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ABSTRACT 1. INTRODUCTION

The tremendous growth of system memories has increased the ca- Memory-resident databases (also called in-memory databases
pacities and capabilities of memory-resident embedded databases|6]) are emerging to be more significant due to the current era of
yet current embedded databases need to be tuned in order to tak&emory-intensive computing. These databases are used in a wide
advantage of new memory technologies. In this paper, we study range of systems ranging from real-time trading applications to IP
the implications of hosting memory resident databases, and pro-routing. With the growing complexities of embedded systems (like
pose hardware and software (query-driven) techniques to improvereal-time constraints), use of a commercially developed structured
their performance and energy consumption. We exploit the struc- memory database is becoming very critical [5]. Consequently,
tured organization of memories, which enables a selective mode ofdevice developers are turning to commercial databases, but ex-
operation in which banks are accessed selectively. Unused bankdsting embedded DBMS software has not provided the ideal fit.
are placed in a lower power mode based on access pattern infor-Embedded databases emerged well over a decade ago to support
mation. We propose hardware techniques that dynamically control business systems, with features including complex caching logic
the memory by making the system adapt to the access patterns thagnd abnormal termination recovery. But on a device, within a
arise from queries. We also propose a software (query-directed)Set-top box or next-generation fax machine, for example, these
scheme that directly modifies the queries to reduce the energy con-abilities are often unnecessary and cause the application to ex-
sumption by ensuring uniform bank accesses. Our results showceed available memory and CPU resources. In addition, current
that these optimizations could lead to at the least 40% reduction in in-memory database support does not consider embedded system
memory energy. We also show that query-directed schemes betterspecific issues such as energy consumption.

utilize the low-power modes, achieving up to 68% improvement. Memory technology has grown tremendously over the years,
providing larger data storage space at a cheaper cost. Recent
memory designs have more structured and partitioned layouts

Categones and SUbJeCt Descrlptors in the form of multiple chips, each havingemory bankg$28].

B.3.1 [Memory Structures]: Semiconductor MemoriesBRAM; Banked memories are energy efficient by design, as per-access
H.2.2 [Database Managemetjt Physical Design-Access Meth- energy consumption decreases with decreasing memory size (and
ods H.3.2 [Information Storage and Retrieval]: Information a memory bank is typically much smaller compared to a large
Storage monolithic memory). In addition, these memory systems provide

low-power operating modesyhich can be used for reducing the
energy consumption of a bank when it is not being used. An
General Terms important question regarding the use of these low-power modes
Design, Management is when to transition to one once an idleness is detected. Another
important question is whether the application can be modified to
Keywords take better advantage of these low-power modes. While these
questions are slowly being addressed in architecture, compiler, and
database, DRAM, energy, hardware schemes, layouts, map-OS communities, to our knowledge, there has been no prior work
ping,power consumption, query-directed energy management,that examines the energy and performance behavior of databases
query optimization under a banked memory architecture. Considering increasingly
widespread use of banked memories, such a study can provide
us with valuable information regarding the behavior of databases
under these memories and potential modifications to DBMSs
for energy efficiency. Since such banked systems are also being

employed in high-end server systems, banked memory friendly
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies arey - . Y . .
not made or distributed for profit or commercial advantage and that copies | Designers often use the term “power” almost interchangeably with
bear this notice and the full citation on the first page. To copy otherwise, to ~Pattery life”. However, in embedded devices, one needs to focus

republish, to post on servers or to redistribute to lists, requires prior specific 0N €Nergy consumption rather than power, since there is a limited

permission and/or a fee. supply of energy in a battery, even though the power a battery is re-
CASES'04September 22—25, 2004, Washington, DC, USA. quired to supply can vary over a substantial range during the course
Copyright 2004 ACM 1-58113-890-3/04/000855.00. of its life. In this study, our focus is on energy consumption.
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database strategies can also be useful in high-end environments to
help reduce energy consumption.

Our detailed energy characterization of a banked memory ar-
chitecture that runs a memory-resident DBMS showed that nearly
59% of overall energy (excluding input/output devices) in a typical
guery execution is spent in the main memory, making this com-
ponent an important target for optimization (see Figure 1). More-
over, for any system, memory power and energy consumption have
become critical design parameters besides cost and performance.
Based on these observations, this paper evaluates the potential en-
ergy benefits that memory-resident database queries can achieve by

making use of banked memory architectures supported with low- Figure 1: Breakup of the energy consumption for various sys-
power operating modes. Since each memory bank is capable of opyg, components after executing typical queries on a memo-
erating independently, t_his_opens up abundant avenues for energyyresident DBMS system. The results were obtained by exe-
and performance optimizations. , cuting the queries on a system that simulates an embedded de-
In this paper, we focus on a banked memory architecture and \;ice with StrongARM SA-1100 processor and RDRAM mem-
study potential energy benefits when database queries are executeq,ry (detailed discussion of our simulation environment and ex-
To see whether query execution can make use of available low- perimental results can be found in Section 5.1).
power modes, we study both hardware and software techniques.
The hardware techniques predict the idleness of memory banks
and switch the inactive (idle) banks (during query execution)
to low-power operating modes. We also present a query-based

e by, MObll cmpuers. Boncz e l i how ey scesses o
9 Y €xp major bottleneck during database accesses [7]. In their work, they

memory panks into appropriate operating modes during the Course,iso suggest a few remedies to alleviate the memory bottleneck
of execution based on the query access pattern. We experimen- [32] ’
tally evalnate all .the proposed sehemes and obta|n.the|r ENeI9Y " An et al analyze the energy behavior of mobile devices when spa-
consumptlon_s using an energy S|mulator._ Our expen_me_nts USING a1 access methods are used for retrieving memory-resident data
a set of queries suitable for handheld devices clearly indicate that 2]. They use a cycle accurate simulator to identify the pros and
both hardware-based and query-directed strategies save signh‘ican&ohS of B\I/arious ir?dexing schemes. In [1], Alonso et alpinvesti-
mimggf(ra(?r?]rg?evidin useful input for database desianers. our re- gate the possibility of increasing the effective battery life of mo-

