
Energy Management Schemes for
Memory-Resident Database Systems

Jayaprakash Pisharath, Alok Choudhary
Electrical & Computer Engineering Department

Northwestern University
Evanston, IL 60208

{jay, choudhar}@ece.northwestern.edu

Mahmut Kandemir
Department of Comp. Sci. & Engineering

Pennsylvania State University
University Park, PA 16802

kandemir@cse.psu.edu

ABSTRACT
With the tremendous growth of system memories, memory-
resident databases are increasingly becoming important in various
domains. Newer memories provide a structured way of storing
data in multiple chips, with each chip having a bank of memory
modules. Current memory-resident databases are yet to take full
advantage of the banked storage system, which offers a lot of
room for performance and energy optimizations. In this paper,
we identify the implications of a banked memory environment
in supporting memory-resident databases, and propose hard-
ware (memory-directed) and software (query-directed) schemes
to reduce the energy consumption of queries executed on these
databases. Our results show that high-level query-directed schemes
(hosted in the query optimizer) better utilize the low-power modes
in reducing the energy consumption than the respective hardware
schemes (hosted in the memory controller), due to their complete
knowledge of query access patterns. We extend this further and
propose a query restructuring scheme and a multi-query opti-
mization. Queries are restructured and regrouped based on their
table access patterns to maximize the likelihood that data accesses
are clustered. This helps increase the inter-access idle times of
memory modules, which in turn enables a more effective control of
their energy behavior. This heuristic is eventually integrated with
our hardware optimizations to achieve maximum savings. Our
experimental results show that the memory energy reduces by 90%
if query restructuring method is applied along with basic energy
optimizations over the unoptimized version. The system-wide
performance impact of each scheme is also studied simultaneously.

Categories and Subject Descriptors:
H.2.2 [Database Management]:Physical Design –Access Methods
H.3.2 [Information Storage and Retrieval]: Information Storage
B.3.1 [Memory Structures]: Semiconductor Memories –DRAM

General Terms: Design, Performance

Keywords: database, DRAM, energy, hardware energy scheme,
power consumption, query-directed energy management, multi-
query optimization

1. INTRODUCTION
Memory-resident databases (also called in-memory databases

[6]) are emerging to be more significant due to the current era of
memory-intensive computing. These databases are used in a wide
range of systems ranging from real-time trading applications to IP
routing. With the growing complexities of embedded systems (like
real-time constraints), use of a commercially developed structured

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’04, November 8–13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-874-1/04/0011 ...$5.00.

memory database is becoming very critical [5]. Consequently,
device developers are turning to commercial databases, but ex-
isting embedded DBMS software has not provided the ideal fit.
Embedded databases emerged well over a decade ago to support
business systems, with features including complex caching logic
and abnormal termination recovery. But on a device, within a
set-top box or next-generation fax machine, for example, these
abilities are often unnecessary and cause the application to ex-
ceed available memory and CPU resources. In addition, current
in-memory database support does not consider embedded system
specific issues such as energy consumption.

Memory technology has grown tremendously over the years,
providing larger data storage space at a cheaper cost. Recent
memory designs have more structured and partitioned layouts
in the form of multiple chips, each havingmemory banks[30].
Banked memories are energy efficient by design, as per-access
energy consumption decreases with decreasing memory size (and
a memory bank is typically much smaller compared to a large
monolithic memory). In addition, these memory systems provide
low-power operating modes,which can be used for reducing the
energy consumption of a bank when it is not being used. An
important question regarding the use of these low-power modes
is when to transition to one once an idleness is detected. Another
important question is whether the application can be modified to
take better advantage of these low-power modes. While these
questions are slowly being addressed in architecture, compiler, and
OS communities, to our knowledge, there has been no prior work
that examines the energy and performance behavior of databases
under a banked memory architecture. Considering increasingly
widespread use of banked memories, such a study can provide
us with valuable information regarding the behavior of databases
under these memories and potential modifications to DBMSs
for energy efficiency. Since such banked systems are also being
employed in high-end server systems, banked memory friendly
database strategies can also be useful in high-end environments to
help reduce energy consumption.

Our detailed energy characterization of a banked memory ar-
chitecture that runs a memory-resident DBMS showed that nearly
59% of overall energy (excluding input/output devices) in a typical
query execution is spent in the memory, making this component
an important target for optimization (see Figure 1). Moreover, for
any system, memory power and energy consumption have become
critical design parameters besides cost and performance. Based on
these observations, this paper evaluates the potential energy bene-
fits that memory-resident database queries can achieve by making
use of banked memory architectures supported with low-power op-
erating modes. Since each memory bank is capable of operating
independently, this opens up abundant avenues for energy and per-
formance optimizations.

In this paper, we focus on a banked memory architecture and
study potential energy benefits when database queries are executed.
Specifically, we focus on two important aspects of the problem:
• Characterizing energy benefits of banked memories using hard-
ware and software techniques:To see whether query execution can
make use of available low-power modes, we study both hardware
and software techniques. The hardware techniques detect the idle-
ness of memory banks and switch the inactive (idle) banks (during

218

Memory
59%Cache

16%

ALU
14%

Bus
1%

Others
10%

Figure 1: Breakup of the energy consumption for various sys-
tem components. The results are based on the average en-
ergy consumption of TPC-H benchmarks [35] executed on a
memory-resident DBMS.

query execution) to low-power operating modes. We also present
a query-based memory energy optimization strategy, wherein the
query plan is augmented by explicit bank turn-off/on instructions
that transition memory banks into appropriate operating modes dur-
ing the course of execution based on the query access pattern. We
experimentally evaluate all the proposed schemes and obtain en-
ergy consumptions using an energy simulator. Our experiments
using TPC-H queries [35] and a set of queries suitable for hand-
held devices clearly indicate that both hardware-based and query-
directed strategies save significant memory energy.
• Query restructuring for memory energy savings:We propose a
query restructuring scheme and a multi-query optimization strategy
to further increase energy benefits coming from using low-power
operating modes. The idea behind these schemes is to increase
bank inter-access times so that more aggressive low-power modes
can be employed and a memory bank can stay in a low-power mode
longer once it is transitioned. Our experimental evaluation indi-
cates that this query restructuring strategy does not only reduce
energy consumption, but also helps improve overall performance
(execution cycles).

Apart from providing useful input for database designers, our re-
sults can also be used by hardware designers to tune the behavior
of low-power modes so that they handle query access patterns bet-
ter. Similar to the observation that creating a lightweight version
of a disk-based database will not serve as a suitable in-memory
database, our belief is that taking an in-memory database system
and using it on a banked architecture without any modification may
not generate the desired results. Therefore, the results presented in
this work also shed light on how database design and memory ar-
chitecture design interact with each other.

The remainder of this paper is organized as follows. Section 2
presents related work. Section 3 elaborates on the memory database
that we built and also on the memory banking scheme that we em-
ploy for our experiments. Section 4 presents in detail the proposed
hardware and query-directed energy optimization techniques. The
results of our energy evaluation of these schemes are discussed in
Section 5. Our experiments also account for the performance over-
head incurred in supporting our schemes. Section 6 presents our
query restructuring and regrouping scheme, and Section 7 discusses
its energy/performance benefits within the context of our banked
memory architecture. Finally, Section 8 summarizes the results.

2. RELATED WORK
In the past, memory has been redesigned, tuned or optimized

to suit emerging fields. Need for customized memory structures
and allocation strategies form the foundation for such studies.
Copeland et al proposed SafeRAM [11], a modified DRAM model
for safely supporting memory-resident databases alike disk-based
systems, and for achieving good performance. In PicoDBMS [27],
Pucheral et al present techniques for scaling down a database to
a smart card. This work also investigates some of the constraints
involved in mapping a database to an embedded system, especially
memory constraints and the need for a structured data layout.
Anciaux et al [3] explicitly model the lower bound of the memory
space that is needed for query execution. Their work focuses on
light weight devices like personal organizers, sensor networks, and
mobile computers. Boncz et al show how memory accesses form a
major bottleneck during database accesses [7]. In their work, they
also suggest a few remedies to alleviate the memory bottleneck.

