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g Languages such as 
Fortran D provide 
irregular distribution 
schemes that can 
efficiently support 
irregular-problems. 
Irregular distributions 
can also be emulated 
in HPF. Compilers can 
incorporate runtime 
procedures to 
automatically support 
these distributions. 

12 

0 n distributed-memory machines, large data arrays need to 
be partitioned between local processor memories. These 
partitioned data arrays are called distributed arrays. 

Many applications can be efficiently implemented by 
using simple schemes for mapping distributed arrays. One 

such scheme is BLOCK distribution, which divides an array into contigu- 
ous, equal-sized subarrays and assigns each subarray to a different proces- 
sor. Another is CYCLIC distribution, which assigns consecutively indexed 
array elements to processors in round-robin fashion. 

However, more complex distributions are required to efficiently exe- 
cute in-egularpl-oblem such as computational fluid dynamics codes, mol- 
ecular dynamics codes, diagonal or polynomial preconditioned iterative 
linear solvers, and time-dependent flame-modeling codes. Researchers 
have developed a variety of methods to obtain data mappings that opti- 
mize the communication requirements of irregular problems. 1-3 These 
methods produce irregular distributions. 

The Fortran D,“ Fortran 90D, and Vienna Fortranj data-parallel lan- 
guages support irregular data distributions. Fortran D and Fortran 90D let 
a programmer explicitly specify an irregular distribution using an array, 
to specify a mapping of array elements to processors. (Fortran D is For- 
tran 77 with data distribution; Fortran 90D is Fortran 90 with data distri- 
bution.) Vienna Fortran lets developers define functions to describe irreg- 
ular distributions. However, the current version of High Performance 
Fortran does not directly support irregular distributions6 

Also, in irregular problems, data-access patterns and workload are usu- 
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C Outer Loop Ll 
Do 1: =  1, n-step 
. . 

C Inner Loop L2  
Do i =  1, nedge 

y(edgel(i)) =  y(edgel(i)) +  f(x(edgelii)), x(edge%(i))) 
y(edgeZ(i)) =  y(edge2ci)) +  g(x(edgel(i)), x(edge%(i))) 

END DO 
. 

END Do 

Figure 1. An irregular loop. 

ally known only at nmtime, so deci- 
sions regarding data and  work distrib- 
utions are made at runtime. These on- 
the-fly decisions therefore require 
special runtime support.  Data-parallel 
languages do  not provide this support,  
so we developed Chaos, a set of proce- 
dures that can be  used by an  HPF-style 
compiler to automatically manage pro- 
grammer-def ined distributions, parti- 
tion loop iterations, remap data and  
index arrays, and  generate optimized 
communicat ion schedules. Other 
researchers have proposed compile- 
time techniques to partition data auto- 
matically, but their approaches only 
apply to regular programs.’ 

W e  implemented our methods on  a  
Fortran 90D compiler, using tem- 
plates from real application code for 
irregular problems. Our results show 
that using irregular distributions sig- 
nificantly improves performance, and  
that the compiler-generated code per- 
forms comparably to hand-paral-  
lelized versions of the same code. W e  
also developed a  method to emulate 
irregular distributions in HPF by 
reordering elements of data arrays and  
renumbering indirection aways (which 
we’ll discuss later). Our results suggest  
that an  HPF compiler using this 
method will perform comparably to a  
compiler for a  language (such as For- 
tran 90D) that directly supports irreg- 
ular distributions. 

Irregular distributions 
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Figure 2. Data distributions: (a) example graph, (b) BLOCK distribution, 
(c) CYCLIC distribution, (d) irregular distribution. Dashed circles 
indicate that the indexed elements are not local. 

putation involving the edge that connects vertices edgel  
and  edge2(z).  Arrays such as edge1 and  edge2,  which 
are used to index data arrays, are called indirection aways. 

BLOCK and CYCLIC data distributions might not be  
appropriate for irregular problems. For example, Fig- 
ure 2  depicts three different distributions of data arrays 
over two processors. Figure 2a  shows a  graph of six 
nodes and  seven edges.  Arrays x and  y are data arrays. 

Irregular problems extensively use indirectly accessed 
arrays. For example, Figure 1  illustrates code with an  irreg- 
ular loop. The code sweeps over nedge mesh edges.  Arrays 
x and  y are data arrays. Loop iteration i carries out a  com- 
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Sl REAL a(N. N) 
S2 C$ DECOMPOSITION d(N. N) 
s3 c$ ALIGN a(i, j) WITH d(i. j) 
s4 C$ QISTRIBUTE d!*, BLOCK) 

Figure 3. Fortran D data distribution specifications. 

Sl REAL*8 x(N).y(N) 
52 INTEGER map(N) 
s3 C$ DECOMPOSITION reg(N),irreg(N) 
s4 C$ DISTRIBUTE reg(BLOCK) 
s5 C$ ALIGN map WITH reg 
S6 . . . set values of map array using some 

mapping method... 
S7 C$ DISTRIBUTE irreg(mapj 
sa C$ ALIGN x,y WITH irreg 

.-____- - 
Figure 4. Fortran D irregular distribution. 

The edges are represented by two indirection arrays 
edge1 and edge2, which will be partitioned in blocks. 
The code in Figure 1 can be used to sweep this graph. 

The BLOCK distribution (Figure 2b) assigns nodes 1, 
2, and 3 to processor PO, and nodes 4,5, and 6 to proces- 
sor Pl . The dashed circles in indirection arrays edge 1 
and edge2 indicate that the indexed elements are nor 
local. The BLOCK distribution has four nonlocal data 
elements; the CYCLIC distribution (Figure 2c) has five. 
The irregular distribution (Figure 2d) represents the 
best mapping: It requires only one remote reference. 