P P 9 P . 9 ' . bile computers by selecting energy efficient query plans through
sults can also be used by hardware designers to tune the behavm{he optimizer. Although the ultimate goal seems the same, their
of low-power modes so that they handle query access patterns bet- ) !

ter. Similar to the observation that creating a lightweight version cost plan and the optimization criterion are entirely different from
S A g a fightweig our scheme. Specifically, their emphasis is on a client-server model
of a disk-based database will not serve as a suitable in-memory

N . L optimizing the network throughput and overall energy consump-
databa.se,.our belief Is that teklng an In-memory datepase SyStemtion. Gruenwald et al propose an energy-efficient transaction man-
and using it on a banked architecture without any modification may.agement system for real-time mobile databases in ad-hoc networks

not generate the desired results. Therefore, the results presented ||[115] They consider an environment of mobile hosts. In [20]
this work also shed light on how database design and memory ar-\1adden et al propose TinyDB, an acquisitional query processor

chitecture design interact with each other. for sensor networks. They provide SQL-like extensions to sensor

The remainder of this Paper 1S organized as follows. Section 2 networks, and also propose acquisitional techniques that reduce the
presents related work. Section 3 elaborates on the memory databa380wer consumption of these networks. It should be noted that the

that we built and also on the memory banking scheme that we em- - . -
queries in such a mobile ad-hoc network or a sensor environment

ploy for our experiments. Section 4 presents in detail the proposed is different from those in a typical DBMS. This has been shown

hardware and query-directed energy optimization techniques. Th(.aby Imielinksi et al in [17]. In our model, we base our techniques

e o o s s 1 8 Geerc banked memoryenonment and suppor compe
head incnrred in supporting our schemes. Finally, Section 6 sum- memon_/-lntenswe typical _detab_ase (_)peratlons. There are more op-
marizes the results ) ! por_tunltles for energy optlmlza_tlons in generic memory databases,
: which have not yet been studied completely. The approach pro-
posed in this paper is different from prior energy-aware database
2. RELATED WORK related studies, as we focus on a banked memory architecture, and
In the past, memory has been redesigned, tuned or optimizeduse low-power operating modes to save energy.
to suit emerging fields. Need for customized memory structures  Gassner et al review some of the key query optimization tech-
and allocation strategies form the foundation for such studies. niques required by industrial-strength commercial query optimiz-
Copeland et al proposed SafeRAM [9], a modified DRAM model ers, using the DB2 family of relational database products as ex-
for safely supporting memory-resident databases alike disk-basedamples [14]. This paper provides insight into design of query cost
systems, and for achieving good performance. In PicoDBMS [25], plans and optimization using various approaches. In [21], Mane-
Pucheral et al present techniques for scaling down a database tgold studies the performance bottlenecks at the memory hierar-
a smart card. This work also investigates some of the constraintschy level and proposes a detailed cost plan for memory-resident
involved in mapping a database to an embedded system, especiallydatabases. Our cost plan and optimizer mimics the PostgreSQL
memory constraints and the need for a structured data layout.model [11,13]. We chose it due to its simple cost models and open
Anciaux et al [3] explicitly model the lower bound of the memory source availability.

Bus Others

16%

space that is needed for query execution. Their work focuses on
light weight devices like personal organizers, sensor networks, and
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Figure 2: DBMS architecture. _ )
Figure 3: Banked memory architecture.

Our work is unique in spite of the similarities that it has with a

few previous work that addresses the control of memory operating SYStems are already being used in high-end server systems [28] as

modes [12,19]. Even though the hardware techniques are similarwe” as Iqw-e_nd embgdded systems [29]. How_ev_er, t.he sys_tem that
at the basic operational level, it should be noted that our aim is W& consider is generic, and the proposed optimizations will apply
to support a database environment, which is different from typical to mgfst b_ank-organlzed_ memory systems. - For m;tance, systems
compiler and operating system tasks, and hence, such basic hard-Speclfled in [10,24] prowlde multiple ways of organizing banks and
ware techniques are not directly extendable. Also, to our knowl- 2/S0 the DRAM devices itself. Our proposed optimizations can be

edge, there is no prior work that address the high-level control of extended .to such systems as well. . N
memory operating modes from a database. To be specific, we re- Accgssmg a word of data would require activating the corre-
order queries for reducing energy consumption. The energy-awareSpondmg modules of the shown architecture. Such an organiza-

table-to-bank mapping and the energy-aware optimization that we tion allows one to pyt the unused bar!ks Into a low-power opeljating
propose are unique contributions as well. Moreover, our database isT'°d€: To keep the issue tractable, this paper bases the experimental

completely memory-resident, with the presence of a banked mem- "esults on a sequential database environment and does not consider

ory environment that gives more freedom for optimizations that are a mqltiprogessing environment (Iike transact_ion processing whic_h
not seen in typical database environments requires highly complex properties to be satisfied). We assume in

our experiments that there is just one module in a bank; hence, in
the rest of our discussion, we use the terms “bank” and “module”
interchangeably.