An et al analyze the energy behavior of mobile devices when spa-
tial access methods are used for retrieving memory-resident data
[2]. They use a cycle accurate simulator to identify the pros and

text Query Optimizer
Query Execution

Engine

Memory
Database

Queries

Data

Results

Energy & Performance
Optimizations

(Using Cost Plan)

Hardware
Optimizations

Targeting DBMS

Rewrite SystemParser

System Catalog

Figure 2: DBMS architecture.

cons of various indexing schemes. In [1], Alonso et al investi-
gate the possibility of increasing the effective battery life of mo-
bile computers by selecting energy efficient query plans through
the optimizer. Although the ultimate goal seems the same, their
cost plan and the optimization criterion are entirely different from
our scheme. Specifically, their emphasis is on a client-server model
optimizing the network throughput and overall energy consump-
tion. Gruenwald et al propose an energy-efficient transaction man-
agement system for real-time mobile databases in ad-hoc networks
[16]. They consider an environment of mobile hosts. In [22],
Madden et al propose TinyDB, an acquisitional query processor
for sensor networks. They provide SQL-like extensions to sensor
networks, and also propose acquisitional techniques that reduce the
power consumption of these networks. It should be noted that the
queries in such a mobile ad-hoc network or a sensor environment
is different from those in a typical DBMS. This has been shown
by Imielinksi et al in [19]. In our model, we base our techniques
on a generic banked memory environment and support complex,
memory-intensive typical database operations. There are more op-
portunities for energy optimizations in generic memory databases,
which have not yet been studied completely. The approach pro-
posed in this paper is different from prior energy-aware database
related studies, as we focus on a banked memory architecture, and
use low-power operating modes to save energy.

Gassner et al review some of the key query optimization tech-
niques required by industrial-strength commercial query optimiz-
ers, using the DB2 family of relational database products as ex-
amples [15]. This paper provides insight into design of query cost
plans and optimization using various approaches. In [23], Mane-
gold studies the performance bottlenecks at the memory hierar-
chy level and proposes a detailed cost plan for memory-resident
databases. Our cost plan and optimizer mimics the PostgreSQL
model [12,14]. We chose it due to its simple cost models and open
source availability.

A query restructuring algorithm is proposed by Hellerstein
in [18]. This algorithm uses predicate migration to optimize
expensive data retrievals. In [10], Chaudhuri et al extend this
approach to study user-defined predicates and also guarantee an
optimal solution for the migration process. Sarawagi et al present
a query restructuring algorithm that reduces the access times of
data retrieval from tertiary databases [32]. Monma et al develop
the series-parallel algorithm for reordering primitive database op-
erations [24]. This algorithm optimizes an arbitrarily constrained
stream of primitive operations by isolating independent modules.
This work forms the basic motivation for our query restructuring
algorithm. However, our paper is different from all of the above
work in the sense that we reorder queries for reducing energy
consumption. Moreover, our database is memory-resident, with
the presence of banked memory that gives more freedom for
optimizations.

3. SYSTEM ARCHITECTURE

3.1 DBMS
For our work, we modified the PostgreSQL DMBS to work with

memory-resident data sets as its workload. The block diagram for
our setup is shown in Figure 2. The core components are derived
from PostgreSQL. The flow of our model is similar to PostgreSQL
except that the database is memory resident. A query is parsed for
syntax and then sent to the rewrite system. The rewrite system uses
the system catalog to generate the query tree, which is then sent to
the optimizer. The query optimizer derives the cost of the query in

219

Configuration
Registers

Self-Monitoring/
Prediction
Hardware

Memory
Controller

Bank

To/From
CPU

Module

Memory Bus

Figure 3: Banked memory architecture.

multiple ways using the query tree and issues the best suited plan
to the query execution engine. We incorporate our software-based
techniques at the optimizer stage of the DBMS. These optimiza-
tions are based on the cost that is derived for each of the query plans
(the discussion pertaining to the modified cost model is deferred till
Section 4). Based on the final query execution plan, the execution
engine executes the query by using the database. The database is
entirely memory resident and the memory is organized in a banked
format (elaborated in the following section). The executor recur-
sively iterates the query plan and uses a per-tuple based strategy
(pipelined execution, and not bulk processing) to project the output
results. The proposed hardware optimizations are at the computer
architecture level of the system. Since the base DBMS model is
similar to PostgreSQL, we do not elaborate each component in de-
tail ([26] provides an elaborate discussion). Instead, we highlight
our contributions, and modifications to DBMS (shown in blue in
Figure 2) in the following sections. Overall, our strategies require
modification to the query optimizer, memory hardware, and system
software components.

3.2 Memory Model
We use a memory system that contains a memory array orga-

nized as banks (rows) and modules (columns), as is shown picto-
rially in Figure 3 for a 4×4 memory module array. Such banked
systems are already being used in high-end server systems [30] as
well as low-end embedded systems [31]. The proposed optimiza-
tions will, however, apply to most bank-organized memory sys-
tems. Accessing a word of data would require activating the cor-
responding modules of the shown architecture. Such an organiza-
tion allows one to put the unused banks into a low-power operating
mode. To keep the issue tractable, this paper bases the experimental
results on a sequential database environment and does not consider
a multiprocessing environment (like transaction processing which
requires highly complex properties to be satisfied). We assume in
our experiments that there is just one module in a bank; hence, in
the rest of our discussion, we use the terms “bank” and “module”
interchangeably.

3.3 Operating Modes
We assume the existence of five operating modes for a mem-

ory module: active, standby, nap, power-down,and disabled1.
Each mode is characterized by itsenergy consumptionand the
time that it takes to transition back to the active mode (termed
resynchronization timeor resynchronization cost). Typically, the
lower the energy consumption, the higher the resynchronization
time [30]. Figure 4 shows possible transitions between the various
low-power modes (the dynamic energy2 consumed in a cycle is
given for each node) in our model. The resynchronization times
in cycles (based on a cycle time of 3.3ns) are shown along the
arrows (we assume a negligible costε for transitioning to a lower
power mode). The energy and resynchronization values shown
in this figure have been obtained from the RDRAM memory data
sheet (512MB, 2.5V, 3.3ns cycle time, 8MB modules) [30]. When
a module in standby, nap, or power-down mode is requested to
perform a memory transaction, it first goes to the active mode, and

1Current DRAMs [30] support up to six energy modes of operation
with a few of them supporting only two modes. One may choose to
vary the number of modes based on the target memory.
2We exclusively concentrate on dynamic power consumption that
arises due to bit switching, and do not consider the static (leakage)
power consumption [28] in this paper.

Full Power
(2.063 nJ)

Standby
(0.743 nJ)

Nap
(0.035 nJ)

Power
Down

(0.025 nJ)

Disabled
(0 nJ)

1

16 9000ε ε ε

ε

εε ε

Figure 4: Available operating modes and their resynchroniza-
tion costs.

then performs the requested transaction. While one could employ
all possible transitions given in Figure 4 (and maybe more), our
query-directed approach only utilizes the transitions shown by
solid arrows. The runtime (hardware-based) approaches, on the
other hand, can exploit two additional transitions: from standby to
nap, and from nap to power-down.

3.4 System Support for Power Mode Setting
Typically, several of the memory modules (that are shown in Fig-

ure 3) are controlled by a memory controller which interfaces with
the memory bus. For example, the operating mode setting could
be done by programming a specific control register in each mem-
ory module (as in RDRAM [30]). Next is the issue of how the
memory controller can be told to transition the operating modes
of the individual modules. This is explored in two ways in this
paper:hardware-directed approachandsoftware-directed(query-
directed) approach.