Language support 

Vienna Fortrah, PC++, Fortran D, Fortran 90D, and 
HPF provide a rich set of directives that let program- 
mers specify desired data decompositions. With these 
directives, compilers can partition loop iterations and 
generate the communication required to parallelize the 
code. Although we focus on Fortran D, Fortran 90D, 
and HPF, this research could be extended to other lan- 
guages. (In the program code examples in this article, 
Fortran D, Fortran 90D, and HPF directives are in all 
capital letters; programmer-declared variables are 
lower-case.) 

FORTRAN D AND FORTRAN 9OD 
In Fortran D and Fortran 90D, the DECOMPOSITION, 
ALIGN, and DISTRIBUTE directives provide explicit 
control over data partitioning. A template, called a 
distribution, is declared and used to characterize a 
distributed array’s significant attributes. A distribution 
is produced using two declarations. The first is 
DECOMPO S IT I ON, which fixes the template’s name, 
dimensions, and size. The second is DISTRIBUTE, 

/ 

which is an executable statement that 
specifies how the template will be 
mapped onto the processors. Pro: 
grammers can choose from several 
regular distributions, and can explic- 
itly specify how a distribution is to be 
mapped onto the processors. The 
AL I GN statement associates a specific 
array with a distribution. 

In the Fortran D code segment in 
Figure 3, d is declared to be a 2D 
decomposition of size N x N. Array a 
is then aligned with the decomposi- 
tion d. Distributing decomposition d 
by ( * , BLOCK) produces a column 

partition of arrays aligned with d. The data-distribution 
specifications are then treated as comment statements in 
a sequential-machine Fortran compiler. So, a program 
written with distribution specifications can be compiled 
and executed on a sequential machine. 

Support for irregular distributions 
Fortran D and Fortran 90D support irregular data dis- 
tributions and dynamic data decomposition-that is, 
changing a decomposition’s alignment or distribution 
at any point in the program. An irregular partition of 
distributed array elements can be explicirly specified. 
Figure 4 depicts such a declaration in Portran D. State- 
ment S3 defines two 1D decompositions, each of size N. 
Statement S4 partitions decomposition r e g into equal- 
sized blocks, with one block assigned to each proces- 
sor. Statement SS aligns array map with distribution 
reg. In statement S7, map specifies how distribution 
i r r e g will be partitioned. An irregular distribution is 
specified using an integer array; when map(i) is set 
equal to p, element i of the distribution ir reg is 
assigned to processor p. A data partitioner can be 
invoked to set the values of the permutation array. 

Computational loop structures 
Figure 5 shows an irregular Fortran 90D FORALL loop 
that is equivalent to the sequential loop L2 in Figure 1, 
L2 represents a sweep over the edges of an unstructured 
mesh. Because the mesh is unstructured, an indirection 
array must be used to access the vertices during a loop 
over the edges. In L2, the reference pattern is specified 
by integer arrays edge1 and edge2. L2 carries out 
reduction operations that are the only types of depen- 
dence between different iterations of the loop. For 
example, in L2 each mesh vertex is updated using the 
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I c Sweep over edges: Loop L2 
FORALL (i =  1: nedge) 

I Sl REDUCE (SUM. y(edgel(i)). f(x(edgel(i)), x(edgeZ(i)))) 
: s2 REDUCE (SUM. y(edgeZ(i)), g(x(edgel(i)), x(edge2(i)))) 

END FORALL 

L-....- 
Figure 5. An irregular loop in Fortran 90D. 

corresponding values of its neighbors 
(directly connected through edges). 
Each vertex is updated as many times 
as the number of neighboring vertices. 

Fortran D and Fortran 90D’s 
implementation of FORALL follows 
copy-in-copy-out semantics; loop-car- 
ried dependences are not defined. The 
present implementation allows loop- 
carried dependences caused by reduc- 
tion operations. The reduction oper- 
ations are specified in a FORALL 
construct using the REDUCE con- 
struct. Reduction inside a FORALL is 
important for representing computa- 
tions such as those in sparse and 
unstructured problems. This repre- 
sentation also preserves the explicit 
parallelism available in the underlying 
computations. 

Loop iteration distribution 

____-..- 
C Initially arrays are distributed in blocks 
cs DECOMPOSITION reg(14026) 
cs DISTRIBUTE reg(BLOCK) 
cs ALIGN x, y, dx, dy WITH reg 

. . . 
Sl Obtain new distribution format (map) from the 

extrinsic partitioner 
cs DISTRIBUTE reg (map) 

. . . 
C Calculate DX and DY 
cs EXECUTE (i,*) ON-HOME(reg(i)) 

FORALL (i =  1: natom) 
FORALL (j =  inblo(i): inblo(i+l) - 1) 

REDUCE (SUM, dx(jnb(j)), x(jnb(j)) x(i)) 
REDUCE (SUM, dy(jnb(j)), y(jnb(j)) - y(i)) 
REDUCE (SUM, dx(i), x(i) - x(jnb(j))) 
REDUCE (SUM, dy(i), y(i) - y(jnb(j))) 

END FORALL 
END FORALL 

Figure 6. Nonbonded force calculation loop of Charmm in Fortran 90D. 