3. SYSTEM ARCHITECTURE
3.1 DBMS 3.3 Operating Modes

For our work, we modified the PostgreSQL DMBS to model a ~ We assume the existence of five operating modes for a memory
main-memory resident database system. The block diagram formodule: active, standby, nap, power-dowand disabled. Each
our setup is shown in Figure 2. The core components are derivedmode is characterized by ienergy consumptioand the time that
from PostgreSQL. The flow of our model is similar to PostgreSQL it takes to transition back to the active mode (termeslynchro-
except that the database is memory resident. A query is parsed forhization timeor resynchronization cojt Typically, the lower the
syntax and then sent to the rewrite system. The rewrite system use€nergy consumption, the higher the resynchronization time [28].
the system catalog to generate the query tree, which is then sent tol hese modes are characterized by varying degrees of the module
the optimizer. The query optimizer derives the cost of the query in components being active. The details of the power modes are dis-
multiple ways using the query tree and issues the best suited plancussed below:
to the query execution engine. We incorporate our software-based ® Active: In this mode, the module is always ready to perform a
techniques at the optimizer stage of the DBMS. These optimiza- 'ead or write operation. As the memory unit is ready to service any
tions are based on the cost that is derived for each of the query plangad or write request, the resynchronization time for this mode is
(the discussion pertaining to the modified cost model is deferred till the least (zero units), and the energy consumption is the highest.
Section 4). Based on the final query execution plan, the execution ® Standby:ln this mode, a few DRAM components are disabled
engine executes the query by using the database. The database f§sulting in significant reduction in energy consumption compared
entire|y memory resident and the memory is Organized in a banked to the active mode. The resynchronization time for this mode is typ'
format (elaborated in the following section). The executor recur- ically one or two memory cycles. Some state-of-the-art RDRAM
sively iterates the query plan and uses a per-tuple based Strateg)memories already exploit this mode by automatically transitioning
(pipelined execution, and not bulk processing) to project the output into the standby mode at the end of a memory transaction [28].
results. The proposed hardware optimizations are at the computer ® Nap: This mode can typically consume two orders of magni-
architecture level of the system. Since the base DBMS model is tude less energy than the active mode, with the resynchronization
similar to PostgreSQL, we do not elaborate each component in de-time being higher by an order of magnitude than the standby mode.
tail ([23] provides an elaborate discussion). Instead, we highlight ~® Power-Down:This mode provides another order of magnitude
our contributions, and modifications to DBMS (shown in blue in Saving in energy. However, the resynchronization time is also sig-
Figure 2) in the following sections. Overall, our strategies require hificantly higher (typically thousands of cycles).
modification to the query optimizer, memory hardware, and system ® Disabled: If the content of a module is no longer needed, it

software components. is possible to completely disable it (saving even refresh energy).
There is no energy consumption in this mode, but the data is lost.
3.2 Memory Model When a module in standby, nap, or power-down mode is re-
We use a memory system that contains a memory array orga-2cyrrent DRAMS [28] support up to six energy modes of operation
nized as banks (rows) and modules (columns), as is shown picto-with a few of them supporting only two modes. One may choose to
rially in Figure 3 for a 4<x 4 memory module array. Such banked vary the number of modes based on the target memory.
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configuration registers in the memory controller (see Fig-
ure 3) that are mapped into the address space of the CPU (similar
to the registers in the memory controller in [18]). Programming
these registers using one or more CPU instructions (stores) would
result in the desired power mode setting. This brings up the issue of
which CPU activity needs to issue such instructions. The memory
control registers could potentially be mapped into the user address
space directly, making it possible for the user application/DBMS

Standby \ ./ Nap \ -\ Disabled
(0.743 nJ) ) (O nJ)
to directly initiate the transitions. However, there are a couple of

Figure 4: Available operating modes and their resynchroniza- drawbacks with this approach. The first one is that powering down
tion costs. modules that are shared with other applications brings up the data

protection issue. The other problem could be that a given program

does not have much knowledge of the memory activity of other
quested to perform a memory transaction, it first goes to the ac- programs, and will thus not be able to accommodate more global
tive mode, and then performs the requested transaction. Figure 4optimizations. With two or more applications sharing a memory
shows possible transitions between these modes (the dynamic enmodule, the operating system may be a better judge of determining
ergy 3 consumed in a cycle is given for each node) in our model. the operating (power) modes. So, the other option is to make the
The resynchronization times in cycles (based on a cycle time of issuance of these instructions a privilege of the operating system,
3.3ns) are shown along the arrows (we assume a negligiblecost with the DBMS availing of this service via a system call. How-
for transitioning to a lower power mode). Note that this model is ever, since the focus of this paper is to explore the potential bene-
flexible enough to take in different values for energy consumption fits of memory module energy optimizations from the perspective
and resynchronization costs, and the default values used in our ex-of queries, we focus on a single program environment, and assume
periments are the ones given in Figure 4. that the registers are directly mapped into user space (thus, they can

While one could employ all possible transitions given in this be controlled by the DBMS).

figure (and maybe more), our query-directed approach only utilizes Regardless of which strategy is used, the main objective of em-
the transitions shown by solid arrows. The runtime (hardware- ploying such strategies is to reduce the energy consumption of a
based) approaches, on the other hand, can exploit two additionalquery when some memory banks are idle during the query’s ex-
transitions: from standby to nap, and from nap to power-down. ecution. That is, a typical query only accesses a small set of ta-
The energy values shown in this figure have been obtained from bles, which corresponds to a small number of banks. The remain-
the measured current values associated with memory modulesing memory banks can be placed into a low-power operating mode
documented in memory data sheets (for a 2.5V, 3.3ns cycle time,to save memory energy. However, it is also important to select
8MB modules) [28]. The resynchronization times have also been the low-power mode to use carefully (when a bank idleness is de-
obtained from the same data sheets. tected), as switching to a wrong mode either incurs significant per-

formance penalties (due to large resynchronization costs) or pre-

. vents us from obtaining maximum potential energy benefits.
3.4 System Support for Power Mode Setting Note that energy optimization is our context can be performed
Typically, several of the memory modules (that are shown in Fig- from two angles. Suitable use of low-power operating modes can

ure 3) are controlled by a memory controller which interfaces with reduce energy consumption of a given query execution. Also, the
the memory bus. The interface is not only for latching the data and query plan can be changed (if it is possible to do so) to further in-
addresses, but is also used to control the configuration and oper-crease energy benefits. In this work, we explore both these aspects.
ation of the individual modules as well as their operating modes.