In the hardware-directed approach, there is aSelf-Monitoring
and Prediction Hardware block (as shown in Figure 3), which
monitors all ongoing memory transactions. It contains some pre-
diction hardware (based on the hardware scheme) to estimate the
time until the next access to a memory bank and circuitry to ask the
memory controller to initiate mode transitions (limited amount of
such self-monitored power down is already present in current mem-
ory controllers, for example: Intel 82443BX and Intel 820 Chip
Sets).

In the query-directed approach, the DBMS explicitly requests
the memory controller to issue the control signals for a specific
module’s mode transitions. We assume the availability of a set of
configuration registers in the memory controller (see Fig-
ure 3) that are mapped into the address space of the CPU (similar
to the registers in the memory controller in [20]). These registers
are then made available to the user space (so that the DBMS appli-
cation can have a control) through operating system calls.

Regardless of which strategy is used, the main objective of em-
ploying such strategies is to reduce the energy consumption of a
query when some memory banks are idle during the query’s ex-
ecution. That is, a typical query only accesses a small set of ta-
bles, which corresponds to a small number of banks. The remain-
ing memory banks can be placed into a low-power operating mode
to save memory energy. However, it is also important to select
the low-power mode to use carefully (when a bank idleness is de-
tected), as switching to a wrong mode either incurs significant per-
formance penalties (due to large resynchronization costs) or pre-
vents us from obtaining maximum potential energy benefits.

Note that energy optimization is our context can be performed
from two angles. First, suitable use of low-power operating modes
can reduce energy consumption of a given query execution. Sec-
ond, the query plan can be changed (if it is possible to do so) to fur-
ther increase energy benefits. In this work, we explore both these
angles.

4. POWER MANAGEMENT SCHEMES
In a banked architecture, the memory can be managed through

either of the following two approaches: (1) a runtime approach
wherein the hardware is in full control of operating mode transi-
tions; and (2) a query-directed scheme wherein explicit bank turn-
on/off instructions are inserted in the query execution plan to in-
voke mode transitions. One also has the option of using both the
approaches simultaneously (which we illustrate in later sections).

220

Full Power

Standby Nap
Power
Down

idlestanby

idlenap idledown

resynchstanby

resynchnap

resynchdown

Figure 5: Dynamic threshold scheme.

4.1 Hardware-Directed Schemes
We explore two hardware-directed approaches that allow the

memory system to automatically transition the idle banks to an
energy conserving state. The problem then is to detect/predict
bank idleness and transition idle banks into appropriate low-power
modes.

4.1.1 Static Standby Scheme
The first approach is a per-access optimization. Most of the re-

cent DRAMs allow the chips to be put to standby mode immedi-
ately after each reference [30]. After a read/write access, the mem-
ory module that gets accessed can be placed into the standby mode
in the following cycle. We refer to this scheme as the static standby
mode in the rest of our discussion. Note that, while this scheme is
not very difficult to implement, it may lead to frequent resynchro-
nizations, which can be very harmful as far as execution cycles are
concerned.

4.1.2 Dynamic Threshold Scheme
Our second hardware-guided approach is based on runtime dy-

namics of the memory subsystem. The rationale behind this ap-
proach is that if a memory module has not been accessed in a while,
then it is not likely to be needed in the near future (that is, inter-
access times are predicted to be long). A threshold is used to de-
termine the idleness of a module after which it is transitioned to a
low-power mode. More specifically, we propose a scheme where
each memory module is put into a low-power state with its idle
cycles as the threshold for transition.

The schematic of our dynamic threshold scheme is depicted in
Figure 5. After idlestndby cycles of idleness, the corresponding
module is put in the standby mode. Subsequently, if the module
is not referenced for anotheridlenap cycles, it is transitioned to the
nap mode. Finally, if the module is not referenced for a further
idledown cycles, it is placed into the power-down mode. Whenever
the module is referenced, it is brought back into the active mode in-
curring the corresponding resynchronization costs (based on what
low-power mode it was in). It should be noted that even if a single
bank experiences a resynchronization cost, the other banks will also
incur the corresponding delay (to ensure correct execution). Imple-
menting the dynamic mechanism requires a set of counters (one for
each bank) that are decremented at each cycle, and set to a thresh-
old value whenever they expire or the module is accessed. A zero
detector for a counter initiates the memory controller to transmit
the instructions for mode transition to the memory modules.

4.2 Software-Directed Scheme
It is to be noted that a hardware-directed scheme works well

independent of the DBMS and the query optimizer used. This is
because the idleness predictors are attached to the memory banks
and monitor idleness from the perspective of banks. In contrast,
a query-directed scheme gives the task of enforcing mode transi-
tions to the query. This is possible because the query optimizer,
once it generates the execution plan, has a complete information
about the query access patterns (i.e., which tables will be accessed
and in what order, etc). Consequently, if the optimizer also knows
the table-to-bank mappings,it can have a very good idea about the
bank access patterns. Then, using this information, it can proac-
tively transition memory banks to different modes. In this section,
we elaborate on each step in the particular query-directed approach
that we implemented, which includes customized bank allocation,
query analysis, and insertion of bank turn-on/off (for explicit power
mode control) instructions.

4.2.1 Bank Allocation
In the case of software-directed scheme, the table allocation is

handled by the DBMS. Specifically, the DBMS allocates the newly-
created tables to the banks, and keeps track of the table-to-bank
mappings. When a “create table” operation is issued, the DBMS
first checks for free space. If there is sufficient free space available
in a single bank, the table is allocated from that bank. If a bank is
not able to accommodate the entire table, the table is split across
multiple banks. Also, while creating a new table, the DBMS tries
to reuse the already occupied banks to the highest extent possible;
that is, it does not activate a new bank unless it is necessary. Note
that the unactivated (unused) banks – i.e., the banks that do not hold
any data – can remain in the disabled mode throughout the execu-
tion. However, it also tries not to split tables excessively. In more
detail, when it considers an already occupied bank for a new table
allocation, the table boundaries are checked first using the available
space in that bank. If a bank is more than two-thirds full with the
table data, the rest of the bank is padded with empty bits and the
new table is created using pages from a new bank. Otherwise, the
table is created beginning in the same bank. Irrespective of whether
the table is created on a new bank or not, the DBMS creates a new
table-to-bank mapping entry after each table creation.

In hardware-directed schemes, we avoid these complexities in-
volved in bank allocation as we assume that there is absolutely no
software control. Consequently, in the hardware-directed schemes,
we use thesequential first touch placement policy. This policy al-
locates new pages sequentially in a single bank until it gets com-
pletely filled, before moving on to the next bank. Also, the table-
to-bank mapping is not stored within the DBMS since the mode
control mechanism is handled by the hardware.

4.2.2 Estimating Idleness and Selecting the
Appropriate Low-Power Mode

It should be emphasized that the main objective of our query-
directed scheme is to identify bank idleness. As explained above,
in order to achieve this, it needs table-to-bank mapping. How-
ever, this is not sufficient as it also needs to know when each ta-
ble will be accessed and how long an access will take (i.e., the
query access pattern). To estimate this, we need to estimate the du-
ration of accesses to each table, which means estimating the time
taken by the database operations. Fortunately, the current DBMSs
already maintain such estimates for query optimization purposes
[12, 15, 29, 33, 34]. More specifically, given a query, the optimizer
looks at the query access pattern using the generated query plan.
The inter-access times are calculated using the query plan. A query
plan elucidates the operations within a query and also the order in
which these operations access the various tables in the database.
Even in current databases, the query plan generator estimates ac-
cess costs using query plans [12]. We use the same access cost esti-
mation methodology. These access costs are measured in terms of
page (block) fetches. In our memory-resident database case, a page
is basically the block that is brought from memory to the cache. For
instance, the cost of sequential scan is defined as follows (taken
from [12]):

Costseqscan = Nblocks + CPU∗Ntuples

Here,Nblocksis the number of data blocks retrieved,Ntuplesis the
number of output tuples, andCPU is the fudge factor that adjusts
the system tuple-read speed with the actual memory hierarchy data-
retrieval speed. Usually, optimizers use the above cost metric to
choose between multiple query plan options before issuing a query.
We attach a cost to each page (block) read/write operation to obtain
an estimate of the access cost (time) in terms of execution cycles.
For instance, the above scan operation is modified as follows:

Costblock f etch= T cycles

Costseqscan = Nblocks∗T + CPU∗Ntuples∗ block
tuples∗T

In these expressions,T is the delay in cycles to fetch a block from
the memory. Thus, our cost plan is projected in terms of access
cycles. We extend this to other database operations like JOIN and
AGGREGATE based on the cost models defined in [14,12].