Once data arrays are partitioned, computational work 
must also be partitioned. One convention is to com- 
pute a program assignment statement Sin the proces- 
sor that owns the distributed array element on s’s left- 
hand side. This convention is normally called the 
owner-compzltes rule. If the element on the left of S ref- 
erences a replicated variable, then the work is carried 
out in all processors. One drawback to the owner- 
computes rule in sparse codes is that communication 
might be required within loops, even in the absence of 
loop-carried dependences. For example, consider the 
following Fortran D loop: 

FORALL i =  1. N 
Sl x(ib(i)j =...... 
S2 y(ia(i)) =  x(ib(i)) 

END FORALL 

This loop has a loop-independent dependence between 
SI and S2, but no loop-carried dependences. If work is 
assigned using the owner-computes rule, for iteration i, 
statement S 1 would be computed on the owner of x(&(z)), 
OWNER (x ( ib ( i ) ) ) , while statement S2 would be com- 
puted on the owner of y@(z)), OWNER ( y ( i a ( i 1) 1. The 
value of x(ib(z)) would have to be communicated when- 
everOWNER(x(ib(i)))#OWNER(y(ia(i))). 

- - 
Spring 1995 

In Fortran D and Fortran 90D a programmer can use 
the ON clause to specify which processor will carry out 
a loop iteration. For example, in Fortran D, a loop could 
be written as 

FORALL i =  1,N ON HOME(x(i)) 
Sl x(ib(i)) =... 
S2 y(ia(i)) =  x(ib(i)) 