For example, the operating mode setting could be done by pro-4., POWER MANAGEMENT SCHEMES

gramming a specific control register in each memory module (as In such a banked architecture. the memor

: . . , y can be managed
in RDRAM [28]). Next is the issue of how the memory controller through either of the following two approaches: (1) a runtime

can be t(.)Id. to transitio_n the operati_ng fT“’deS ofthe indivi_dual mod- approach wherein the hardware is in full control of operating mode
ules. Th;f |sdexr;:ored |3_twotways in tg!s p:tjlpbardwarer-]dlrected transitions; and (2) a query-directed scheme wherein explicit bank
approachandsoftware-directedquery-directelapproach. turn-on/off instructions are inserted in the query execution plan to

In tPhe hgrdvyare;jwected aé)lprokach, tf;]el’eSS.BfF-.Moni%orinhg. h invoke mode transitions. One also has the option of using both the
and Prediction Hardware block (as shown in Figure 3), whic approaches simultaneously.

monitors all ongoing memory transactions. It contains some pre-
diction hardware to estimate the time until the next access to a4.1 Hardware-Directed Schemes
memory bank and circuitry to ask the memaory controller to initi-

ate mode transitions (limited amount of such self-monitored power memory system to automatically transition the idle modules to

down is already present in current memory controllers, for exam- . ; :

. . o an energy conserving state. The problem then is to detect/predict
ple: Intel 82443BX ar.1dllntel 820 Ch'p Sets).. The specific hardvyare bank idleness and transition idle banks into appropriate low-power
depends on the prediction mechanism that is employed, and will be modes

discussed later in the paper.

In the query-directed approach, the DBMS explicitly requests 4,1.1 Static Standby Scheme
the memory controllqr_ to issue the control sign_als _f_or a Specific g firgt approach is a per-access optimization. Most of the re-
module’s mode transitions. We assume the availability of a set of ... hRAMSs allow the chips to be put to standby mode immedi-

3We exclusively concentrate on dynamic power consumption that ately after each reference [28]. After a read/write access, the mem-
arises due to bit switching, and do not consider the static (leakage)ory module that gets accessed can be placed into the standby mode
power consumption [26] in this paper. in the following cycle. Such schemes are already available in most

We explore two hardware-directed approaches that allow the
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thetable-to-bank mapping#, can have a very good idea about the

bank access patterns. Then, using this information, it can proac-
resynehaoun tively transition memory banks to different modes. In this section,
we elaborate on each step in the particular query-directed approach
that we implemented, which includes customized bank allocation,
query analysis, and insertion of bank turn-on/off instructions.

resynch, oy

idle resynch,_,

4.2.1 Bank Allocation

In the case of software-directed scheme, the table allocation is
handled by the DBMS. Specifically, the DBMS allocates the newly-
created tables to the banks, and keeps track of the table-to-bank
DRAM systems, and are usually exploited by applications during Mappings. When a “create table” operation is issued, the DBMS
page p|acement' We refer to this scheme as the static Standby modgrst CheCkS fOr fl’ee Space. If there iS Suﬁicient fl’ee Space aVailable
in the rest of our discussion. Note that, while this scheme is not in @ single bank, the table is allocated from that bank. If a bank is
very difficult to implement, it may lead to frequent resynchroniza- not able to accommodate the entire table, the table is split across
tions, which can be very harmful as far as execution cycles are con-multiple banks. Also, while creating a new table, the DBMS tries
cerned. The rest of the schemes that we propose aim to minimizet0 reuse the already occupied banks to the highest extent possible;
the expensive resynchronization costs that are seen in such stati¢hat is, it does not activate a new bank unless it is necessary (note

Figure 5: Dynamic threshold scheme.

schemes. that the unactivated (unused) banks —i.e., the banks that do not hold
] any data — can remain in the disabled mode throughout the execu-
4.1.2 Dynamic Threshold Scheme tion). However, it also tries not to split tables excessively. In more

namics of the memory subsystem. The rationale behind this ap- allocation, the table boundaries are checked first using the available
proach is that if a memory module has not been accessed in a while SPace in that bank. If a bank is more than two-thirds full with the
then it is not likely to be needed in the near future (that is, inter- table data, the rest of the bank is padded with empty bits and the
access times are predicted to be long). A threshold is used to de-New table is created using pages from a new bank. Otherwise, the
termine the idleness of a module after which it is transitioned to a table is created beginning in the same bank. Irrespective of whether
|0W_power mode_ More Speciﬁca”y, we propose a Scheme Where the table is created on a new bank or nOt, the DBMS creates a new
each memory module is put into a low-power state with its idle table-to-bank mapping entry after each table creation.
cycles as the threshold for transition. In hardware-directed schemes, we avoid these complexities in-
The schematic of our dynamic threshold scheme is depicted in Volved in bank allocation as we assume that there_ is absolutely no
Figure 5. Afteridlesndny Cycles of idleness, the corresponding Software control. Consequently, in the hardware-directed schemes,
module is put in the standby mode. Subsequently, if the module We use thesequential first touch placement policyhis policy al-
is not referenced for anothitlenap cycles, it is transitioned to the ~ locates new pages sequentially in a single bank until it gets com-
nap mode. Finally, if the module is not referenced for a further Pletely filled, before moving on to the next bank. Also, the table-
idlegown cycles, it is placed into the power-down mode. Whenever to-bank mapping is not stored within the DBMS since the mode
the module is referenced, it is brought back into the active mode in- control mechanism is handled by the hardware.
curring the corresponding resynchronization costs (based on what . . .
low-power mode it was in). It should be noted that even if a sin- 4.2.2 Estimating Idleness and Selecting the Appro-
gle bank experiences a resynchronization cost, the other banks will priate Low-Power Mode
also incur the corresponding delay (to ensure correct execution). It should be emphasized that the main objective of our query-
Implementing the dynamic mechanism requires a set of countersdirected scheme is to identify bank idleness. As explained above,
(one for each bank) that are decremented at each cycle, and set to @ order to achieve this, it needs table-to-bank mapping. How-
threshold value whenever they expire or the module is accessed. Aever, this is not sufficient as it also needs to know when each
zero detector for a counter initiates the memory controller to trans- table will be accessed and how long an access will take (i.e., the
mit the instructions for mode transition to the memory modules. query access pattern). To estimate this, we need to estimate the
Another alternative to this dynamic scheme would be one based onduration of accesses to each table, which means estimating the
the adaptive threshold wherein each module adaptively learns thetime taken by the database operations. Fortunately, the current
threshold for transition. Our analysis revealed that the hardware DBMSs already maintain such estimates for query optimization
implementation costs of such a scheme would be extremely high. purposes [11, 14,27, 30, 31]. More specifically, given a query, the
Consequently, we do not consider such complex implementations optimizer looks at the query access pattern using the generated

in this paper. query plan. The inter-access times are calculated using the query
. plan. A query plan elucidates the operations within a query and
4.2 Software-Directed Scheme also the order in which these operations access the various tables