Given a query, we break down each operation within the plan (in-
cluding sub-plans) and estimate the access cost (in cycles) for each

221

- > scan A (9000 cycles)
- > aggregate (20 cycles)
 - > scan B (9000 cycles)
 - > scan A (9000 cycles)

- > scan A
- > Put A=ON
- > aggregate
 - > Put B=OFF
 - > scan B
 - > Put B=ON
 - > Put A=OFF
 - > scan A
 - > Put A=ON
 (B is already OFF)

P2

P1

(i) (ii)

Figure 6: Example application of the query-directed scheme.
(i) The original execution plan. (b) The augmented execution
plan.

primitive operation. Our objective in estimating the per-operation
time in cycles is to eventually identify the inter-access times of op-
erations in the query (and hence, to put the banks that hold unused
tables to low-power modes). There are table accesses associated
with each operation, and bank inter-access times depend on the ta-
ble inter-access times. A query has information of the tables that
it accesses. Thus, knowing the inter-access time for each operation
leads to the inter-access times for each table as well. A table is
mapped to certain banks, and the table-to-bank mapping is avail-
able in the query optimizer.

Consequently, if the table inter-access time isT, and the resyn-
chronization time isTp (assuming less thanT), then the optimizer
can transition the associated modules into a low-power mode (with
a unit time energy ofEp) for the initial T − Tp period (which
would consume a total[T−Tp]Ep energy), activate the module to
bring it back to the active mode at the end of this period following
which the module will resynchronize before it is accessed again
(consumingTpEa energy during the transition assuming thatEa is
the unit time energy for active mode as well as during the transition
period). As a result, the total energy consumption with this transi-
tioning is [T−Tp]Ep + TpEa without any resynchronization over-
heads, while the consumption would have beenTEa if there had
been no transitioning (note that this calculation considers only the
idle period). The DBMS optimizer evaluates all possible choices
(low-power modes) based on corresponding per cycle energy costs
and resynchronization times, and table inter-access time to pick up
the best choice. Note that the DBMS can select different low power
modes for different idle periods of the same module depending on
the duration of each idle period. Specifically, we use the most en-
ergy saving low-power mode without increasing the original query
execution time (i.e., when the original idleness is over, the module
should be up in the active mode ready for the operation).

4.2.3 Inserting Bank-On/Off Instructions
The last part of the software-directed scheme is to insert explicit

(operating) mode transitioning instructions in the final query execu-
tion plan. For this, we introduce place-markers (mapped to system
calls) which are interpreted at the low-level (interpreted later by
our memory controller, which actually sets the corresponding low-
power modes). This is done so that the query execution engine can
issue the query without much performance overhead, and with the
same transparency.

As an example, consider the following. Let tables A and B each
have 1000 records, each record being 64 bytes. Consider the query
plan depicted in Figure 6(i), taken from PostgreSQL. The query
plan reads from bottom to top (P2 follows P1). A scan of table
A is done first, followed by a scan of table B. The result of these
operations are then used by an aggregate operation. Another (inde-
pendent) scan operation on table A follows the aggregate operation.
The per step access costs are also shown. From the generated query
plan, it is evident that table A is not accessed between point P1 and
point P2. Once the results are extracted after the scan at point P1,
the banks that hold table A can be put to a low-power mode, and the
banks that hold table B can be activated for data extraction. This is
illustrated in Figure 6(ii) using place-markers for tables A and B.
Banks holding Table A are reactivated at point P2 (banks of Table
B remain off).

5. EXPERIMENTAL EVALUATION OF
HARDWARE-DIRECTED AND QUERY-
DIRECTED SCHEMES

In this section, we study the potential energy benefits of our hard-
ware and software-directed schemes. We first explain the exper-
imental setup that we used in our simulations. Then, the set of
queries that we used to study our schemes is introduced. After that,
we present energy consumption results. While we discuss the en-
ergy benefits of using our schemes, we also elaborate the overheads
associated with supporting each of our schemes.

5.1 Setup

5.1.1 Simulation Environment
As mentioned before, the query-directed schemes are imple-

mented in the query optimizer of the memory database model
elaborated in Section 3.1. We interface this DBMS to an enhanced
version of the SimpleScalar/Arm simulator [4] to form a com-
plete database system. The intermediate interface (invoked by
DBMS) provides a set of operating system calls (on Linux kernel
2.4.25), which in turn invokes the SimpleScalar simulator. The
SimpleScalar simulator models a modern microprocessor with a
five-stage pipeline: fetch, decode, issue, write-back, and commit.
We implemented our hardware techniques within the framework of
the sim-outorder tool from the SimpleScalar suite, extended with
the ARM-ISA support [4]. Specifically, we modeled a processor
architecture similar to that of Intel StrongARM SA-1100. The
modeled architecture has a 16KB direct-mapped instruction cache
and a 8KB direct-mapped data cache (each of 32 byte-length). We
also model a 32-entry full associative TLB with a 30-cycle miss
latency. The off-chip bus is 32 bit-wide. For estimating the power
consumption (and hence, the energy consumption), we use the
Wattch simulator from Princeton University [8].

Our banked memory model is based on [13,21], as shown in Fig-
ure 4. We use values from Figure 4 for modeling the delay (transi-
tion cycles) in activation and resynchronization of various power-
states. Our simulations account for all performance and energy
overheads incurred by our schemes. In particular, the energy num-
bers we present include the energy spent in maintaining the idleness
predictors (in the hardware-directed scheme) and the energy spent
in maintaining the table-to-bank mappings (in the query-directed
scheme), and in fetching and executing the bank turn-on/off in-
structions (in the query-directed scheme). The predictors were im-
plemented using decrementing counters (equal to the number of
banks) and zero detector based on the discussion in Section 4.1.
The predictors are synchronized with the system cycles to main-
tain consistency of operation, and to minimize the overheads. The
query optimizer maintains the table-bank mappings, which is mod-
eled as an array list for instant access. The bank turn-on/off in-
structions are executed by setting hardware registers, and hence,
these instructions are modeled as register operations using the ex-
isting instruction set architecture. We present two important statis-
tics in our experimental results.Energy consumptioncorresponds
to the energy consumed in the memory system (including the above
mentioned overheads). We also present statistics about theperfor-
mance overhead(i.e., increase in execution cycles) for each of our
schemes. This overhead includes the cycles spent in resynchro-
nization (penalty cycles are modeled based on values in Figure 4)
as well as the cycles spent (in the CPU datapath) in fetching and ex-
ecuting the turn-on/off instructions (in the query-directed scheme).

5.1.2 Queries
To evaluate our scheme for memory-resident databases, we

considered two classes of queries. The first class is a subset of
queries from the Transaction Processing Council (TPC-H) bench-
mark [35]. TPC-H involves complex queries with a large amount of
data accesses. Operations in decision support benchmarks (TPC-D
evolved to TPC-H) have good spatial locality with abundant data
intensive operations [9]. This assists us to perform a rigorous test
of our schemes. The top part of Table 1 gives details of the TPC-H
queries we used and the corresponding database parameters. The
selected operations represent a good mix and could be used to
build a variety of complicated queries.

