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ABSTRACT
The tremendous growth of system memories has increased the ca-
pacities and capabilities of memory-resident embedded databases,
yet current embedded databases need to be tuned in order to take
advantage of new memory technologies. In this paper, we study
the implications of hosting memory resident databases, and pro-
pose hardware and software (query-driven) techniques to improve
their performance and energy consumption. We exploit the struc-
tured organization of memories, which enables a selective mode of
operation in which banks are accessed selectively. Unused banks
are placed in a lower power mode based on access pattern infor-
mation. We propose hardware techniques that dynamically control
the memory by making the system adapt to the access patterns that
arise from queries. We also propose a software (query-directed)
scheme that directly modifies the queries to reduce the energy con-
sumption by ensuring uniform bank accesses. Our results show
that these optimizations could lead to at the least 40% reduction in
memory energy. We also show that query-directed schemes better
utilize the low-power modes, achieving up to 68% improvement.

Categories and Subject Descriptors
B.3.1 [Memory Structures]: Semiconductor Memories—DRAM;
H.2.2 [Database Management]: Physical Design—Access Meth-
ods; H.3.2 [Information Storage and Retrieval]: Information
Storage

General Terms
Design, Management

Keywords
database, DRAM, energy, hardware schemes, layouts, map-
ping,power consumption, query-directed energy management,
query optimization
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1. INTRODUCTION
Memory-resident databases (also called in-memory databases

[6]) are emerging to be more significant due to the current era of
memory-intensive computing. These databases are used in a wide
range of systems ranging from real-time trading applications to IP
routing. With the growing complexities of embedded systems (like
real-time constraints), use of a commercially developed structured
memory database is becoming very critical [5]. Consequently,
device developers are turning to commercial databases, but ex-
isting embedded DBMS software has not provided the ideal fit.
Embedded databases emerged well over a decade ago to support
business systems, with features including complex caching logic
and abnormal termination recovery. But on a device, within a
set-top box or next-generation fax machine, for example, these
abilities are often unnecessary and cause the application to ex-
ceed available memory and CPU resources. In addition, current
in-memory database support does not consider embedded system
specific issues such as energy consumption.1

Memory technology has grown tremendously over the years,
providing larger data storage space at a cheaper cost. Recent
memory designs have more structured and partitioned layouts
in the form of multiple chips, each havingmemory banks[28].
Banked memories are energy efficient by design, as per-access
energy consumption decreases with decreasing memory size (and
a memory bank is typically much smaller compared to a large
monolithic memory). In addition, these memory systems provide
low-power operating modes,which can be used for reducing the
energy consumption of a bank when it is not being used. An
important question regarding the use of these low-power modes
is when to transition to one once an idleness is detected. Another
important question is whether the application can be modified to
take better advantage of these low-power modes. While these
questions are slowly being addressed in architecture, compiler, and
OS communities, to our knowledge, there has been no prior work
that examines the energy and performance behavior of databases
under a banked memory architecture. Considering increasingly
widespread use of banked memories, such a study can provide
us with valuable information regarding the behavior of databases
under these memories and potential modifications to DBMSs
for energy efficiency. Since such banked systems are also being
employed in high-end server systems, banked memory friendly

1Designers often use the term “power” almost interchangeably with
”battery life”. However, in embedded devices, one needs to focus
on energy consumption rather than power, since there is a limited
supply of energy in a battery, even though the power a battery is re-
quired to supply can vary over a substantial range during the course
of its life. In this study, our focus is on energy consumption.
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database strategies can also be useful in high-end environments to
help reduce energy consumption.

Our detailed energy characterization of a banked memory ar-
chitecture that runs a memory-resident DBMS showed that nearly
59% of overall energy (excluding input/output devices) in a typical
query execution is spent in the main memory, making this com-
ponent an important target for optimization (see Figure 1). More-
over, for any system, memory power and energy consumption have
become critical design parameters besides cost and performance.
Based on these observations, this paper evaluates the potential en-
ergy benefits that memory-resident database queries can achieve by
making use of banked memory architectures supported with low-
power operating modes. Since each memory bank is capable of op-
erating independently, this opens up abundant avenues for energy
and performance optimizations.

In this paper, we focus on a banked memory architecture and
study potential energy benefits when database queries are executed.
To see whether query execution can make use of available low-
power modes, we study both hardware and software techniques.
The hardware techniques predict the idleness of memory banks
and switch the inactive (idle) banks (during query execution)
to low-power operating modes. We also present a query-based
memory energy optimization strategy, wherein the query plan is
augmented by explicit bank turn-off/on instructions that transition
memory banks into appropriate operating modes during the course
of execution based on the query access pattern. We experimen-
tally evaluate all the proposed schemes and obtain their energy
consumptions using an energy simulator. Our experiments using
a set of queries suitable for handheld devices clearly indicate that
both hardware-based and query-directed strategies save significant
memory energy.