It is to be noted that a hardware-directed scheme works well in the database. Even in current databases, the query plan gen-
independent of the DBMS and the query optimizer used. This is erator estimates access costs using query plans [11]. We use the
because the idleness predictors are attached to the memory banksame access cost estimation methodology. These access costs are
and monitor idleness from the perspective of banks. In contrast, measured in terms of page (block) fetches. In our memory-resident
a query-directed scheme gives the task of enforcing mode transi-database case, a page is basically the block that is brought from
tions to the query. This is possible because the query optimizer, memory to the cache. For instance, the cost of sequential scan is
once it generates the execution plan, has a complete informationdefined as follows (taken from [11]):
about the query access patterns (i.e., which tables will be accesse@osteqscan = Noiocks + CPU * Niyples
and in what order, etc). Consequently, if the optimizer also knows
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Here, Npjocks iS the number of data blocks retrievelples ->scan A

is the number of output tuples, a@PU is the fudge factor that ->Put A=ON
adjusts the system tuple-read speed with the actual memory hi- B deine
erarchy data-retrieval speed. Usually, optimizers use the above p2 ->scan A (9000 cycles) -> Put A=OFF
cost metric to choose between multiple query plan options before - > aggregate (20 cycles) ->scan B
. R . - >scan B (9000 cycles) - > Put B=ON
issuing a query. Thus, when a cost is attached to each page (block) b1 - >scan A (9000 cycles) ->Put A=OFF
read/write operation, an estimate of the access time is obtained as ->scan A
follows: - > Put A=ON

(B is already OFF)
Cosbiock fetch=T cycles

Costeqgscan = Npjocks* T + CPU x Nyyples* %s* T 0 (i)

Inthese expressiong,is the delay in cycles to fetch ablock from  Figure 6: Example application of the query-directed scheme.
the memory. Thus, our cost plan is projected in terms of access (i) The original execution plan. (b) The augmented execution
cycles. We extend this to other database operations like JOIN andplan.
AGGREGATE based on the cost models defined in [11, 13].

Given a query, we break down each operation within the plan (in-
cluding sub-plans) and estimate the access cost (in cycles) for eachA is done first, followed by a scan of table B. The result of these
primitive operation. Our objective in estimating the per-operation operations are then used by an aggregate operation. Another (inde-
time in cycles is to eventually identify the inter-access times of op- pendent) scan operation on table A follows the aggregate operation.
erations in the query (and hence, to put the banks that hold unusedThe per step access costs are also shown. From the generated query
tables to low-power modes). There are table accesses associateglan, it is evident that table A is not accessed between point P1 and
with each operation, and bank inter-access times depend on the tapoint P2. Once the results are extracted after the scan at point P1,
ble inter-access times. A query has information of the tables that the banks that hold table A can be put to a low-power mode, and the
it accesses. Thus, knowing the inter-access time for each operatiorbanks that hold table B can be activated for data extraction. This is
leads to the inter-access times for each table as well. A table isillustrated in Figure 6(ii) using place-markers for tables A and B.
mapped to certain banks, and the table-to-bank mapping is avail-Banks holding Table A are reactivated at point P2 (banks of Table
able in the query optimizer. B remain off).

Consequently, if the table inter-access tim& jsand the resyn-

chronization time il (assuming less than), then the optimizer 5. EXPERIMENTAL EVALUATION OF
can transition the associated modules into a low-power mode (with HARDWARE-DIRECTED AND QUERY—

a unit time energy oEp) for the initial T — Tp period (which
would consume a totdll — Tp]Ep energy), activate the module to DIRECTED SCHEMES

bring it back to the active mode at the end of this period following  |n this section, we study the potential energy benefits of our hard-
which the module will resynchronize before it is accessed again ware and software-directed schemes. We first explain the exper-
(consumingTpE, energy during the transition assuming tEatis imental setup that we used in our simulations. Then, the set of
the unit time energy for active mode as well as during the transition queries that we used to study our schemes is introduced. After that,
period). As a result, the total energy consumption with this transi- e present energy consumption results. While we discuss the en-
tioning is [T — Tp|Ep + TpEa without any resynchronization over-  ergy benefits of using our schemes, we also elaborate the overheads
heads while the consumption would have be®t, if there had associated with supporting each of our schemes.

been no transitioning (note that this calculation considers only the

idle period). The DBMS optimizer evaluates all possible choices 5.1  Setup

(low-power modes) based on corresponding per cycle energy costs

and resynchronization times, and table inter-access time to pick up 5.1.1  Simulation Environment

the best choice. Note that the DBMS can select different low power  As mentioned before, the query-directed schemes are imple-

modes for different idle periods of the same module depending on mented in the query optimizer of the memory database model

the duration of each idle period. Specifically, we use the most en- gjaporated in Section 3.1. We interface this DBMS to an enhanced
ergy saving low-power mode without increasing the original query yersion of the SimpleScalar/Arm simulator [4] to form a com-

execution time (i.e., when the original idleness is over, the bank pjete database system. The intermediate interface (invoked by

should be up in the active mode). DBMS) provides a set of operating system calls (on Linux kernel
. . 2.4.25), which in turn invokes the SimpleScalar simulator. The
4.2.3 Inserting Bank-On/Off Instructions SimpleScalar simulator models a modern microprocessor with a