222

Table 1: The two classes of queries considered for our experiments.
Source Query Description Tables

TPC-H

Q6 Simple query
PART, CUSTOMER, ORDERS, and
LINEITEM tables generated using
DBGEN with scale 1.0

Q3 Complex query involving JOIN
Q4 Complex query involving NEST
Q17 Complex query involving JOIN and NEST

Queries targeting a simple
organizer

P1 Simple name and address lookup ADDRESSBOOK populated with 1.3
million entries, 50% subset of FRIENDS
and 25% subset of COLLEAGUES

P2 Lookup in directory of friends
P3 Lookup in directory of colleagues and

friends

Memory-resident databases run queries that are different from
the typical database queries as seen in TPC-H. The second set of
queries that we consider are representative of applications that ex-
ecute on handheld devices. The typical operations that are per-
formed on an organizer were imitated on our setup (we name the
queries P1, P2, P3). The first query involves a simple address
lookup using a ‘NAME’ as input. The SQL for query P1 is shown
on the left section of Table 2. Recent organizers [17,25] provide an
ordered view of the underlying addressbook database. For instance,
organizers provide the creation of folders. A “friends” folder can
be a collection of personnel with a tag set as “friend” in the ad-
dressbook. We defined folder as a restrained/customized view of
the same database (address book). Intuitively, query P2 strives to
do a lookup of friends living in a particular city. The “friends”
view and hence the query P2 is defined on the right section of Ta-
ble 2. Query P3 combines views (folders). For this we defined a
new folder called “colleagues”. P3 aims to find friends and/or col-
leagues whose names start with an ‘a’, living in a particular ‘CITY’.
Since P3 is very similar to P2 with some extra fields, we do not
present the SQL for P3. The intermediate tables and results during
query execution are also stored in the memory.

5.1.3 Default Parameters
For our experiments, we populate our database using theDBGEN

software from TPC-H benchmark suite with a scale factor of 1.0.
Our organizer database is populated with 1.3 million records.

For dynamic threshold scheme, we use 10, 100 and 10,000 cycles
as idlestndby, idlenap, andidledown, respectively. For all schemes,
the banks are in power-down mode before their first access. On/Off
instructions are inserted based on the inter-access times of table.
We use the same cycles as inidlestndby, idlenap, andidledown for
inserting instructions. As an example, consider the inter-access (T)
of a table as 25 cycles, which lies between 10 (idlestndby) and 100
(idlenap) cycles. We insert an On/Off instruction at the beginning
of T to put a table to standby mode for 24 cycles, taking into con-
sideration the resynchronization period of 1 cycle as well. Similar
technique is applied for inter-access times that fall in between other
power modes.

A single page transfer time is needed for access cost calculation
in software-directed scheme. We derive this by executing the TPC-
H queries on the SimpleScalar simulator (with the SA-1100 model)
and by studying the cycle times for transferring a data block from
memory to the cache. For all experiments, the default configuration
is the 512MB RDRAM memory with 8MB banks. In the following
section, we study the energy implications of our hardware and soft-
ware schemes using this setup. We then present the performance
overheads.

5.2 Query Energy Evaluation
Figure 7 shows thenormalizedmemory energy consumption for

our hardware-directed schemes. While presenting our results, we
normalize all values with respect to the base case, which is the ver-
sion withnoquery optimizations. “Static Standby” in Figure 7 indi-
cates the static standby scheme. We see that, by simply putting the
modules to standby mode after each access, this scheme is able to
achieve an average 55% reduction in memory energy consumption
of TPC-H queries when compared to the unoptimized case. The
energy improvements are less pronounced in the case of handheld

Table 2: SQL for organizer queries
Query P1 Query P2

SELECT CREATE VIEW
a name, friends AS P2:
a address, SELECT SELECT
a city, a name, aaddress,
a office phone, a address, ahomephone,
a homephone, a city, a mobile phone
a mobile phone, a homephone, FROM
a email, a mobile phone friends
a web, FROM WHERE
a specialnotes addressbook acity = ‘[CITY]’

FROM WHERE GROUP BY
addressbook a tag = ‘[FRIEND]’ a name;

WHERE GROUP BY
a name = ’[NAME]’; a name;

queries (37% reduction on the average). This is mainly because
of the different number of tables manipulated by these two types
of queries. In the TPC-H case, multiple tables are scattered across
various banks and hence, there is a potential of placing more mem-
ory banks into low-power modes. In the case of handheld queries,
there is just one table scattered across multiple banks, which makes
putting modules to a low-power mode more difficult as modules are
tightly connected, as far as query access patterns are concerned. We
also observe from Figure 7 that the dynamic threshold scheme fur-
ther extends these improvements through its ability to put a bank
into any of the possible low-power modes. On an average, there is
a 60% (43%) energy improvement in TPC-H (handheld) queries.

Figure 7 also shows the normalized energy behavior of our
query-directed scheme (denoted On/Off Instr). It is evident that
this scheme outperforms the best hardware-directed scheme (by
an average of 10%) in saving the memory energy consumption.
This is because of two main reasons. First, when a bank idleness is
estimated, the query-directed scheme has a very good idea about
its length (duration). Therefore, it has a potential of choosing the
most appropriate low-power mode for a given idleness. Second,
based on its idleness estimate, it can also preactivate the bank. This

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Q6 Q3 Q4 Q17 P1 P2 P3

N
or

m
al

iz
ed

 E
ne

rg
y

Static Standby Dynamic Threshold On/Off Instr

Figure 7: Energy consumption of hardware and software-
directed modes. The values shown are normalized to the ver-
sion with no energy optimizations.

223

eliminates the time and energy that would otherwise have spent
in resynchronization. Consequently, the average memory energy
consumption of the query-directed scheme is just 32% of the unop-
timized version for TPC-H queries, and 44% in case of organizer
(handheld) queries [i.e., an additional 8% (13%) improvement over
the hardware schemes for TPC-H (handheld) queries].

5.3 Performance Overhead Analysis
Our techniques are very effective in reducing the memory energy

consumption. As mentioned earlier, transitions from the low-power
modes to the active mode come with an overhead of resynchroniza-
tion (in terms of both performance and energy). The energy values
reported in previous section take into consideration the extra energy
needed to activate the modules as well. In this part, we quantify
the basic performance overheads that are faced in supporting our
schemes.

Figure 8 shows the performance overheads for both the hardware
and software-directed schemes. The static standby scheme has the
maximum overhead, which is expected. This is especially the case
when queries generate frequent memory accesses. The memory is
brought down to the standby mode after each access, and is resyn-
chronized in another access that follows immediately. As a result,
the performance worsens as bad as 28% for the static standby case.
On the other hand, for the dynamic threshold scheme, the perfor-
mance overhead is slightly better since the banks are not blindly
put to a low-power mode after each access. This verifies our pre-
diction that when a module goes to low-power mode, it would ei-
ther remain for a while in that mode or may even be transitioned
into a lower power mode. The query-directed scheme has the least
overhead (<2%). The main reason for this is the ability of pre-
activating a bank before it is actually accessed. Therefore, con-
sidering both performance and energy results, one may conclude
that the query-directed scheme is better than the hardware-directed
schemes. However, it is also to be noted that the query-directed
scheme requires access to the query optimizer. In comparison,
the hardware-based schemes can work with any query optimizer.
Therefore, they might be better candidates when it is not possi-
ble/profitable to modify the query plan.

6. QUERY RESTRUCTURING
The approaches presented above mainly try to optimize energy

consumption without modifying the queries themselves (except
maybe for the query-directed scheme where we insert turn on/off
instructions in the query plan). In this section, we go one step
further, and demonstrate that even larger energy savings are possi-
ble if one has the flexibility of reorganizing query operations. We
show how this can be achieved in the context of both individual
queries and multiple queries (optimized simultaneously). Our main
objective in restructuring queries is toincreasememory bank inter-
access times. Note that when bank inter-access time is increased,
we can either remain in a given low-power operating mode longer,
thereby feeling the potential impact of resynchronization less (i.e.,
amortizing the cost of resynchronization); or we can switch to
a more energy saving mode (as we now have a longer idleness),
which means more energy savings. We present different query
restructuring strategies for achieving this.