Apart from providing useful input for database designers, our re-
sults can also be used by hardware designers to tune the behavior
of low-power modes so that they handle query access patterns bet-
ter. Similar to the observation that creating a lightweight version
of a disk-based database will not serve as a suitable in-memory
database, our belief is that taking an in-memory database system
and using it on a banked architecture without any modification may
not generate the desired results. Therefore, the results presented in
this work also shed light on how database design and memory ar-
chitecture design interact with each other.

The remainder of this paper is organized as follows. Section 2
presents related work. Section 3 elaborates on the memory database
that we built and also on the memory banking scheme that we em-
ploy for our experiments. Section 4 presents in detail the proposed
hardware and query-directed energy optimization techniques. The
results of our energy evaluation of these schemes are discussed in
Section 5. Our experiments also account for the performance over-
head incurred in supporting our schemes. Finally, Section 6 sum-
marizes the results.

2. RELATED WORK
In the past, memory has been redesigned, tuned or optimized

to suit emerging fields. Need for customized memory structures
and allocation strategies form the foundation for such studies.
Copeland et al proposed SafeRAM [9], a modified DRAM model
for safely supporting memory-resident databases alike disk-based
systems, and for achieving good performance. In PicoDBMS [25],
Pucheral et al present techniques for scaling down a database to
a smart card. This work also investigates some of the constraints
involved in mapping a database to an embedded system, especially
memory constraints and the need for a structured data layout.
Anciaux et al [3] explicitly model the lower bound of the memory
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Figure 1: Breakup of the energy consumption for various sys-
tem components after executing typical queries on a memo-
ryresident DBMS system. The results were obtained by exe-
cuting the queries on a system that simulates an embedded de-
vice with StrongARM SA-1100 processor and RDRAM mem-
ory (detailed discussion of our simulation environment and ex-
perimental results can be found in Section 5.1).

space that is needed for query execution. Their work focuses on
light weight devices like personal organizers, sensor networks, and
mobile computers. Boncz et al show how memory accesses form a
major bottleneck during database accesses [7]. In their work, they
also suggest a few remedies to alleviate the memory bottleneck.
In [32].

An et al analyze the energy behavior of mobile devices when spa-
tial access methods are used for retrieving memory-resident data
[2]. They use a cycle accurate simulator to identify the pros and
cons of various indexing schemes. In [1], Alonso et al investi-
gate the possibility of increasing the effective battery life of mo-
bile computers by selecting energy efficient query plans through
the optimizer. Although the ultimate goal seems the same, their
cost plan and the optimization criterion are entirely different from
our scheme. Specifically, their emphasis is on a client-server model
optimizing the network throughput and overall energy consump-
tion. Gruenwald et al propose an energy-efficient transaction man-
agement system for real-time mobile databases in ad-hoc networks
[15]. They consider an environment of mobile hosts. In [20],
Madden et al propose TinyDB, an acquisitional query processor
for sensor networks. They provide SQL-like extensions to sensor
networks, and also propose acquisitional techniques that reduce the
power consumption of these networks. It should be noted that the
queries in such a mobile ad-hoc network or a sensor environment
is different from those in a typical DBMS. This has been shown
by Imielinksi et al in [17]. In our model, we base our techniques
on a generic banked memory environment and support complex,
memory-intensive typical database operations. There are more op-
portunities for energy optimizations in generic memory databases,
which have not yet been studied completely. The approach pro-
posed in this paper is different from prior energy-aware database
related studies, as we focus on a banked memory architecture, and
use low-power operating modes to save energy.

Gassner et al review some of the key query optimization tech-
niques required by industrial-strength commercial query optimiz-
ers, using the DB2 family of relational database products as ex-
amples [14]. This paper provides insight into design of query cost
plans and optimization using various approaches. In [21], Mane-
gold studies the performance bottlenecks at the memory hierar-
chy level and proposes a detailed cost plan for memory-resident
databases. Our cost plan and optimizer mimics the PostgreSQL
model [11,13]. We chose it due to its simple cost models and open
source availability.
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Figure 2: DBMS architecture.

Our work is unique in spite of the similarities that it has with a
few previous work that addresses the control of memory operating
modes [12, 19]. Even though the hardware techniques are similar
at the basic operational level, it should be noted that our aim is
to support a database environment, which is different from typical
compiler and operating system tasks, and hence, such basic hard-
ware techniques are not directly extendable. Also, to our knowl-
edge, there is no prior work that address the high-level control of
memory operating modes from a database. To be specific, we re-
order queries for reducing energy consumption. The energy-aware
table-to-bank mapping and the energy-aware optimization that we
propose are unique contributions as well. Moreover, our database is
completely memory-resident, with the presence of a banked mem-
ory environment that gives more freedom for optimizations that are
not seen in typical database environments.