The last part of the software-directed scheme is to insert explicit five-stage pipeline: fetch, decode, issue, write-back, and commit.
(operating) mode transitioning instructions in the query execution We implemented our hardware techniques within the framework of
plan. For this, we introduce markers (place holders) which are the sim-outorder tool from the SimpleScalar suite, extended with
interpreted at the low-level (interpreted later by our memory con- the ARM-ISA support [4]. Specifically, we modeled a processor
troller, which actually sets the corresponding low-power modes). architecture similar to that of Intel StrongARM SA-1100. The
This is done so that the query execution engine can issue themodeled architecture has a 16KB direct-mapped instruction cache
query without much performance overhead, and with the same and a 8KB direct-mapped data cache (each of 32 byte-length). We
transparency. also model a 32-entry full associative TLB with a 30-cycle miss

As an example, consider the following. Let tables A and B each latency. The off-chip bus is 32 bit-wide. For estimating the power
have 1000 records, each record being 64 bytes. Consider the quergonsumption (and hence, the energy consumption), we use the
plan depicted in Figure 6(i), taken from PostgreSQL. The query Wattch simulator from Princeton University [8].
plan reads from bottom to top (P2 follows P1). A scan of table  Our banked memory model is based on [12,19]. We use values



Table 1: The two classes of queries considered for our experiments.

Source Query | Description Tables Fields (# characters)
. aname =25
P1 Simple name and address lookup aaddress = 40
i in di i acity =25
gt'gee”tﬁfg P2 Lookup in directory of fiends |\, 5rESSBOOK populated with 1.3 | 4 offcs phone = 15
asimple P3 Lookup in directory of colleagues million entries, 50% subset of FRIENDS a_home phone = 15
organizer and friends and 25% subset of COLLEAGUES eLmob?Ie phone = 15
aemail = 45
aweb =150
a specialnotes = 150

from Figure 4 for modeling the delay (transition cycles) in activa- similar to P2. Figure 9 presents the “colleagues” view and the query
tion and resynchronization of various power-states. Our simula- P3. The intermediate tables and results during query execution are
tions account for all performance and energy overheads incurredalso stored in the memory.

by our schemes. In particular, the energy numbers we present in-

clude the energy spent in maintaining the idleness predictors (in 5.1.3 Default Parameters

the hardware-directed scheme) and the energy spent in maintain- gqr gur experiments, we populate the organizer database with
ing the table-to-bank mappings (in the query-directed scheme), andy 3 mjllion records based on parameters specified in Table 1.

in fetching and executing the bank turn-on/off instructions (in the For dynamic threshold scheme, we use 10, 100 and 10,000 cycles
query-dire(_:ted scheme). The predictors were implemented USingasidIesmdby idlenap, andidlegown, respectively. For all schemes,
decrementing counters (equal to the number of banks) and zero dene panks are in power-down mode before their first access. On/Off
tector based on the discussion in Section 4.1. The predictors arejpsiryctions are inserted based on the inter-access times of table.
syn(_:hronlzed Wlt_h th system cycles to maintain consngte_ncy of OP- We use the same cycles asittiestndby idlenap, andidlegown for
eration, and to minimize the overheads. The query optimizer main- jnserting instructions. As an example, consider the inter-access (T)
tains the table-bank mappings, which is modeled as an array list for of 5 taple as 25 cycles, which lies between tendby and 100
|nst§mt access. The .bank turn-on/off |nstructlgns are executed by(idlenap) cycles. We insert an On/Off instruction at the beginning
setting hardware registers, and hence, these instructions are modgy¢ T tq put a table to standby mode for 24 cycles, taking into con-
eled as register operations using the existing instruction set archi-sigeration the resynchronization period of 1 cycle as well. Similar
tecture. We present two important statistics in our experimental tochnique is applied for inter-access times that fall in between other
results. Energy consumptionorresponds to the energy consumed power modes.

in the memory system (including the above mentioned overheads). A single page transfer time is needed for access cost calcula-
We also present statistics about fieformance overheafie.,in- tion in software-directed scheme. We derive this by executing the
crease in execution cyclefor each of our schemes. This overhead penchmark queries on the SimpleScalar simulator (with the SA-
includes the cycles spent in resynchronization (penalty cycles are 1100 model) and by studying the cycle times for transferring a data
modeled based on values in Figure 4) as well as the cycles spenfy|ock from memory to the cache. For all experiments, the default
(in thg CPQ datapath) in fetchlng and executing the turn-on/off in- configuration is the 512MB RDRAM memory with 8MB banks.
structions (in the query-directed scheme). The core benchmark characteristics pertaining to the database and
memory are shown in Table 2. These characteristics were derived
after running the benchmarks without incorporating any of our pro-

51.2 Queries d optimizations (with the default optimizati f Post d
i . . posed optimizations (wi e default optimizations of Postgres, de-
Memory-resident databases run queries that are different from fault parameters of Simple Scalar, and default bank sizes). The

the typical database queries as seen in typical DBMS. The set of.

queries that we consider are representative of applications that ex_lnstru_ctlons e_xecgted (in million) indicate the total number of in-
. ) 8 structions retired in the system. The number of memory reference
ecute on handheld devices. The typical operations that are per-

formed on an organizer were imitated on our setup (we name the

queries P1, P2, P3). The first query involves a simple address
lookup using a ‘NAME’ as input. The SQL for query P1is shownin
Figure 7. Recent organizers [16,22] provide an ordered view of the
underlying addressbook database. For instance, organizers provide
the creation of folders. A “friends” folder can be a collection of
personnel with a tag set as “friend” in the addressbook. We defined
folder as a restrained/customized view of the same database (ad-
dress book). Intuitively, query P2 strives to do a lookup of friends
living in a particular city. A person interested in visiting a city can
run this query before he/she leaves for that place. The “friends”
view and hence the query P2 is defined in Figure 8. Query P3 com-
bines views (folders). For this we defined a new folder called “col-
leagues”. P3 aims to find friends and/or colleagues whose names
start with an a, living in a particular CITY. The “friends” view is
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SELECT
a_name,
a_ address,
a_city,
a_office_phone,
a_home_phone,
a_mobile_phone,
a_email,
a_web,
a_specialnotes
FROM
addressbook
WHERE
a_name = [NAME];