When considering a single query, the bank inter-access times can
be increased by re-ordering query operations. On the other hand,
the primary goal of the heuristic that targets at multiple-queries is
to cluster the usage of tables from multiple queries together, so
that the overall table accesses are localized. That is, assuming that
we have multiple queries to optimize, our objective is to interleave
these query executions in such a way that the reuse of individual
tables (or of table portions) is maximized. In other words, when
a table is accessed, we want to execute all other query operations
(potentially coming from different queries) to that table (one
after another), before we move to the next table. This also tends
to cluster accesses to the same bank, and tends to increase the
bank inter-access times (which is very important from an energy
perspective as explained above). In the following, we first study
intra-query restructuring and then inter-query restructuring. After
these two steps, bank turn-on/off instructions are inserted at the
relevant points, depending on the bank access patterns.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Q6 Q3 Q4 Q17 P1 P2 P3

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Static Standby Dynamic Threshold On/Off Instr

Figure 8: The performance overhead involved in supporting
our schemes. There is an average overhead of 15%, 8%, and
2% for standby, dynamic and on/off schemes, respectively, over
the unoptimized version.

Step 1 (intra-query optimization):A query is first examined to see
if there are any potential reuse regions. If there are any reusable
regions, their accesses are grouped together.
We achieve this by examining the query execution plan. The query
plan is studied to see if there are any advantages in rearranging
the operations (primitives) in a query based on its table usage.
Operations that require the same (set of) table(s) are then grouped
together (i.e., they are scheduled to be executed one after another).
The detailed procedure is shown in Figure 9. Each operation in the
query plan is first scanned and placed into atable groupbased on
the table(s) that it accesses. Then, the operations are rearranged
in the query plan (taking into account the dependencies between
them) based on their corresponding table groups. For this, we look
at the query plan tree. The path from each leaf node to the root,
called stream, is investigated. The ultimate goal is to schedule
operations (nodesin the plan tree) based on their table groups.
We try to schedule operations within one table group (which is
currently active) before scheduling the operations from another
table group (which is not active) in an attempt to increase the bank
inter-access times. That is, a stream is traversed from bottom to
top, and each node within the stream is put to the schedule queue
(as they are encountered) based on its table group. It should be
emphasized that we preserve the original semantics of the oper-
ations (constraints) in the algorithm. This procedure is repeated
for each stream in the tree, and until all streams have the most
energy-efficient schedule based on their table accesses. At the end
of this step, an energy-aware schedule queue gets generated for the
considered query (saved inschedulelist).

Step 2 (inter-query optimization):Tables are examined to optimize
multiple queries simultaneously. For each table that is accessed,
all accesses arising from multiple queries to the particular table
are grouped together.
In this step, theschedulelist from multiple queries are grouped
together. Each list is scanned to identify nodes that access a given
table. The nodes that access the same table are then scheduled to
execute together (without disturbing the dependency constraints).
In fact, the nodes from multiple queries are just grouped (com-
bined) not reordered. Thus, in this step, the constraint flow for
eachschedulelist (taken care of in Step 1) is automatically main-
tained. Additional conditional flow checks could be reinforced at
this stage if desired. Figure 10 shows the regrouping procedure.
f inal schedulelist stores the final consolidated schedule of oper-
ations from all the queries.

Step 3 (energy optimizations):Include energy optimizations by in-
serting On/Off instructions into the final schedule list.
In this step, the access costs are calculated for each operation in
the f inal schedulelist as shown in Section 4.2.2. Each operation
is attached with an access cost, and the turn-on/off instructions are
inserted based on the table inter-access times. The methodology
used for adding these instructions to thef inal schedulelist is the
same as in Section 4.2.2, and the on/off markers are placed as elab-
orated in Section 4.2.3.

As an example, consider two queries Q1 and Q2. Their original

224

table_group is a table-to-operations mapping list.
schedule_list stores the final schedule of operations.

/* identify the group to which an
* operation belongs */

operation_rearragement (){
for (each operation in query i) {

identify the table(s) in i;
for (each table j in i) {

add operation to table_group[j];
}

}
schedule_operations();

}

/* schedule operations */
schedule_operations() {
schedule_list = empty;
do {
for (each stream in query plan tree) {

start from leaf node;
for (each node in stream) {

identify its constraint nodes that follow;
/* the rest are independent nodes */
group(constraint nodes);
group(independent nodes);
check for new violations;
add new constraints if necessary;
save the schedule_list;
move up a node in the stream;

}
move to the next stream;

}
} until no more changes

}

/* group nodes */
group(node_list) {
if(node_list is constraint node list)
{

for (each node in node_list) {
lookup table_group of node;
add node to schedule_list based on table_group;
/* preserve the dependency order */
preserve flow of node_list in schedule_list;

}
}
else
{ /* set of independent nodes */

add node to schedule_list based on table_group;
/* no need to preserve constraint flow */
regroup to put all table_group nodes together;

}

Figure 9: Reorganizing operations within a query to optimize
for energy (Step 1). The query tree is investigated from the
bottom to top for grouping operations based on their table ac-
cesses.

group_multiple_queries {
for (each schedule_list) {

do {
pick an unscheduled node i in schedule_list;
/* i.e. pick a node without a "complete" tag */
for (other schedule_lists) {
if (node j has same table_group as node i) {

schedule node j after node i;
mark node j as "complete";
/* with respect to multi-query schedule */

}
}

} until all node in schedule_list is "complete"
}

}

Towards the end of the procedure,
final_schedule_list stores the
entire list of "complete" schedule.

Figure 10: Grouping schedule list from multiple queries (Step
2). Operations from multiple queries are grouped based on
their table accesses using their corresponding schedule lists.

query plan is shown in Figure 11(i). Q1 is revised as the table ac-
cesses are optimizable. Figure 11(ii) shows the result after applying
Step 1. Step 2 results in the output depicted in Figure 11(iii). Fi-
nally, in Step 3, we insert on/off instructions in appropriate places
(see Figure 11(iv)).

7. EXPERIMENTAL EVALUATION OF
QUERY RESTRUCTURING

In this section, we evaluate our query restructuring approach
by extending our database and queries discussed in Section 5.1.2.
As before, our focus is on memory energy consumption. We also
study the impact of the technique on the overall performance.
Towards the end, other alternative options are also elaborated.

7.1 Multi-Query Setup
Since simultaneous processing of multiple queries is needed to

validate our approach, we considered a combination of queries,
which we term asscenariosin the rest of this paper. Among the
queries considered in Section 5.1.2, there can be multiple combi-
nations of queries that arrive sequentially, and that (which) are opti-
mizable using our technique. The various combination (scenarios)
of organizer queries and their naming schemes are shown in Ta-
ble 3. For instance, P12 indicates that P1 is sequentially processed
along with P2. The combination scenarios for TPC-H queries are
shown in Table 4. The combinations shown in these tables are the
prominent ones and the behavior of other combinations are very
similar to these, hence, they are not included in this paper.

Table 3: Scenarios for organizer queries.
Type Legend Combination

Two query combinations
P11 P1 + P1
P12 P1 + P2
P23 P2 + P3

Three query combination P123 P1 + P2 + P3

Table 4: Scenarios for TPC-H queries.
Type Legend Combination

Two query combinations

S11 Q6 + Q6
S12 Q6 + Q3
S13 Q6 + Q4
S14 Q6 + Q17
S23 Q3 + Q4
S24 Q3 + Q17
S34 Q4 + Q17

Three query combinations S222 Q3 + Q3 + Q3
S123 Q6 + Q3 + Q4

Four query combinations S1111 Q6 + Q6 + Q6 + Q6
S1234 Q6 + Q3 + Q4 + Q17

7.2 Query Energy Evaluation
In this section, we evaluate the query energy of the various sce-

narios we presented in the previous section. We first study the im-
provements obtained from our query restructuring heuristic, and
further extend our study to combine query restructuring with vari-
ous hardware and software-directed schemes (of Section 4) meant
to improve the energy consumption.