3. SYSTEM ARCHITECTURE

3.1 DBMS
For our work, we modified the PostgreSQL DMBS to model a

main-memory resident database system. The block diagram for
our setup is shown in Figure 2. The core components are derived
from PostgreSQL. The flow of our model is similar to PostgreSQL
except that the database is memory resident. A query is parsed for
syntax and then sent to the rewrite system. The rewrite system uses
the system catalog to generate the query tree, which is then sent to
the optimizer. The query optimizer derives the cost of the query in
multiple ways using the query tree and issues the best suited plan
to the query execution engine. We incorporate our software-based
techniques at the optimizer stage of the DBMS. These optimiza-
tions are based on the cost that is derived for each of the query plans
(the discussion pertaining to the modified cost model is deferred till
Section 4). Based on the final query execution plan, the execution
engine executes the query by using the database. The database is
entirely memory resident and the memory is organized in a banked
format (elaborated in the following section). The executor recur-
sively iterates the query plan and uses a per-tuple based strategy
(pipelined execution, and not bulk processing) to project the output
results. The proposed hardware optimizations are at the computer
architecture level of the system. Since the base DBMS model is
similar to PostgreSQL, we do not elaborate each component in de-
tail ( [23] provides an elaborate discussion). Instead, we highlight
our contributions, and modifications to DBMS (shown in blue in
Figure 2) in the following sections. Overall, our strategies require
modification to the query optimizer, memory hardware, and system
software components.

3.2 Memory Model
We use a memory system that contains a memory array orga-

nized as banks (rows) and modules (columns), as is shown picto-
rially in Figure 3 for a 4×4 memory module array. Such banked
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Figure 3: Banked memory architecture.

systems are already being used in high-end server systems [28] as
well as low-end embedded systems [29]. However, the system that
we consider is generic, and the proposed optimizations will apply
to most bank-organized memory systems. For instance, systems
specified in [10,24] provide multiple ways of organizing banks and
also the DRAM devices itself. Our proposed optimizations can be
extended to such systems as well.

Accessing a word of data would require activating the corre-
sponding modules of the shown architecture. Such an organiza-
tion allows one to put the unused banks into a low-power operating
mode. To keep the issue tractable, this paper bases the experimental
results on a sequential database environment and does not consider
a multiprocessing environment (like transaction processing which
requires highly complex properties to be satisfied). We assume in
our experiments that there is just one module in a bank; hence, in
the rest of our discussion, we use the terms “bank” and “module”
interchangeably.

3.3 Operating Modes
We assume the existence of five operating modes for a memory

module: active, standby, nap, power-down,anddisabled2. Each
mode is characterized by itsenergy consumptionand the time that
it takes to transition back to the active mode (termedresynchro-
nization timeor resynchronization cost). Typically, the lower the
energy consumption, the higher the resynchronization time [28].
These modes are characterized by varying degrees of the module
components being active. The details of the power modes are dis-
cussed below:
• Active: In this mode, the module is always ready to perform a

read or write operation. As the memory unit is ready to service any
read or write request, the resynchronization time for this mode is
the least (zero units), and the energy consumption is the highest.
• Standby:In this mode, a few DRAM components are disabled

resulting in significant reduction in energy consumption compared
to the active mode. The resynchronization time for this mode is typ-
ically one or two memory cycles. Some state-of-the-art RDRAM
memories already exploit this mode by automatically transitioning
into the standby mode at the end of a memory transaction [28].
• Nap: This mode can typically consume two orders of magni-

tude less energy than the active mode, with the resynchronization
time being higher by an order of magnitude than the standby mode.
• Power-Down:This mode provides another order of magnitude

saving in energy. However, the resynchronization time is also sig-
nificantly higher (typically thousands of cycles).
• Disabled: If the content of a module is no longer needed, it

is possible to completely disable it (saving even refresh energy).
There is no energy consumption in this mode, but the data is lost.

When a module in standby, nap, or power-down mode is re-

2Current DRAMs [28] support up to six energy modes of operation
with a few of them supporting only two modes. One may choose to
vary the number of modes based on the target memory.
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Figure 4: Available operating modes and their resynchroniza-
tion costs.

quested to perform a memory transaction, it first goes to the ac-
tive mode, and then performs the requested transaction. Figure 4
shows possible transitions between these modes (the dynamic en-
ergy 3 consumed in a cycle is given for each node) in our model.
The resynchronization times in cycles (based on a cycle time of
3.3ns) are shown along the arrows (we assume a negligible costε
for transitioning to a lower power mode). Note that this model is
flexible enough to take in different values for energy consumption
and resynchronization costs, and the default values used in our ex-
periments are the ones given in Figure 4.

While one could employ all possible transitions given in this
figure (and maybe more), our query-directed approach only utilizes
the transitions shown by solid arrows. The runtime (hardware-
based) approaches, on the other hand, can exploit two additional
transitions: from standby to nap, and from nap to power-down.
The energy values shown in this figure have been obtained from
the measured current values associated with memory modules
documented in memory data sheets (for a 2.5V, 3.3ns cycle time,
8MB modules) [28]. The resynchronization times have also been
obtained from the same data sheets.