Figure 7: SQL for query P1



Table 2: Benchmark characteristics

Benchmark Instructions Executed # of Loads and Stores Average Bank Idle Times Total DB Size
(million) (memory references) (ms)

P1 1.796 503403 1.7

P2 1.845 614528 3.4 637 MB

P3 1.895 727017 3.74

CREATE VIEW friends AS
SELECT
a_name,
a_address,
a_city,
a_home_phone,
a_mobile_phone
FROM
addressbook
WHERE
a_tag = [FRIEND]
GROUP BY
a_name;

P2:
SELECT
a_address,
a_home_phone,
a_mobile_phone
FROM
friends
WHERE
a_city = [CITY]
GROUP BY
a_name;

Figure 8: SQL for query P2

CREATE VIEW colleagues AS

SELECT

a_name,

a_address,
a_city,
a_office_phone,
a_mobile phone,
a_email
FROM

addressbook
WHERE

a_tag = [COLLEAGUE]
GROUP BY

a_name;

P3:
SELECT
a_address,
a_home_phone,
a_office_phone,
a_mobile phone,
a_email
FROM
friends, colleagues
WHERE
a_city = [CITY]
GROUP BY
a_name = [ax*];

Figure 9: SQL for query P3
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are based on the total number of loads and stores issued to the sys-
tem exclusively from the queries. The average bank idle times in-
dicate the total time the memory bank remains unused throughout
query execution (approximately 35%). This clearly indicates that
there is ample amount of energy that is wasted in the system, and
there is room for optimizations. In the following section, we in-
corporate our hardware and software techniques, and then study
the energy implications of those schemes on this default setup. We
also present the performance overheads and study the sensitivity of
our schemes to various system parameters.

5.2 Query Energy Evaluation

Figure 10 shows th@ormalizedmemory energy consumption
for our hardware-directed schemes. While presenting our results,
we normalize all values with respect to the base case, which is the
version withno query optimizations. “Static Standby” in Figure 10
indicates the static standby scheme. We see that, by simply putting
the modules to standby mode after each access, this scheme is able
to achieve a 37% reduction reduction on the average. These re-
sults also depend on the number of tables manipulated by queries.
If multiple tables are scattered across various banks, there is a po-
tential of placing more memory banks into low-power modes. In
the case of handheld queries, there is just one table scattered across
multiple banks, which makes putting modules to a low-power mode
more difficult as modules are tightly connected, as far as query ac-
cess patterns are concerned. We also observe from Figure 10 that
the dynamic threshold scheme further extends these improvements
through its ability to put a bank into any of the possible low-power
modes. On an average, there is a 43% energy improvement in hand-
held queries.

Figure 10 also shows the normalized energy behavior of our
query-directed scheme (denoted On/Off Instr). It is evident that
this scheme outperforms the best hardware-directed scheme (by an
average of 10%) in saving the memory energy consumption. This
is because of two main reasons. First, when a bank idleness is
estimated, the query-directed scheme has a very good idea about
its length (duration). Therefore, it has a potential of choosing the
most appropriate low-power mode for a given idleness. Second,
based on its idleness estimate, it can also preactivate the bank. This
eliminates the time and energy that would otherwise have spent
in resynchronization. Consequently, the average memory energy
consumption of the query-directed scheme is just 44% of the un-
optimized version (i.e., an additional 13% improvement over the
hardware schemes). The last bar (marked as “History-Based”) in
Figure 10 will be discussed later in the paper.

5.3 Bank Idleness Analysis

To better understand the energy behavior of memory banks, we
identified the most widely-used low-power mode. Thatis, we found
the mode in which a bank spends most of its time. For this, we
profiled the per-cycle energy behavior of each benchmark. Con-
sidering the total execution cycles, we found that on an average a
given application spends only 66% of its time in active mode in the
memory. For the rest of the 44% of the total cycles, the memory re-
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Figure 12: The performance overhead involved in supporting
our schemes. There is an average overhead of 11.9%, 10.6%,
and 2.5% for standby, dynamic and on/off schemes, respec-
tively, over the unoptimized version.

Figure 10: Energy consumption of hardware and software-
directed modes. The values shown are normalized to the ver-
sion with no energy optimizations.

Powerdown and is resynchronized in another access that follows immediately.
29.5%

Sk I As a result, the performance worsens as bad as 13% for the static
standby case. Note that a 13% overhead does not mean that there is

O’f';f,; 13% memory accesses in the program. This overhead includes the
Standby total resynchronization cycles incurred while supporting the static
4.3% standby scheme. It is possible that a bank is accessed in succes-

sive cycles, in which case the banks are not turned off to low-power
modes (which implies there could be more memory references than
the percentage of overheads). For the dynamic threshold scheme,
the performance overhead is slightly better since the banks are not
blindly put to a low-power mode after each access. This verifies our
prediction that when a module goes to low-power mode, it would
either remain for a while in that mode or may even be transitioned
into a lower power mode. The query-directed scheme has the least
overhead €3%). The main reason for this is the ability of preacti-
vating a bank before it is actually accessed. In addition, the num-
ber of bank turn on/off instructions inserted are less (average of
2%). Therefore, considering both performance and energy results,
one may conclude that the query-directed scheme is better than the
hardware-directed schemes. However, it is also to be noted that the
query-directed scheme requires access to the query optimizer. In
comparison, the hardware-based schemes can work with any query
optimizer. Therefore, they might be better candidates when it is not
possible/profitable to modify the query plan.

Figure 11: Utilization of various operating modes during query
execution. Modules are active most of the time. Power-down is
the most frequently-used mode. The threshold of transition is
10, 100, 10000 cycles for standby, nap and power-down respec-
tively.

mains idle. Thisis illustrated in Figure 11 for the hardware-directed

scheme with 10, 100, 1000 cycles as thresholds for transition to
the standby, nap and power-down modes, respectively. An inter-
esting note is that the power-down mode is the most widely-used
low-power mode, and nap is the least frequently used. This proves
that when an application goes to the nap mode, it is more likely to

continue on to the power-down mode. This also explains why the
static standby mode fails to exhibit good energy behavior as com-
pared to the dynamic threshold scheme (which is able to utilize the
most preferred low-power mode). In this case, it is seen that the T :
nap mode is insignificant in contributing towards energy savings. 5.5 SenSItIVIty AnaIySIS

Thus, power-down contributes the maximum benefits, and is also We now study the sensitivity of our schemes to various key pa-
the most sought low-power mode of applications. rameters in the simulations.