END FORALL 
Iteration i must be computed on the processor on which 
x(z) resides, if the sizes of arrays ia and ib are equal to 
the number of iterations. A similar proposed HPF direc- 
~~~~,EXECUTE-ON-HOME, providesthiscapability.* 

Another method uses the almost-owner-cmzpzltes rule, 
which executes a loop iteration on the processor that is 
the home of the largest number of distributed array ref- 
erences in that iteration.9 For example, in the Foman D 
code segment 

C$ EXECUTE (i) ON-HOME(map(i)) 
FORALL i =  1,N 

Sl x(ib(i)) =... 
S2 y(ia(i)) =  x(ib(i)) 

END FORALL 

This loop uses the proposed HPF EXECUTE -ON- HOME 
directive to present the almost-owner-computes rule. 
An iteration i is assigned to the processor map(i>. 

15 



Two irregulurproblems 
The loop structures of two application 
codes-an unstructured Euler solver and 
a molecular dynamics code-illustrate 
the need for irregular distributions. 
These structures consist of a sequence of 
loops with indirectly accessed arrays, and 
are similar to the loop in Figure 1 in the 
main article. 

UNSTRUCTIJREDECJLERSOLVER 
The first application code is an unstruc- 
tured Euler solver used to study the flow 
of air over an airfoil.’ Complex aerody- 
namic shapes require high-resolution 
meshes and, consequently, large num- 
bers of mesh points. Physical values (such 
as velocity and pressure) are associated 
with each mesh vertex. These values are 

r ~___ -- 

calledym variables and are stored in data several of these types of information: the 
arrays. Calculations are carried out using spatial locations of mesh vertices, the con- 
loops over the list of edges that define the nectivity of the vertices, and an estimate 
connectivity of the vertices. of the computational load associated with 

To parallelize an unstructured Euler each mesh point. For instance, a devel- 
solver, mesh vertices (that is, arrays that oper might choose a partitioner that is 
store flow variables) must be partitioned. based on coordinates. A coordinate bisec- 
Because meshes are typically associated tion partitioner decomposes data using 
with physical objects, a spatial location the spatial locations of mesh vertices. If 
can often be associated with each mesh the developer chooses a graph-based par- 
point. The mesh-generation strategy titioner, the connectivity of the mesh 
determines the spatial locations of the could be used to decompose the mesh. 
mesh points and the connectivity pattern The next step in parallelizing this 
(edges) of the vertices. Figure A shows an application involves assigning equal 
unstructured mesh of a 3D aircraft wing amounts of work to processors. A Euler 
that was generated by such a process. solver consists of a sequence of loops that 

During mesh generation, vertices are sweep over a mesh. Computational work 
added progressively to refine the mesh. associated with each loop must be parti- 
While new vertices are added, new edges tioned to balance the load. Therefore, 
are created or older ones are moved mesh edges are partitioned so that load 
around to fulfill certain criteria. This fre- balance is maintained and computations 
quently produces a vertex numbering employ mostly locally stored data. 
that does not correspond usefully with 
the edge numbering. One way to solve MOLECULAR DYNAMICS CODE 
this is to renumber the mesh completely Other unstructured problems have sim- 
after it has been generated. ilar indirectly accessed arrays. For instance, 

Mesh points are partitioned to mini- consider the nonbonded force calculation 
mize communication. Some promising, in the molecular dynamics code, Char-mm* 
recent partitioning heuristics use one or (see Figure B). Force components associ- 

Ll: Do i = 1, NATOM 
L2: Do index = 1, INB(i) 

j = Partnersci. index) 
Calculate dF (x, y and z components). 
Subtract dF from Fj. 
Add dF to Fi 

End Do 
End Do 

Figure A. An unstructured mesh 
of a 3D aircraft wing. 

Figure B. Nonbonded force calculation loop from Charmm. 

A programmer-defined function determines the values 
of array map. 

Figure 6 depicts an irregular loop from the Char- 
mm molecular dynamics code (see the sidebar) in For- 
tran 90D with the EXECUTE - ON -HOME directive for 
partitioning loop iterations. The inner loop iterations 
are executed on processors that own reg(i>, where r e g 
is the decomposition to which arrays x, y, dx, and dy 
are aligned. The array inblo is replicated on all 
processors. 

HIGH PERFORMANCE FORTRAN 
Although the current version of HPF does not support 
nonstandard distributions, it can indirectly support such 
distributions by reordering array elements to reduce 
communication requirements. Applications scientists 
have frequently employed variants of this approach 
when porting irregular codes to parallel architectures. 
First, a partitioner maps array elements to processors. 
Next, array elements are reordered so that elements 
mapped to a given processor are assigned to consecu- 
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ated with each atom are stored as Fortran 
arrays. The loop L 1 sweeps over all atoms. 
We’ll assume that LI is a parallel loop and 
L2 is sequential. The loop iterations ofL 1 
are distributed over processors. All com- 
putation for iteration i of Ll is performed 
on a single processor, so loop L2 need not 
be parallelized. 

We assume that all atoms within a 
given cutoff radius interact. The array 
Partner+,*) lists ail the atoms that inter- 
act with atom i. The inner loop calculates 
the three force components (x, y, z) 
between atom i and atom j (van der 
Waal’s and electrostatic forces). They are 
then added to the forces associated with 
atom i and subtracted from the forces 
associated with atomj. 

The force array elements are parti- 
tioned to reduce interprocessor commu- 
nication in the nonbonded force calcula- 
tion loop (Figure B). Figure C depicts 
two possible distributions of the atoms 
of a Myoglobin molecule and 3 830 water 
molecules onto eight processors. Shad- 
ing represents the assignment of atoms 
to processors. Data sets associated with 
the sequential version of Charmm assign 
each atom an index number that does not 
reflect locality. Figure Cl depicts a dis- 
tribution that assigns consecutively num- 
bered sets of atoms to each processor- 
that is, a BLOCK distribution. Because 
nearby atoms interact, a BLOCK distrib- 
ution will likely cause a large volume of 
communication. Figure-C2 depicts a dis- 

tribution based on the spatial locations 
of atoms. An inertial bisection partitioner 
performs the distribution, which pro- 
duces much less surface area between the 
portions of the molecules associated with 
each processor. 
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Figure C. Distribution of atoms on eight processors: (1) BLOCK distribution, (2) Irregular dlStrlbUtlOn. 

tive locations. The indirection arrays are then renum- 