3.4 System Support for Power Mode Setting
Typically, several of the memory modules (that are shown in Fig-

ure 3) are controlled by a memory controller which interfaces with
the memory bus. The interface is not only for latching the data and
addresses, but is also used to control the configuration and oper-
ation of the individual modules as well as their operating modes.
For example, the operating mode setting could be done by pro-
gramming a specific control register in each memory module (as
in RDRAM [28]). Next is the issue of how the memory controller
can be told to transition the operating modes of the individual mod-
ules. This is explored in two ways in this paper:hardware-directed
approachandsoftware-directed(query-directed) approach.

In the hardware-directed approach, there is aSelf-Monitoring

and Prediction Hardware block (as shown in Figure 3), which
monitors all ongoing memory transactions. It contains some pre-
diction hardware to estimate the time until the next access to a
memory bank and circuitry to ask the memory controller to initi-
ate mode transitions (limited amount of such self-monitored power
down is already present in current memory controllers, for exam-
ple: Intel 82443BX and Intel 820 Chip Sets). The specific hardware
depends on the prediction mechanism that is employed, and will be
discussed later in the paper.

In the query-directed approach, the DBMS explicitly requests
the memory controller to issue the control signals for a specific
module’s mode transitions. We assume the availability of a set of

3We exclusively concentrate on dynamic power consumption that
arises due to bit switching, and do not consider the static (leakage)
power consumption [26] in this paper.

configuration registers in the memory controller (see Fig-
ure 3) that are mapped into the address space of the CPU (similar
to the registers in the memory controller in [18]). Programming
these registers using one or more CPU instructions (stores) would
result in the desired power mode setting. This brings up the issue of
which CPU activity needs to issue such instructions. The memory
control registers could potentially be mapped into the user address
space directly, making it possible for the user application/DBMS
to directly initiate the transitions. However, there are a couple of
drawbacks with this approach. The first one is that powering down
modules that are shared with other applications brings up the data
protection issue. The other problem could be that a given program
does not have much knowledge of the memory activity of other
programs, and will thus not be able to accommodate more global
optimizations. With two or more applications sharing a memory
module, the operating system may be a better judge of determining
the operating (power) modes. So, the other option is to make the
issuance of these instructions a privilege of the operating system,
with the DBMS availing of this service via a system call. How-
ever, since the focus of this paper is to explore the potential bene-
fits of memory module energy optimizations from the perspective
of queries, we focus on a single program environment, and assume
that the registers are directly mapped into user space (thus, they can
be controlled by the DBMS).

Regardless of which strategy is used, the main objective of em-
ploying such strategies is to reduce the energy consumption of a
query when some memory banks are idle during the query’s ex-
ecution. That is, a typical query only accesses a small set of ta-
bles, which corresponds to a small number of banks. The remain-
ing memory banks can be placed into a low-power operating mode
to save memory energy. However, it is also important to select
the low-power mode to use carefully (when a bank idleness is de-
tected), as switching to a wrong mode either incurs significant per-
formance penalties (due to large resynchronization costs) or pre-
vents us from obtaining maximum potential energy benefits.

Note that energy optimization is our context can be performed
from two angles. Suitable use of low-power operating modes can
reduce energy consumption of a given query execution. Also, the
query plan can be changed (if it is possible to do so) to further in-
crease energy benefits. In this work, we explore both these aspects.

4. POWER MANAGEMENT SCHEMES
In such a banked architecture, the memory can be managed

through either of the following two approaches: (1) a runtime
approach wherein the hardware is in full control of operating mode
transitions; and (2) a query-directed scheme wherein explicit bank
turn-on/off instructions are inserted in the query execution plan to
invoke mode transitions. One also has the option of using both the
approaches simultaneously.

4.1 Hardware-Directed Schemes
We explore two hardware-directed approaches that allow the

memory system to automatically transition the idle modules to
an energy conserving state. The problem then is to detect/predict
bank idleness and transition idle banks into appropriate low-power
modes.

4.1.1 Static Standby Scheme
The first approach is a per-access optimization. Most of the re-

cent DRAMs allow the chips to be put to standby mode immedi-
ately after each reference [28]. After a read/write access, the mem-
ory module that gets accessed can be placed into the standby mode
in the following cycle. Such schemes are already available in most
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DRAM systems, and are usually exploited by applications during
page placement. We refer to this scheme as the static standby mode
in the rest of our discussion. Note that, while this scheme is not
very difficult to implement, it may lead to frequent resynchroniza-
tions, which can be very harmful as far as execution cycles are con-
cerned. The rest of the schemes that we propose aim to minimize
the expensive resynchronization costs that are seen in such static
schemes.

4.1.2 Dynamic Threshold Scheme
Our second hardware-guided approach is based on runtime dy-

namics of the memory subsystem. The rationale behind this ap-
proach is that if a memory module has not been accessed in a while,
then it is not likely to be needed in the near future (that is, inter-
access times are predicted to be long). A threshold is used to de-
termine the idleness of a module after which it is transitioned to a
low-power mode. More specifically, we propose a scheme where
each memory module is put into a low-power state with its idle
cycles as the threshold for transition.