5.4 Performance Overhead Analysis 5.5.1 Number of Banks

Our techniques are very effective in reducing the memory energy  We varied the bank size of the memory, keeping the total mem-
consumption. As mentioned earlier, transitions from the low-power ory capacity the same. When the size of a bank is increased, the
modes to the active mode come with an overhead of resynchroniza-number of banks decreases (for a fixed total memory size). This
tion (in terms of both performance and energy). The energy values implies that more data fits into a bank, that is, a table fits into lesser
reported in previous section take into consideration the extra energynumber of banks. This reduces the opportunity to put more banks
needed to activate the modules as well. In this part, we quantify into a low-power mode. Figure 13 illustrates this by showing the
the basic performance overheads that are faced in supporting ouraverage energy savings for our benchmarks. When the bank size is
schemes. increased from 4MB to 32MB, the savings in energy starts to drop.

Figure 12 shows the performance overheads for both the hard-Also, too many smaller banks lead to increased resynchronization
ware and software-directed schemes. The static standby scheméimes. So, care should be taken to choose a fitting bank size for
has the maximum overhead, which is expected. This is especially a given system; but, this architectural design issue is beyond the
the case when queries generate frequent memory accesses. Thscope of this paper.
memory is brought down to the standby mode after each access,
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24.4% is tightened to 100, 250 and 500 cycles (for standby, nap and

power-down), the utilization of power-modes also changes. In-
termediate low-power modes are very less utilized.

4AMB 8MB 16MB 32MB

Figure 13: Impact of bank size on the energy consumption. As

bank sizes increase (number of banks reduce), there is less sav-  bank inter-access time. History-based scheme requires a mode

ings in energy. assignment table that contains the maximum and minimum values
of the estimated inter-access time for which a particular mode is
optimum. This table can easily be pre-constructed based on the

5.5.2 Idleness Threshold energy values and resynchronization times for the different modes

In our next set of experiments, we tighten the threshold of Sec- available, and needs to hold only as many.entries as energy mo@es.
tion 5.3 and study the alteration in the behavior of applications. Once the target power mode is determined, the corresponding
Figure 14 shows the behavior of our queries when the threshold resynchronization time is subtracted from the inter-access time
for standby, nap and power-down transition is tightened to 100, estimate, to determlne_ the amount _of time to spe_nd in that mode.
250 and 500 cycles, respectively. When this is compared with Fig- Ve implemented this scheme using our experimental setup, and
ure 11, it is evident that the usage of standby mode decreases drasStudied its energy and performance behavior. The last bar of Fig-
tically. Also, when a memory module enters the standby mode, it Uré 10 shows the performance of history-based scheme. There is
has a high probability of getting transitioned all the way to power- an average 35% reduction for organizer queries. However, the
down mode. Thus, the behavior is dependent on the chosen threshiMprovements obtained from our hardware and software-directed
old. Such techniques of tightening the thresholds can be deployedSchemes of Section 4.1 are better than history-based scheme. This
to reduce the energy consumption. For instance, if the power- IS due to the following reason. We found that it is very difficult to
down mode is the most frequently-used mode (and if there is a predict/reestimate the bank inter-access times accurately. This is
high probability that when a module enters standby, it will get partly due to our particular Worqua_ds. In particular, the decision
transitioned all the way), modules could be transitioned directly to SUPPOrt database workloads exhibit complex memory access be-
power-down mode using turn-on/off instructions instead of using havior, and it is not easy to extract explonable patterns. While one
hardware-directed mechanisms. However, it should also be noted™2y argue that a more sophisticated predictor could do better, such
that the resynchronization times could increase if the module is fre- @ Predictor would also have substantial energy and performance
quently transitioned back to active mode from power-down mode. €OSt as well.

It should be noted that changing the threshold affects the behav-

ior of the entire system. If the standby threshold is too low, it 6. CONCLUDING REMARKS

leads to many resynchronizations. If is too h_igh, nap and power- This paper is an attempt to study the potential of employing

down modes are _usv_sq more fr_equently, making the impact of the low-power operating modes to save memory energy during query

standby mode insignificant. This is the case for all thresholds. (_:Qn- xecution. We propose hardware-directed and software-directed

sequently, care shpuld be taken to ensure that all modes are utilize query-directed) schemes that periodically transition the memory

properly in dynamic schemes. to low-power modes in order to reduce the energy consumption

. . of memory-resident databases. Our experimental evaluations using

5.6 Hlstory-Based Adaptlve Scheme two sets of queries clearly demonstrate that query-directed schemes
There are two main problems associated with the dynamic perform better than hardware-directed schemes since the query op-

threshold scheme. First, we gradually decay from one mode to timizer knows the query access pattern prior to query execution,

another (i.e., to get to power-down, we go through standby and and can make use of this information in selecting the most suitable

nap), though one could have directly transitioned to the final mode mode to use when idleness is detected. This scheme brings about

if we had a good estimate. Second, we pay the cost of resynchro-68% reduction in energy consumption. In addition, the query-

nization on a memory access if the module has been transitioned.directed scheme can also preactivate memory banks before they are

To tackle this problem, we also implemented and conducted ex- actually needed to reduce potential performance penalty. Overall,

periments with zhistory-based schemén this scheme, we try to  we can conclude that a suitable combination of query restructuring

estimate the bank inter-access time, directly transition to the bestand low-power mode management can bring large energy benefits

energy mode, and activate (resynchronize) the module so that itwithout hurting performance.

becomes ready by the time of the next estimated access. While

one could use sophisticated history information to estimate bank

inter-access time, in this paper, we use a relatively simple mecha-7' REFERENCES
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