bered. When the same number of elements are mapped 
to each processor, and the number of processors evenly 
divides the array size, the benefits of an irregular distri- 
bution can immediately be obtained using a BLOCK-dis- 
tributed reordered array. 

For example, Figure 7a depicts a simple graph-an 
irregular grid with six nodes and seven edges-parti- 
tioned between two processors. The graph can be 
described by the Fortran D program in Figure 5. The 

graph shows the flow of data between elements of arrays 
x and y; an edge between nodes n1 and n2 means the 
value of x(n,) is accumulated to y(q) and the value of 
x(q) is accumulated to y(til). 

Partitioning should occur to allocate the same num- 
ber of nodes to processors, and to minimize the number 
of cross-edges between processors-that is, to minimize 
the number of edges where both end-nodes are not on 
the same processor. In Figure 7b the graph is partitioned 
in BLOCK format based on node numbers. Nodes 1,2, 
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Figure 7. Renumbering technique: (a) an irregular 
graph, (b) BLOCK division, (c) an irregular distribution 
obtained by partitioning, (d) an irregular distribution 
obtained by renumbering. 

and 3 are assigned to processor 0 and the rest to proces- 
sor 1. The cross-edges in this distribution are (1 J), (2,5), 
(3 ,o), and (3,4). 

Figure 7c shows a better distribution, with a smaller 
number of cross-edges. A partitioner assigns nodes 1,2, 
and 5 to processor 0, and the rest to processor 1; there 
is only one cross-edge, (2,3). The partitioner produces 
an arbitrary assignment of nodes to processors-that is, 
an irregular distribution. 

The effects of this distribution can be obtained by 
assigning new indices to the nodes so that contiguously 
numbered nodes are assigned to each processor. This 
renumbering transforms the graph in Figure 7c (an irreg- 
ular distribution) to that in Figure 7d (a BLOCK distribu- 
tion). Figure 7c and Figure 7d are partitioned identically; 
but their nodes (and consequently, their edges) are num- 
bered differently. So, the cross-edge in Figure 7d is (2,4). 

Extrinsic procedures are called to invoke the partition- 
ers and to reorder the data and renumber the indirection 
arrays. Using the EXTRINSIC directive, a non-HPF pro- 
cedure can be interfaced with HPF programs (see Figure 
8). For example, Statement S2 specifies the interface from 
HPFtoapartitioner binary-dissection_ZD. The 
directive HPF-LOCAL indicates that the procedure 
binary_dissection_2Dhasbeenwrittenink&oca1F 
style. This procedure uses information provided in arrays 
x and y and writes the result of the partitioning to the per- 
mutation array reorder. Statements S3 and S4 specify the 
input (x and y) and output (reorder) parameters. 

Figure 9 illustrates the reordering technique in HPF 
for a Euler solver template (see the sidebar). First, arrays 
x, y, and reorder are distributed by BLOCK. Next, an 
extrinsic partitioner procedure is called to determine the 
values of reorder. An extrinsic procedure, renumber- 
data-a r ray, is invoked to reorder x and y based on the 
values of reorder. After the reordering is completed, the 

ith element of x is moved to the position reorder(z), and 
anotherexttinsicfimction, renumber-indirection- 
array, is called to update arrays edge1 and edge2 so that 
their values reflect the new positions of the array elements 
of x and y; that is, the value of edgel is modified to 
reorder(edgel(z)). 

The current version of HPF does not support Fortran 
D’s REDUCE consbuct. However, the functionality of the 
type of irregular loop shown in Figure 1 can be expressed 
in HPF with the help of intrinsic procedures. Figure 9 
depicts a method of expressing the irregular loop L2 in 
HPF. Here, the HPF intrinsic function SUM-SCATTER 
expresses an array-combining operation. A statement in 
a sequential irregular loop that has indirectly accessed 
arrays on the statement’s right and left, can be written as 
two separate phases: a FORALL loop to carry out the com- 
putation on the right and store the values to a temporary 
array temp, and an intrinsic function SUM-SCATTER to 
scatter and combine the elements of temp to array y. 

PADDINGANDREORDERING 
The preceding discussion assumes that the number of 
array elements can be evenly divided by the number of 
processors, and that the same number of elements are 
assigned to each processor. In many cases it may be 
advantageous to assign different numbers of data ele- 
ments to processors to balance the workload. To accom- 
plish this, the programmer first declares the original 
array as an oversized array (in BLOCK distribution); this 
is called padding the array. Next, a partitioner is called 
to reassign the array elements to processors so that no 
more than a given number of elements are assigned to 
any processor. 

Let’s assume that a 1 D array A has N x P elements, 
where Nis the number of elements on each processor 
and P is the number of processors. The programmer 
decides that no more than M  (M > N) array elements 
can be assigned to any processor. 

1. The programmer declares A as an M  x P  BLOCK- 
distributed array. Originally, only the first N x P  ele- 
ments ofA are initialized with meaningful values, and 
the last (M-N) x Pelements ofAare unused storage. 

2. The programmer then employs a partitioner that is 
constrained to assign no more than M  elements to 
each processor, where M  > N. The partitioner returns 
a reordering array reorder, which maps A(I) to 
A(reorder(z)), where 1 I i < Nx P. To assign A(r) to 
processorp, where 0 Ip < P, the partitioner defines 
reorder(z) as M  x Cp - 1) < reorder(z) 5 M  xp. 
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Sl INTERFACE 
s2 EXTRINSIC(HPF-LOCAL) SUBROUTINE binary-dissection-ZD(reorder. x, y, n) 
s3 REAL'8, DIMENSION(:), INTENT :: x. y 
53 INTEGER INTENT :: n 
s4 INTEGER, DIMENSION(:), INTENT(OUT) :: reorder 
s7 END SUBROUTINE binary-dissection-2D 
S8 END INTERFACE 

1 

Figure 8. Interfacing an extrinsic partitioner procedure. 

!HPF$ TEMPLATE reg(N), regl(M) 
!HPF$ DISTRIBUTE(BLOCK) ONTO P :: reg. regl 
!HPF$ ALIGN WITH reg :: x. y, reorder 
!HPF$ ALIGN WITH regl :: edgel. edge2, temp 

. . . 
C  use an extrinsic partitioner procedure to obtain reorder array 

CALL binary_dissection_2D(reorder, x, y, n-local) 
C use an extrinsic procedure to reorder data arrays 

CALL renumber-data-array(reorder, x, n-local) 
CALL renumber-data-arraycreorder, y, n-local) 

C use an extrinsic procedure to renumber indirection arrays 
CALL renumber-indirection_array(reorder. edgel, n-localedge) 
CALL renumber-indirection_array(reorder, edge2, n-localedge) 

C 
. . . 
Sweep over edges: Loop L2 
FORALL(i=l:nedge) temp(i) = f(x(edgel(i)),x(edge2(i))) 
y = SUM-SCATTER(temp, y, edgel) 
FORALL(i=l:nedge) temp(i) = g(x(edgel(i)).x(edge2(i))) 