The schematic of our dynamic threshold scheme is depicted in
Figure 5. After idlestndby cycles of idleness, the corresponding
module is put in the standby mode. Subsequently, if the module
is not referenced for anotheridlenap cycles, it is transitioned to the
nap mode. Finally, if the module is not referenced for a further
idledown cycles, it is placed into the power-down mode. Whenever
the module is referenced, it is brought back into the active mode in-
curring the corresponding resynchronization costs (based on what
low-power mode it was in). It should be noted that even if a sin-
gle bank experiences a resynchronization cost, the other banks will
also incur the corresponding delay (to ensure correct execution).
Implementing the dynamic mechanism requires a set of counters
(one for each bank) that are decremented at each cycle, and set to a
threshold value whenever they expire or the module is accessed. A
zero detector for a counter initiates the memory controller to trans-
mit the instructions for mode transition to the memory modules.
Another alternative to this dynamic scheme would be one based on
the adaptive threshold wherein each module adaptively learns the
threshold for transition. Our analysis revealed that the hardware
implementation costs of such a scheme would be extremely high.
Consequently, we do not consider such complex implementations
in this paper.

4.2 Software-Directed Scheme
It is to be noted that a hardware-directed scheme works well

independent of the DBMS and the query optimizer used. This is
because the idleness predictors are attached to the memory banks
and monitor idleness from the perspective of banks. In contrast,
a query-directed scheme gives the task of enforcing mode transi-
tions to the query. This is possible because the query optimizer,
once it generates the execution plan, has a complete information
about the query access patterns (i.e., which tables will be accessed
and in what order, etc). Consequently, if the optimizer also knows

the table-to-bank mappings,it can have a very good idea about the
bank access patterns. Then, using this information, it can proac-
tively transition memory banks to different modes. In this section,
we elaborate on each step in the particular query-directed approach
that we implemented, which includes customized bank allocation,
query analysis, and insertion of bank turn-on/off instructions.

4.2.1 Bank Allocation
In the case of software-directed scheme, the table allocation is

handled by the DBMS. Specifically, the DBMS allocates the newly-
created tables to the banks, and keeps track of the table-to-bank
mappings. When a “create table” operation is issued, the DBMS
first checks for free space. If there is sufficient free space available
in a single bank, the table is allocated from that bank. If a bank is
not able to accommodate the entire table, the table is split across
multiple banks. Also, while creating a new table, the DBMS tries
to reuse the already occupied banks to the highest extent possible;
that is, it does not activate a new bank unless it is necessary (note
that the unactivated (unused) banks – i.e., the banks that do not hold
any data – can remain in the disabled mode throughout the execu-
tion). However, it also tries not to split tables excessively. In more
detail, when it considers an already occupied bank for a new table
allocation, the table boundaries are checked first using the available
space in that bank. If a bank is more than two-thirds full with the
table data, the rest of the bank is padded with empty bits and the
new table is created using pages from a new bank. Otherwise, the
table is created beginning in the same bank. Irrespective of whether
the table is created on a new bank or not, the DBMS creates a new
table-to-bank mapping entry after each table creation.

In hardware-directed schemes, we avoid these complexities in-
volved in bank allocation as we assume that there is absolutely no
software control. Consequently, in the hardware-directed schemes,
we use thesequential first touch placement policy. This policy al-
locates new pages sequentially in a single bank until it gets com-
pletely filled, before moving on to the next bank. Also, the table-
to-bank mapping is not stored within the DBMS since the mode
control mechanism is handled by the hardware.

4.2.2 Estimating Idleness and Selecting the Appro-
priate Low-Power Mode

It should be emphasized that the main objective of our query-
directed scheme is to identify bank idleness. As explained above,
in order to achieve this, it needs table-to-bank mapping. How-
ever, this is not sufficient as it also needs to know when each
table will be accessed and how long an access will take (i.e., the
query access pattern). To estimate this, we need to estimate the
duration of accesses to each table, which means estimating the
time taken by the database operations. Fortunately, the current
DBMSs already maintain such estimates for query optimization
purposes [11, 14, 27, 30, 31]. More specifically, given a query, the
optimizer looks at the query access pattern using the generated
query plan. The inter-access times are calculated using the query
plan. A query plan elucidates the operations within a query and
also the order in which these operations access the various tables
in the database. Even in current databases, the query plan gen-
erator estimates access costs using query plans [11]. We use the
same access cost estimation methodology. These access costs are
measured in terms of page (block) fetches. In our memory-resident
database case, a page is basically the block that is brought from
memory to the cache. For instance, the cost of sequential scan is
defined as follows (taken from [11]):
Costseqscan = Nblocks + CPU∗Ntuples
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Here, Nblocks is the number of data blocks retrieved,Ntuples
is the number of output tuples, andCPU is the fudge factor that
adjusts the system tuple-read speed with the actual memory hi-
erarchy data-retrieval speed. Usually, optimizers use the above
cost metric to choose between multiple query plan options before
issuing a query. Thus, when a cost is attached to each page (block)
read/write operation, an estimate of the access time is obtained as
follows:
Costblock f etch= T cycles

Costseqscan = Nblocks∗T + CPU∗Ntuples∗ block
tuples∗T

In these expressions,T is the delay in cycles to fetch a block from
the memory. Thus, our cost plan is projected in terms of access
cycles. We extend this to other database operations like JOIN and
AGGREGATE based on the cost models defined in [11,13].