Figure 12 shows the sole contribution of query restructuring
scheme in improving the energy consumption. The energy reduces
by an average 55% from the unoptimized version when our query
restructuring scheme is used. By just grouping similar accesses
(to ensure data reuse), query restructuring can achieve significant
reduction in the energy consumption of multiple queries.

In order to identify the benefits coming solely from Step 1 (intra-
query optimization) in our query restructuring scheme, we also
combined Step 1 and Step 3, and compared it with our query-
directed scheme (studied in Section 4.2 — which is simply Step
3 of our query restructuring). Figure 13 shows the results. There
is up to 19% improvement in energy when operations are shuffled
with a query based on their table usage.

When the query restructuring scheme is combined with
hardware-directed schemes, there is further improvement in
energy savings (Figure 14). The static standby scheme works only
for small queries that have a uniform access pattern, but when
complex queries are encountered, the dynamic runtime scheme
outperforms the static standby scheme due to its good prediction of

225

- > function(A) (9000 cycles)
- > hash join
 - > scan B (9000 cycles)
 - > scan A (9000 cycles)

Q1

- > aggregate (20 cycles)
 - > scan B (9000 cycles)
 - > scan A (9000 cycles)

Q2

- > hash join
 - > scan B (9000 cycles)
 - > function(A) (9000 cycles)
 - > scan A (9000 cycles)

Q1

- > aggregate (20 cycles)
 - > scan B (9000 cycles)
 - > scan A (9000 cycles)

Q2

(i) Original Queries (ii) After applying Step 1

- > aggregate (from Q2)
- > hash join (from Q1)
 - > scan B (from Q2)
 - > scan B (from Q1)
 - > function(A) (from Q1)
 - > scan A (from Q2)
 - > scan A (from Q1)

Q1 + Q2

(iii) After applying Step 2

- > aggregate (from Q2)
- > Put B=OFF (A is already OFF)
- > hash join (from Q1)
 - > scan B (from Q2)
 - > scan B (from Q1)
 - > Put B=ON
 - > Put A=OFF
 - > function(A) (from Q1)
 - > scan A (from Q2)
 - > scan A (from Q1)
 - > Put A=ON
 (B is already OFF)

(iv) After applying Step 3

Q1 + Q2

Figure 11: Example of query restructuring and regrouping based on energy behavior.

the application behavior. This can be seen in Figure 14, where the
dynamic threshold scheme performs better in the TPC-H scenarios
than for the handheld query scenarios. The savings obtained
by putting a module into multiple low-power modes for longer
periods are more than the savings obtained by periodically putting
a module to just standby mode.

The software-directed schemes perform similar to dynamic the
runtime threshold strategy when combined with the query restruc-
turing algorithm. In Figure 14, the insertion of explicit turn-on/off
instructions improves the energy by an average 78%, when com-
pared to the unoptimized version. This result is comparable to
the improvements obtained using the dynamic threshold scheme.
In fact, the dynamic threshold scheme performs slightly better for
some TPC-H queries (e.g., S12, S13, and S14). This situation oc-
curs due to the following factor. When multiple queries are com-
bined using query restructuring, it becomes difficult to predict the
inter-access times since each query has a varying access pattern,
and combining random access patterns complicates the job of the
predictor (and requires a more sophisticated predictor). The run-
time schemes work at the hardware instruction level without any
knowledge of the DBMS application. But, this illustrates how a
simple software technique implemented at the query optimizer (by
just analyzing the high-level query structure) is able to achieve im-
provements as good as an equivalent but expensive hardware tech-
nique.

As mentioned earlier in the paper, when queries are restruc-
tured and grouped, the memory access pattern changes. The
bank turn-on/off instructions can be inserted only in prominent
“hot” and “cold” access regions, respectively. There are a few
modules, which is beyond the control of software. For instance,
we insert turn-on/off instructions based on tables. A given table
could be scattered across many modules. Our predictor estimates
the inter-access time for which the entire table needs to be put to
low-power mode. However, even during a table access, there are
regions (modules) that are hardly used. Dynamic runtime scheme
is extremely good in handling this situation by its ability to put
individual modules to a low-power state based on just that mod-
ule’s access. This implies that the combination of hardware and
software schemes form the best strategy when query restructuring
is deployed.

Figure 14 also shows the case when both dynamic runtime
scheme and the turn-on/off instructions are used in tandem after

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P11 P12 P23 P123 S11 S12 S13 S14 S23 S24 S34 S222 S123 S1111 S1234

N
or

m
al

iz
ed

 E
ne

rg
y

Figure 12: Contribution of query restructuring towards energy
improvements. The energy values shown are normalized to the
version with no optimizations.

query restructuring. The benefits obtained from such a hardware-
software interaction is prominent. There is an average 90%
reduction in the memory energy consumption across the applica-
tions. In some cases, there is up to 95% improvement in the energy
consumption. These results clearly show that query restructuring
combined with the use of low-power operating modes can lead to
significant energy savings.

7.3 Performance Overhead Analysis
Query restructuring combined with the use of low-power modes

has an impact on the performance. In Figure 15, we present the
normalized system-wide performance of our query restructuring
scheme. It is evident that the performance improves by an average
of 48% when multiple queries are restructured and grouped. The
improvement in performance is mainly due to the improved local-
ity utilization in the memory hierarchy. That is, the data brought
to the cache by one query is reused by other queries (as a result
of restructuring). We do not present here detailed cache behavior
statistics due to lack of space.

Figure 16 shows the normalized performance for the combina-
tion schemes as well. When static standby scheme is used with
query restructuring, the performance improvements obtained from
query restructuring gets negated by the resynchronization overhead
from the standby mode for each access. Thus, the performance

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

Q6 Q3 Q4 Q17 P1 P2 P3

E
ne

rg
y

Im
pr

ov
em

en
ts

Figure 13: Benefits obtained by restructuring operations within
a query (contribution of Step 1).

0

0.1

0.2

0.3

0.4

0.5

0.6

P11 P12 P23 P123 S11 S12 S13 S14 S23 S24 S34 S222 S123 S1111 S1234

N
o
rm

a
li
z
e
d
 E

n
e
rg

y

Restructuring + Static Standby Restructuring + Dynamic Threshold

Restructuring + On/Off Instr Restructuring + On/Off Instr + Dynamic Threshold

Figure 14: Energy consumption reduces significantly when
low-power modes are utilized along with query restructuring
scheme. Values shown are normalized to the unoptimized ver-
sion. Best energy savings comes from a hybrid hardware-
software scheme.

226

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P11 P12 P23 P123 S12 S13 S14 S23 S24 S34 S222 S123 S1111 S1234

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Figure 15: Performance improvement obtained from basic
query restructuring over the unoptimized version.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P11 P12 P23 P123 S12 S13 S14 S23 S24 S34 S222 S123 S1111 S1234

N
o
rm

a
li
z
e
d
 P

e
rf

o
rm

a
n
c
e

Restructuring + Static Standby Restructuring + Dynamic Threshold

Restructuring + On/Off Instr Restructuring + On/Off Instr + Dynamic Threshold

Figure 16: Overall performance after applying energy opti-
mizations along with query restructuring. Values shown are
normalized to the unoptimized version.

worsens in some cases by even 65% for complicated queries. How-
ever, overall, there is still a 10% performance improvement for all
applications on the average. The turn-on/off instructions have the
least performance overhead, and hence, preserve the performance
improvements obtained from query restructuring. From Figure 16,
this combination shows a 47% improvement in performance (negat-
ing the improvements obtained from basic query restructuring by a
mere 1%). Dynamic runtime threshold on the other hand negates
the performance improvements from query restructuring by aver-
age 6%. Combining turn-on/off instructions with dynamic runtime
threshold shows an average performance improvement of 45% for
applications, which implies a 3% overhead addition from the low-
power schemes towards query restructuring. Thus, it is clear that
query restructuring with both turn-on/off instructions and runtime
threshold forms the best alternative from both energy consumption
and performance perspectives.