y = SUM-SCATTER(temp, y, edge21 

L 
Figure 9. Irregular distribution and loops in HPF. 

The reorder array can then reorder the elements of A. 
Once the reordering is complete, the reordered array A 
will still have (M - N) x P elements that do not contain 
meaningful values; these ghost elements will now be scat- 
tered throughout the array. 

For example, an array with 8 meaningful elements (see 
Figure 1Oa) is declared as a lo-element BLOCK array (see 
Figure lob). Figure 1Oc depicts the result of a reordering 
based on the reorder array returned by a partitioner. The 
ith element of A is moved to position reorder(z); for exam- 
ple, when reorder(l) = 6, A(1) in Figure lob is moved to 
A(6) in Figure 10~. There are two ghost elements (in 
dashed lines) at the middle of the reordered array. 

Runthe support 

We developed the Chaos runtime support library, a 
superset of the Parti library,‘” to efficiently handle prob- 
lems that consist of a sequence of clearly demarcated con- 
current computational phases. With Chaos, solving such 
irregular problems on distributed-memory machines 
involves six major phases: 

1. Data partitioning assigns elements of data arrays to 
processors. 

PO Pl 
1234 5 6 7 b 

ta) A-1 m  

PO Pl 

PO Pl 

Figure 10. Array padding and reordering: (a) original 
array, (b) padded array, (c) reordered array (reorder = 
(6 1 7 8 2)(9 10 3)). 

2. Data remapping redistributes data-array elements. 
3. Iterati~patitioning allocates iterations to processors. 
4. Iteration v-emapping redistributes indirection array 

elements. 
5. inspector translates indices and generates commu- 

nication schedules. 
6. Executor uses schedules for data transportation, and 

performs computation. 
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Initially, arrays are decomposed into either regular 
or irregular distributions. The first four phases map data 
and computations onto processors. The next two ana- 
lyze data-access patterns in a loop and generate opti- 
mized communication calls. 

The sixth phase (executor) typically occurs many 
times in real application codes; however, the first four 
phases are executed only once if the data-access patterns 
do not change. When programs change data-access pat- 
terns but maintain good load balance, inspector and 
executor are repeated. If programs require remapping of 
data arrays from the current distribution to a new dis- 
tribution, all phases are executed again. We’ll now look 
at these phases in more detail. 

DATA PARTITIONING 
Data partitioning uses partitioners provided by Chaos or 
the programmer. Chaos supports a number of parallel 
partitioners that use heuristics based on spatial posi- 
tions, computational load, connectivity, and so on. The 
partitioners return an irregular assignment of array ele- 
ments to processors; this is stored as a Chaos construct 
called the translation table. A translation table is a glob- 
ally accessible data structure that lists the home proces- 
sor and offset address of each data array element. 

The translation table has the following fields: 

l Global size N 
l Distribution type T 
l Block size B 
0 Local size L” 
l Processor list p 
l Offset list I 

The first four fields represent regular distributions such 
asBLOCKand CYCLIC.Theprocessorlistandoffsetlist 
fields represent irregular distributions. The processor 
list gives the home processor of each array element; the 
offset list gives the local addresses of the elements. 

To access an element A(m) of distributed array A, a 
translation table lookup is necessary to determine the 
location of A(m). This lookup, which is aimed at com- 
puting the home processor and the offset associated with 
a global distributed array index, is called a derefeerence 
request. Any preprocessing to optimize communication 
must perform dereferencing, because it is required to 
determine where elements reside. 

Several considerations arise during the design of data 
structures for a translation table. Depending on the spe- 
cific parameters of the problem, there is usually a trade-off 
involving storage requirements, table-lookup latency, and 
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table-update costs. Table-lookup costs are the primary 
consideration in adaptive problems, because preprocess- 
ing must be repeated frequently, and must be efficient. * 

The fastest table lookup is achieved by replicating the 
translation table in each processor’s local memory. This 

I is called a replicated translation table. The storage cost for 
this table is O(Np), where Pis the number of processors 
and N is the array size. However, the dereference cost 
in each processor is constant and independent of the 
number of processors involved in the computation, 
because each processor has an identical translation table. 

Because of memory considerations, it is not always fea- 
sible to place a copy of the translation table on each proces- 
sor. In this case, the translation table can be distributed 
between processors. This is called a dhrihted translation 
table. Earlier versions of Parti supported a translation table 
that was distributed by blocks: the f?rst N/P elements were 
put on the first processor, the second N/P elements were 
put on the second processor, and so on. 

In Chaos, when an element A(m) of the distributed 
array A is accessed, the home processor and local of&et are 
found in the portion of the distributed translation table 
stored in processor L((m - 1)/N) x PI + 1. Distributed 
translation tables have the highest use of available dis- 
tributed memory for a fixed-size irregularly distributed 
array. The dereference requests, however, might require 
a communication step because some portions of the trans- 
lation table do not reside in the local memory. Similarly, 
table reorganization also requires interprocessor com- 
munication because each processor is authorized to mod- 
ify only a limited portion of the translation table. 

Chaos also supports an intermediate degree of repli- 
cation with paged tr-aviation tables.” This scheme divides 
the translation table into pages, which are distributed 
across processors. Processors that frequently refer to a 
page receive a copy of the page, making subsequent ref- 
erences local. 

Figure 11 depicts the three translation-table struc- 
tures of a graph partitioned over two processors. Only 
the processor list p and offset list 1 are displayed. The 
numbers above arrays are the index numbers of nodes. 
Figure 1 la shows an irregular distribution. Nodes 1,2, 
and 5 are assigned to processor PO, and nodes 3,4, and 
6 to processor Pl. The distributed translation table (Fig- 
ure I 1 b) assigns the first three elements ofp and I on PO 
and the last three on PI. By contrast, the replicated 
translation table (Figure 1 lc) replicates all the six ele- 
ments ofp and I on both processors. The paged trans- 