Given a query, we break down each operation within the plan (in-
cluding sub-plans) and estimate the access cost (in cycles) for each
primitive operation. Our objective in estimating the per-operation
time in cycles is to eventually identify the inter-access times of op-
erations in the query (and hence, to put the banks that hold unused
tables to low-power modes). There are table accesses associated
with each operation, and bank inter-access times depend on the ta-
ble inter-access times. A query has information of the tables that
it accesses. Thus, knowing the inter-access time for each operation
leads to the inter-access times for each table as well. A table is
mapped to certain banks, and the table-to-bank mapping is avail-
able in the query optimizer.

Consequently, if the table inter-access time isT, and the resyn-
chronization time isTp (assuming less thanT), then the optimizer
can transition the associated modules into a low-power mode (with
a unit time energy ofEp) for the initial T − Tp period (which
would consume a total[T−Tp]Ep energy), activate the module to
bring it back to the active mode at the end of this period following
which the module will resynchronize before it is accessed again
(consumingTpEa energy during the transition assuming thatEa is
the unit time energy for active mode as well as during the transition
period). As a result, the total energy consumption with this transi-
tioning is [T−Tp]Ep + TpEa without any resynchronization over-
heads, while the consumption would have beenTEa if there had
been no transitioning (note that this calculation considers only the
idle period). The DBMS optimizer evaluates all possible choices
(low-power modes) based on corresponding per cycle energy costs
and resynchronization times, and table inter-access time to pick up
the best choice. Note that the DBMS can select different low power
modes for different idle periods of the same module depending on
the duration of each idle period. Specifically, we use the most en-
ergy saving low-power mode without increasing the original query
execution time (i.e., when the original idleness is over, the bank
should be up in the active mode).

4.2.3 Inserting Bank-On/Off Instructions
The last part of the software-directed scheme is to insert explicit

(operating) mode transitioning instructions in the query execution
plan. For this, we introduce markers (place holders) which are
interpreted at the low-level (interpreted later by our memory con-
troller, which actually sets the corresponding low-power modes).
This is done so that the query execution engine can issue the
query without much performance overhead, and with the same
transparency.

As an example, consider the following. Let tables A and B each
have 1000 records, each record being 64 bytes. Consider the query
plan depicted in Figure 6(i), taken from PostgreSQL. The query
plan reads from bottom to top (P2 follows P1). A scan of table

- > scan  A (9000  cycles)
- > aggregate (20 cycles)
        - > scan  B (9000  cycles)
        - > scan  A (9000  cycles)

- > scan  A
- > Put  A=ON
- > aggregate
- > Put  B=OFF
- > Put  A=OFF
        - > scan  B
        - > Put  B=ON
        - > Put  A=OFF
        - > scan  A
        - > Put  A=ON
        (B is already OFF)

P2

P1

(i) (ii)

Figure 6: Example application of the query-directed scheme.
(i) The original execution plan. (b) The augmented execution
plan.

A is done first, followed by a scan of table B. The result of these
operations are then used by an aggregate operation. Another (inde-
pendent) scan operation on table A follows the aggregate operation.
The per step access costs are also shown. From the generated query
plan, it is evident that table A is not accessed between point P1 and
point P2. Once the results are extracted after the scan at point P1,
the banks that hold table A can be put to a low-power mode, and the
banks that hold table B can be activated for data extraction. This is
illustrated in Figure 6(ii) using place-markers for tables A and B.
Banks holding Table A are reactivated at point P2 (banks of Table
B remain off).

5. EXPERIMENTAL EVALUATION OF
HARDWARE-DIRECTED AND QUERY-
DIRECTED SCHEMES

In this section, we study the potential energy benefits of our hard-
ware and software-directed schemes. We first explain the exper-
imental setup that we used in our simulations. Then, the set of
queries that we used to study our schemes is introduced. After that,
we present energy consumption results. While we discuss the en-
ergy benefits of using our schemes, we also elaborate the overheads
associated with supporting each of our schemes.

