all problems, the performance of the compiler 
generated code is within 15% of the hand coded version. 

VII. RELATEDWORK 

Research has been carried out by von Hanxleden [16] on 
compiler-linked partitioners that decompose arrays based on 
distributed array element values; these are called value-based 
decomposifions. The GEOMETRY construct can be viewed as 
a particular type of value based decomposition. Several re- 
searchers have developed programming environments that are 
targeted toward particular classes of irregular or adaptive 
problems. Williams [44] describes a programming environ- 
ment (DIME) for calculations with unstructured triangular 
meshes using distributed memory machines. Baden [l] has 
developed a programming environment targeted towards par- 
ticle computations. This programming environment provides 
facilities that support dynamic load balancing. 

There are a variety of compiler projects targeting distrib- 
uted memory multiprocessors: the Fortran D compiler proj- 
ects at Rice and Syracuse [14], [4] and the Vienna Fortran 
compiler project [45] at the University of Vienna are two 
examples. The Jade project at Stanford [24], the DIN0 proj- 
ect at Colorado [37], Kathy Yelick’s work [6] at Berkeley, 
and the CODE project at University of Texas, Austin, pro- 
vide parallel programming environments. Runtime compila- 
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tion methods have been  employed in four compiler projects: 
the Fortran D project [20], the Kali project [23], Marina 
Chen’s work at Yale [26], and  the PART1 project [30], [38]. 
The  Kali compiler was the first compiler to implement in- 
spector/executor type runtime preprocessing 1231,  and  the 
ARF compiler was the first compiler to support  irregularly 
distributed arrays [38]. 

In earlier work, a  strategy was outl ined that would make it 
possible for compilers to generate compiler embedded  con- 
nectivity based partit ioners directly from marked loops [36]. 
The  approach descr ibed here requires more input from the user  
and  less compiler support.  A short version of the techniques 
descr ibed in this paper  appeared in a  conference proceedings 
[35]. Support  for irregular data distributions in HPF, using 
intrinsic functions, has  been  proposed by  Ponnusamy et al. 
[34]. Recently, support  for irregular data distribution has  been  
implemented on  the Vienna Fortran Compiler, using CHAOS 
runtime procedures,  in collaboration with this research group. 

VIII. CONCLUSIONS 

This paper  has  descr ibed work that demonstrates two new 
mechanisms for deal ing effectively with irregular computa-  
tions. The  first mechanism invokes a  user  specif ied mapping 
procedure using a  set of compiler directives. The  second 
mechanism is a  simple conservat ive method that in many  cases 
makes it possible for a  compiler to recognize the potential for 
reusing previously computed results from inspectors (e.g., 
communicat ion schedules,  loop iteration partitions, and  infor- 
mation that associates off-processor data copies with on-  
processor buffer locations). 

The  CHAOS procedures descr ibed here can be  v iewed as  
forming a  port ion of a  portable, compiler independent,  runtime 
support  library. The  CHAOS runtime support  library contains 
procedures that 

1) support  static and  dynamic distributed array partitioning, 
2) partition loop iterations and  indirection arrays, 
3) remap arrays from one  distribution to another,  and  
4) carry out index translation, buffer allocation, and  com- 

munication schedule generat ion. 

The  prototype compiler has  been  tested on  computat ional 
templates extracted from an  unstructured mesh computat ional 
fluid dynamics code,  a  molecular dynamics code,  and  an  hy- 
personic combust ion code.  The  hand  parallelized codes,  where 
runtime support  routines are embedded  by  hand,  have  been  
compared against the compiler generated codes.  The  com- 
piler’s per formance on  these templates was within 15% of the 
hand  compiled codes.  

In the current implementation, iteration partit ioning of a  
Forall loop has  been  performed using the almost owner  com- 
putes rule. In general,  for data partitioning, a  user  or compiler 
should be  able to specify a  partit ioner to perform iteration 
partitioning. Currently, primitives are been  developed to cou-  
ple iteration partit ioners with Fortran 90  Forall loops. 

The  CHAOS procedures descr ibed in this paper  are avail- 
able for public distribution and  can be  obtained from netlib or 
from the anonymous ftp site hyena.cs.umd.edu. 
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