8. CONCLUDING REMARKS
This paper is an attempt to study the potential of employing

low-power operating modes to save memory energy during query
execution. We propose hardware-directed and software-directed
(query-directed) schemes that periodically transition the memory
to low-power modes in order to reduce the energy consumption
of memory-resident databases. Our experimental evaluations using
two sets of queries clearly demonstrate that query-directed schemes
perform better than hardware-directed schemes since the query op-
timizer knows the query access pattern prior to query execution,
and can make use of this information in selecting the most suitable
mode to use when idleness is detected. This scheme brings about
68% reduction in energy consumption. In addition, the query-
directed scheme can also preactivate memory banks before they are
actually needed to reduce potential performance penalty.

Our query restructuring scheme based on memory bank accesses
provides another scope for optimization. One can re-order opera-
tions within a query to increase bank inter-access times. It is also
possible to go beyond this, and consider the access patterns of mul-
tiple queries at the same time. Multiple queries are optimized based
on their table accesses, i.e., all accesses to a table are clustered as
much as possible. This scheme is able to put memory banks to low-
power operating modes for longer periods of time due to fewer table
activations. There is up to 90% improvement in energy and 45%

improvement in performance when queries are restructured and re-
grouped based on their table accesses. Overall, we can conclude
that a suitable combination of query restructuring and low-power
mode management can bring large energy benefits without hurting
performance.

9. REFERENCES
[1] R. Alonso and S. Ganguly. Query optimization for energy efficiency in mobile

environments. InProc. of the Fifth Workshop on Foundations of Models and
Languages for Data and Objects, 1993.

[2] N. An, S. Gurumurthi, A. Sivasubramaniam, N. Vijaykrishnan, M. Kandemir,
and M.J. Irwin. Energy-performance trade-offs for spatial access methods on
memory-resident data.The VLDB Journal, 11(3):179–197, 2002.

[3] N. Anciaux, L. Bouganim, and P. Pucheral. On finding a memory lower bound
for query evaluation in lightweight devices. Technical report, PRiSM -
Laboratoire de recherche en informatique, 2003.

[4] T. M. Austin. The simplescalar/arm toolset. SimpleScalar LLC.
http://www.simplescalar.com/.

[5] Birdstep Technology.Database Management In Real-time and Embedded
Systems - Technical White Paper, 2003. http://www.birdstep.com/collaterals/.

[6] Bloor Research Ltd.Main Memory Databases, November 1999.
[7] P.A. Boncz, S. Manegold, and M.L. Kersten. Database architecture optimized

for the new bottleneck: Memory access. InThe VLDB Journal, pages 54–65,
1999.

[8] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. InProc. International
Symposium on Computer Architecture, 2000.

[9] Q. Cao, P. Trancoso, J.-L Larriba-Pey, J. Torrellas, R. Knighten, and Y. Won.
Detailed characterization of a quad pentium pro server running tpc-d. InProc.
of the International Conference on Computer Design, 1999.

[10] S. Chaudhuri and K. Shim. Optimization of queries with user-defined
predicates.ACM Transactions on Database Systems, 24(2):177–228, 1999.

[11] G.P. Copeland, T. Keller, R. Krishnamurthy, and M. Smith. The case for safe
ram. InProc. of the Fifteenth International Conference on Very Large Data
Bases, pages 327–335, 1989.

[12] Database Management System, The PostgreSQL Global Development Group.
PostgreSQL 7.2, 2001. http://www.postgresql.org/.

[13] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and M.J.
Irwin. Dram energy management using software and hardware directed power
mode control. InProc. of the International Symposium on High-Performance
Computer Architecture, 2001.

[14] Z. Fong. The design and implementation of the postgres query optimizer.
Technical report, University of California, Berkeley.
http://s2k-ftp.cs.berkeley.edu:8000/postgres/papers/.

[15] P. Gassner, G.M. Lohman, K.B. Schiefer, and Y. Wang. Query optimization in
the ibm db2 family.Data Engineering Bulletin, 16(4):4–18, 1993.

[16] Le Gruenwald and S.M. Banik. Energy-efficient transaction management for
real-time mobile databases in ad-hoc network environments. InProc. of the
Second International Conference on Mobile Data Management, 2001.

[17] Handspring.Handspring Organizers, 2004.
http://www.handspring.com/products/.

[18] J.M. Hellerstein. Optimization techniques for queries with expensive methods.
ACM Transactions on Database Systems, 23(2):113–157, 1998.

[19] T. Imielinski, S. Viswanathan, and B.R. Badrinath. Energy efficient indexing on
air. In Proc. of ACM SIGMOD Conference, 1994.

[20] Intel Corporation.Intel 440BX AGPset: 82443BX Host Bridge/Controller Data
Sheet, April 1998.

[21] A.R. Lebeck, X. Fan, H. Zeng, and C.S. Ellis. Power aware page allocation. In
Proc. of the International Conference on Architectural Support for
Programming Languages and Operating Systems, 2000.

[22] S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong. The design of an
acquisitional query processor for sensor networks. InProc. of the ACM
SIGMOD International Conference on Management of Data, pages 491–502.
ACM Press, 2003.

[23] S. Manegold.Understanding, Modeling, and Improving Main-Memory
Database Performance. Ph.d. thesis, Universiteit van Amsterdam, Amsterdam,
The Netherlands, December 2002.

[24] C.L. Monma and J.B. Sidney. Sequencing with series-parallel precedence
constraints.Mathematics of Operations Research, 4:215–224, 1979.

[25] Palm Inc.Palm Handhelds, 2004. http://www.palm.com/products/.
[26] The PostgreSQL Global Development Group.PostgreSQL 7.2 – Developers

Guide, 2002. http://www.postgresql.org/docs/.
[27] P. Pucheral, L. Bouganim, P. Valduriez, and C. Bobineau. Picodbms: Scaling

down database techniques for the smartcard.The VLDB Journal,
12(1):120–132, 2001.

[28] J.M. Rabaey, A. Chandrakasan, and B. Nikolic.Digital Integrated Circuits.
Prentice Hall, second edition, 2002.

[29] R. Ramakrishnan and J. Gehrke.Database Management Systems. McGraw-Hill
publishers, third edition, 2002.

[30] Rambus Inc.Rambus RDRAM 512MB Datasheet, 2003.
[31] Samsung Microelectronics.Mobile 512MB DRAM Chip Series.

http://www.samsung.com/Products/Semiconductor/.
[32] S. Sarawagi and M. Stonebraker. Reordering query execution in tertiary

memory databases. InThe VLDB Journal, pages 156–167, 1996.
[33] A. Silberschatz, H.F. Korth, and S. Sudarshan.Database System Concepts.

McGraw-Hill, fourth edition, 2001.
[34] Sleepycat Software.Berkeley DB V4.2, 2004.

http://www.sleepycat.com/docs/index.html.
[35] Transaction Processing Performance Council.TPC-H Benchmark Revision

2.0.0, 2003.

227

	Introduction
	Related Work
	System Architecture
	DBMS
	Memory Model
	Operating Modes
	System Support for Power Mode Setting

	Power Management Schemes
	Hardware-Directed Schemes
	Static Standby Scheme
	Dynamic Threshold Scheme

	Software-Directed Scheme
	Bank Allocation
	Estimating Idleness and Selecting the Appropriate Low-Power Mode
	Inserting Bank-On/Off Instructions

	Experimental Evaluation of Hardware-Directed and Query-Directed Schemes
	Setup
	Simulation Environment
	Queries
	Default Parameters

	Query Energy Evaluation
	Performance Overhead Analysis

	Query Restructuring
	Experimental Evaluation of Query Restructuring
	Multi-Query Setup
	Query Energy Evaluation
	Performance Overhead Analysis

	Concluding Remarks
	REFERENCES -9pt