5.1 Setup

5.1.1 Simulation Environment
As mentioned before, the query-directed schemes are imple-

mented in the query optimizer of the memory database model
elaborated in Section 3.1. We interface this DBMS to an enhanced
version of the SimpleScalar/Arm simulator [4] to form a com-
plete database system. The intermediate interface (invoked by
DBMS) provides a set of operating system calls (on Linux kernel
2.4.25), which in turn invokes the SimpleScalar simulator. The
SimpleScalar simulator models a modern microprocessor with a
five-stage pipeline: fetch, decode, issue, write-back, and commit.
We implemented our hardware techniques within the framework of
the sim-outorder tool from the SimpleScalar suite, extended with
the ARM-ISA support [4]. Specifically, we modeled a processor
architecture similar to that of Intel StrongARM SA-1100. The
modeled architecture has a 16KB direct-mapped instruction cache
and a 8KB direct-mapped data cache (each of 32 byte-length). We
also model a 32-entry full associative TLB with a 30-cycle miss
latency. The off-chip bus is 32 bit-wide. For estimating the power
consumption (and hence, the energy consumption), we use the
Wattch simulator from Princeton University [8].

Our banked memory model is based on [12, 19]. We use values
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Table 1: The two classes of queries considered for our experiments.

Source Query Description Tables Fields (# characters)

Queries
targeting
a simple
organizer

P1 Simple name and address lookup

ADDRESSBOOK populated with 1.3
million entries, 50% subset of FRIENDS
and 25% subset of COLLEAGUES

a name = 25
a address = 40
a city = 25
a office phone = 15
a home phone = 15
a mobile phone = 15
a email = 45
a web = 150
a specialnotes = 150

P2 Lookup in directory of friends

P3 Lookup in directory of colleagues
and friends

from Figure 4 for modeling the delay (transition cycles) in activa-
tion and resynchronization of various power-states. Our simula-
tions account for all performance and energy overheads incurred
by our schemes. In particular, the energy numbers we present in-
clude the energy spent in maintaining the idleness predictors (in
the hardware-directed scheme) and the energy spent in maintain-
ing the table-to-bank mappings (in the query-directed scheme), and
in fetching and executing the bank turn-on/off instructions (in the
query-directed scheme). The predictors were implemented using
decrementing counters (equal to the number of banks) and zero de-
tector based on the discussion in Section 4.1. The predictors are
synchronized with the system cycles to maintain consistency of op-
eration, and to minimize the overheads. The query optimizer main-
tains the table-bank mappings, which is modeled as an array list for
instant access. The bank turn-on/off instructions are executed by
setting hardware registers, and hence, these instructions are mod-
eled as register operations using the existing instruction set archi-
tecture. We present two important statistics in our experimental
results.Energy consumptioncorresponds to the energy consumed
in the memory system (including the above mentioned overheads).
We also present statistics about theperformance overhead(i.e., in-
crease in execution cycles) for each of our schemes. This overhead
includes the cycles spent in resynchronization (penalty cycles are
modeled based on values in Figure 4) as well as the cycles spent
(in the CPU datapath) in fetching and executing the turn-on/off in-
structions (in the query-directed scheme).

5.1.2 Queries
Memory-resident databases run queries that are different from

the typical database queries as seen in typical DBMS. The set of
queries that we consider are representative of applications that ex-
ecute on handheld devices. The typical operations that are per-
formed on an organizer were imitated on our setup (we name the
queries P1, P2, P3). The first query involves a simple address
lookup using a ‘NAME’ as input. The SQL for query P1 is shown in
Figure 7. Recent organizers [16,22] provide an ordered view of the
underlying addressbook database. For instance, organizers provide
the creation of folders. A “friends” folder can be a collection of
personnel with a tag set as “friend” in the addressbook. We defined
folder as a restrained/customized view of the same database (ad-
dress book). Intuitively, query P2 strives to do a lookup of friends
living in a particular city. A person interested in visiting a city can
run this query before he/she leaves for that place. The “friends”
view and hence the query P2 is defined in Figure 8. Query P3 com-
bines views (folders). For this we defined a new folder called “col-
leagues”. P3 aims to find friends and/or colleagues whose names
start with an a, living in a particular CITY. The “friends” view is

similar to P2. Figure 9 presents the “colleagues” view and the query
P3. The intermediate tables and results during query execution are
also stored in the memory.

5.1.3 Default Parameters
For our experiments, we populate the organizer database with

1.3 million records based on parameters specified in Table 1.
For dynamic threshold scheme, we use 10, 100 and 10,000 cycles

as idlestndby, idlenap, andidledown, respectively. For all schemes,
the banks are in power-down mode before their first access. On/Off
instructions are inserted based on the inter-access times of table.
We use the same cycles as inidlestndby, idlenap, andidledown for
inserting instructions. As an example, consider the inter-access (T)
of a table as 25 cycles, which lies between 10 (idlestndby) and 100
(idlenap) cycles. We insert an On/Off instruction at the beginning
of T to put a table to standby mode for 24 cycles, taking into con-
sideration the resynchronization period of 1 cycle as well. Similar
technique is applied for inter-access times that fall in between other
power modes.