lation table (Figure 1 Id) has a page size of two; each 
processor owns two pages. The dashed page on PO is 
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(a) 
po i Pl 

(b) ’ 
PO : Pl 

L- I 
Figure 11, Translation tables: (a) an irregular distribution, (b) a distributed translation table, (c) a replicated 
translation table, (d) a paged translation table. 

copied from Pl as the result of remote references of 
node 5 from PO to Pl . 

DATAREMAPPING 
For efficiency, distribution of data arrays may have to 
change between computational domains or phases. For 
instance, as computation progresses in an adaptive prob- 
lem, the workload and distributed-array access patterns 
may change based on the nature of problem. This might 
cause poor load balance among processors. So, data must 
be redistributed periodically to maintain balance. 

To obtain an irregular data distribution for an irreg- 
ular concurrent problem, data arrays are distributed in 
a known distribution, 6,. Then, a heuristic method pro- 
duces an irregular distribution 6,. Once the new distri- 
bution is obtained, all data arrays associated with distri- 
bution 6, must be transformed to distribution 6~ 

To redistribute data, a runtime procedure called remap 
takes as input the original and the new distribution in 
the form of translation tables, and returns a commu&ca- 
tin schedule (which we’ll discuss later) that is used to move 
data between initial and subsequent distributions. 

bOPlTERATIONPARTIlTONING 
Once data arrays are partitioned, loop iterations must 
also be partitioned. Loop partitioning determines 
which processor will evaluate which expressions of the 
loop body. Loop partitioning can be performed at sev- 
eral levels of granularity. At the finest level, each oper- 
ation is individually assigned to a processor. At the 
coarsest level, a block of iterations is assigned to a 
processor, without considering the data distribution 
and access patterns. Both approaches are expensive. In 
the first case, the amount of preprocessing overhead 
can be very high, and in the second case, communica- 
tion cost can be very high. 

Chaos offers a compromise: Each loop iteration is 

individually considered before processor assignment. 
To partition loop iterations, a set of nmtime procedures, 
using the current known distribution of iterations, com- 
putes a list containing the home processors of the dis- 
tinct data references for each local iteration. To reduce 
communication costs, the procedures use the almost- 
owner-computes rule. 

h”J3tATION REMAPPING 
Iteration remapping is similar to data remapping. Indi- 
rection array elements are remapped (by the remap pro- 
cedure) to conform with the loop iteration partitioning. 
For example, in Figure 1, once loop L2 is partitioned, 
the indirection array elements edgel and edge2(i) 
used in iteration i are moved to the i)rocessor that exe- 
cutes that iteration. 

INSPECTOR 
The inspector carries out the preprocessing needed for 
communication optimizations and index translation. This 
phase also builds a communication schedule, which is 
used for data transportation and computation. Com- 
munication schedules determine the number of com- 
munication startups and the volume of communication, 
so it is important to optimize them. 

A schedule for processor p stores the following 
information: 

l Send list: a list of arrays that specifies the local ele- 
ments of a processor p required by all processors. 

l Permutation list: an array that specifies the data- 
placement order of off-processor elements in the 
local buffer of processor p. 

0 Sendszke: an array that specifies sizes of outgoing mes- 
sages from processor p to all processors. 

l Fetch size: an array that specifies sizes of incoming 
messages to processor p from all processors. 
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Table 1. irregular distribution’s effect on performance (in seconds) of 
hand-parallelized code, 32 processors. Eul3D (a Euler solver) is a 

53K mesh; the Charmm data set is 14K atoms. 

TASKS COORDINATE BISECTION 6lOCK PARTITION 
Eu13D CHARMM Eu13D CHARMM 

Partitioning 2.4 0.7 0.0 0.0 
Remapping 2.6 1.6 0.0 
Inspector 0.9 

;:; 
0.5 1.4 

Table 1 shows how irregular distribution 
Executor 14.1 93.5 34.6 187.9 affects the performance hand-parallelized of 
Total 20.0 97.4 36.7 189.3 versions of the Eul3D and Charmm tem- 

-- plates. The Eul3 D data set is for a 3 D tetra- 
\ hedron grid over an airplane wing, with 

Table 2. Performance (in seconds) for BLOCK distribution 
approximately 5 3,000 node points, and the 

of the Euler solver. Charmm data set is for a carboxy-myoglo- 
bin molecule surrounded by 3830 water 

HANO COMPILER molecules, totaling approximately 14,000 
TASKS 10K MESH 53K MESH 10K MESH 53K MESH atoms. Partitioning is the time to partition 

PROCESSORS PROCESSORS PROCESSORS PROCESSORS 8 16 32 64 6 16 32 64 the is the time to parti- arrays. Remapping 
tion loop iterations and redistribute data. 

Partitioning 
;:i 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 Iqector is the time to build the communi- 
Remapping 0.4 1.6 1.0 0.9 0.5 1.6 1.0 cation schedule. Execlltmis the time to carry 
Inspector 0.2 0.2 0.5 0.3 0.2 0.2 0.5 0.3 out the actual computation and communi- 
Executor 14.8 10.2 34.6 26.9 15.4 10.5 36.0 27.5 Total 15.9 10.8 36.7 28.2 16.5 11.2 38.1 28.8 cation for 100 iterations (time The steps). 

results show that the irregular distribution 

EXECUTOR COMPILER PERFORMANCE 
The executor uses information from the earlier phases 
to carry out computation and communication. The 
Chaos gather and scatter data-transportation primitives 
use the communication schedules to move data. Gather 
fetches a copy of off-processor elements into a local 
buffer; scatter sends off-processor elements back to their 
home processors after computation. 

Compikr support and 
experimental results 
We incorporated nmtime support for irregular distribu- 
tions in the Fortran 90D compiler being developed at 
Syracuse University.‘* The compiler transforms programs 
and embeds Chaos procedures in the translated codes. We 
tested compiler transformations for irregular templates in 
Charmm and Eul3D, a loop from a Euler solver (see the 
sidebar). Here we’ll compare performance of the compiler- 
generated code to hand-parallelized code, where appro- 
priate Chaos procedures are inserted by hand. We’ll also 
see how effective the HPF reordering technique is. All 
measuremens were made on an Intel iPSCI860 machine. 
Initially, data arrays were in BLOCK distribution. 

Tables 2 and 3 present the performance of hand-coded 
and compiler-parallelized versions of the Euler loop for 
two input mesh sizes. Table 2 is for a BLOCK distribu- 
tion; Table 3 is for an irregular distribution using the 
recursive coordinate bisection partitioner. We draw two 
important conclusions from the results. First, the com- 
piler-generated code performs almost as well (within 
1.5 %) as the hand-written code. The hand-coded ver- 
sion performs better because the compiler-generated 
code has to perform bookkeeping for possible commu- 
nication schedule reuse. Second, the coordinate bisec- 
tion partitioner improves executor time by a factor of 
two compared to BLOCK partitioning. The code with 
the irregular distribution performs significantly better 
thantheBLOCK-partitioned code,evenwhenthecostof 
executing the partitioner is included. 

IRREGULAR DISTRIBUTION BY REORDERING 
We’ll now examine the performance of the Euler solver 
template in Figure 9, which achieved the effect of irreg- 
ular distributions by using a partitioner, by reordering 
array elements, and by renumbering indirection arrays. 
This process did not involve redistributing data arrays. 

EFFECTOFIRRJZGULARDISTRIBIJTION 
We used recursive coordinate bisection,l a geometry-based 
partitioner, to obtain an irregular data distribution. Per- 
formance results for other kinds of partitioners are 
reported elsewhere.9 

We hand-parallelized the Euler solver template using 
Chaos primitives and extrinsic HPF reordering library 
functions binary_dissection_2D,renumber- 
data-array, and renumber-indirection- 
array. All HPF extrinsic functions call Chaos nmtime 
support procedures to perform partitioning and reorder- 

performs significantly better than the exist- 
ing BLOCK distribution. 
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Table 3. Performance (in seconds) for coordinate bisection 
partitioning of the Euler solver. 

TASKS 
HAND COMPILER 

1 OK MESH 53K MESH 10Kmfs~ SKMESH 
hlCESSORS PROCESSORS hOCESSOAS PROCESSORS 
8 18 32 84 8 16 32 64 

ing operations, and a Chaos primitive Partitioning 0.3 
ti 

2.0 0.3 0.4 2.5 2.0 

s c at t e r-add executes the intrinsic Remapping 
1.1 

function SUM-SCATTER. The program Inspector 0.4 0:2 
ii 
0:9 

1.6 1.2 0.8 2.6 1.7. 
0.5 

Executor 6.3 4.6 14.1 10.3 I 40:: 1::: l?i 
in Figure 9 could be transformed by an Total 8.1 5.8 20.0 14.4 8:6 6.1 21.6 15:6 
HPFcompiler by embedding calls to the ~ ~- 
Chaos primitives and extrinsic HPF 
reordering library functions. Because 
both the compiler-transformed and the hand-paral- 
lelized code use the same set of Chaos primitives and 
extrinsic HPF reordering library functions, the hand- 
parallelized code’s performance provides a rough esti- 
mate of the performance that the compiler-generated 
code could obtain. 

The two computation phases (the FORALL loop and 
SUM-SCATTER) for irregular loops produce two com- 
munication phases, so two sets of communication 
schedules are generated. However, an HPF compiler 
could use loop fusion13 and sophisticated data-flow 
analysis to generate efficient code by combining the 
two computation phases as well as the two communi- 
cation phases. 

Table 4 depicts performance results for native and 
optimized versions of the hand-parallelized Euler solver 
template. The native version has two computation and 
two communication phases, and the optimized version 
has one computation and one communication phase. 
Partitioning is the time to partition data arrays using a 
coordinate bisection partitioner and to remap data based 
on the result of partitioning. Renumbering is the time to 
renumber indirection arrays. Remapping is the time to 
partition loop iterations and redistribute indirection 
arrays. Inspector is the time to compute communication 
schedules. Executor is the time to carry out the actual 
computation and communication. In the optimized ver- 
sion of the code, both computation and communication 
phases are executed in a single phase. 

The executor costs for the optimized case (Table 4) 
and the hand-coded coordinate bisection partitioner 
(Table 3) are the same, but the preprocessing cost is 
slightly lower for the optimized reordering technique. 
This difference is because the optimized version’s defer- 
ence overhead is smaller because the deference operation 
is carried out with the new (BLOCK) data distributions. 

The results suggest that by using these procedures, 
an HPF compiler could perform comparably to a com- 
piler for a language (such as Fortran 90D) that directly 
supports irregular distributions. This example kernel 
also illustrates that reordering is no panacea; program- 
mers must make numerous calls to extrinsic library 
functions. 

Table 4. Performance (in seconds) of a 
renumbered Euler solver template, 53K mesh. 
The native version has two computation and 

two communication phases, and the optimized 
version has one computation and one 

communication phase. 

TASKS NATIVE OPTIMIZEII 
PROCESSORS PROCESSORS 
32 64 32 64 

Partitioning 
Renumbering k; 

2.6 2.1 
;.: 0.7 0.5 

Remapping 0:9 
Inspector A:; 03 

0.9 

12:5 
ii:; 01 

Executor 16.9 14.1 10:3 
Total 22.2 16.3 19.2 14.0 

A l though appropriate irregular data distri- 
butions reduce the communication 
requirements of irregular scientific pro- 
grams, it is tedious foi programmers to 
write explicit parallel programs that han- 

dle irregular distributions and manage interprocessor 
messages. The Chaos runtime library is designed to 
relieve users of such a burden. It supports a program- 
ming environment with a global name space and pro- 
vides efficient functions for collective communication 
operations and index translations that conform to the 
current data distributions. The functions can be manu- 
ally embedded in explicit parallel programs by users, or 
automatically inserted into single-program-multiple- 
data (SPMD) programs that are transformed by data- 
parallel compilers. 

Data-parallel languages provide programmers a single- 
threaded and loosely synchronous programming envi- 
ronment with a global name space. Users can easily spec- 
ify the appropriate data distributions for applications if 
data-parallel languages support irregular distributions. 
Both Fortran D and Vienna Fortran provide directives 
to specify irregular distributions, but the current ver- 
sion of HPF only supports regular distributions. 

However, the HPF Forum has set up a group to 
exploit the possibility of incorporating irregular distri- 
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butions in the next version of HPF (HPFZ). Before 
HPF2 compilers are available, users can apply the 
reordering and array-padding techniques described in 
this article to simulate irregular disu-ibutions in HPF.B 

FURTHER INFORMATION 
More information about Chaos is available on the World Wide Web at 
http://wuw.cs.umd.edu/projects/hpsl.hnnl. The Chaos runtime library can be 
obtained by anonymous FTP from hyena.cs.umd.edu:/ pub/chaos-distribution. 
More information about the Fortran D compiler is available on the World Wide 
Web at bttp://www.npac.syr.edu. 
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