A single page transfer time is needed for access cost calcula-
tion in software-directed scheme. We derive this by executing the
benchmark queries on the SimpleScalar simulator (with the SA-
1100 model) and by studying the cycle times for transferring a data
block from memory to the cache. For all experiments, the default
configuration is the 512MB RDRAM memory with 8MB banks.
The core benchmark characteristics pertaining to the database and
memory are shown in Table 2. These characteristics were derived
after running the benchmarks without incorporating any of our pro-
posed optimizations (with the default optimizations of Postgres, de-
fault parameters of Simple Scalar, and default bank sizes). The
instructions executed (in million) indicate the total number of in-
structions retired in the system. The number of memory reference

SELECT
a_name,
a_ address,
a_city,
a_office_phone,
a_home_phone,
a_mobile_phone,
a_email,
a_web,
a_specialnotes

FROM
addressbook

WHERE
a_name = [NAME];

Figure 7: SQL for query P1
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Table 2: Benchmark characteristics
Benchmark Instructions Executed

(million)
# of Loads and Stores
(memory references)

Average Bank Idle Times
(ms)

Total DB Size

P1 1.796 503403 1.7
637 MBP2 1.845 614528 3.4

P3 1.895 727017 3.74

CREATE VIEW friends AS
SELECT

a_name,
a_address,
a_city,
a_home_phone,
a_mobile_phone

FROM
addressbook

WHERE
a_tag = [FRIEND]

GROUP BY
a_name;

P2:
SELECT

a_address,
a_home_phone,
a_mobile_phone

FROM
friends

WHERE
a_city = [CITY]

GROUP BY
a_name;

Figure 8: SQL for query P2

CREATE VIEW colleagues AS
SELECT

a_name,
a_address,
a_city,
a_office_phone,
a_mobile phone,
a_email

FROM
addressbook

WHERE
a_tag = [COLLEAGUE]

GROUP BY
a_name;

P3:
SELECT

a_address,
a_home_phone,
a_office_phone,
a_mobile phone,
a_email

FROM
friends, colleagues

WHERE
a_city = [CITY]

GROUP BY
a_name = [a*];

Figure 9: SQL for query P3

are based on the total number of loads and stores issued to the sys-
tem exclusively from the queries. The average bank idle times in-
dicate the total time the memory bank remains unused throughout
query execution (approximately 35%). This clearly indicates that
there is ample amount of energy that is wasted in the system, and
there is room for optimizations. In the following section, we in-
corporate our hardware and software techniques, and then study
the energy implications of those schemes on this default setup. We
also present the performance overheads and study the sensitivity of
our schemes to various system parameters.

5.2 Query Energy Evaluation
Figure 10 shows thenormalizedmemory energy consumption

for our hardware-directed schemes. While presenting our results,
we normalize all values with respect to the base case, which is the
version withnoquery optimizations. “Static Standby” in Figure 10
indicates the static standby scheme. We see that, by simply putting
the modules to standby mode after each access, this scheme is able
to achieve a 37% reduction reduction on the average. These re-
sults also depend on the number of tables manipulated by queries.
If multiple tables are scattered across various banks, there is a po-
tential of placing more memory banks into low-power modes. In
the case of handheld queries, there is just one table scattered across
multiple banks, which makes putting modules to a low-power mode
more difficult as modules are tightly connected, as far as query ac-
cess patterns are concerned. We also observe from Figure 10 that
the dynamic threshold scheme further extends these improvements
through its ability to put a bank into any of the possible low-power
modes. On an average, there is a 43% energy improvement in hand-
held queries.

Figure 10 also shows the normalized energy behavior of our
query-directed scheme (denoted On/Off Instr). It is evident that
this scheme outperforms the best hardware-directed scheme (by an
average of 10%) in saving the memory energy consumption. This
is because of two main reasons. First, when a bank idleness is
estimated, the query-directed scheme has a very good idea about
its length (duration). Therefore, it has a potential of choosing the
most appropriate low-power mode for a given idleness. Second,
based on its idleness estimate, it can also preactivate the bank. This
eliminates the time and energy that would otherwise have spent
in resynchronization. Consequently, the average memory energy
consumption of the query-directed scheme is just 44% of the un-
optimized version (i.e., an additional 13% improvement over the
hardware schemes). The last bar (marked as “History-Based”) in
Figure 10 will be discussed later in the paper.

5.3 Bank Idleness Analysis
To better understand the energy behavior of memory banks, we

identified the most widely-used low-power mode. That is, we found
the mode in which a bank spends most of its time. For this, we
profiled the per-cycle energy behavior of each benchmark. Con-
sidering the total execution cycles, we found that on an average a
given application spends only 66% of its time in active mode in the
memory. For the rest of the 44% of the total cycles, the memory re-
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Figure 10: Energy consumption of hardware and software-
directed modes. The values shown are normalized to the ver-
sion with no energy optimizations.

Standby
4.3%

Nap
0.2%

Powerdown
29.5% Active

66.0%

Figure 11: Utilization of various operating modes during query
execution. Modules are active most of the time. Power-down is
the most frequently-used mode. The threshold of transition is
10, 100, 10000 cycles for standby, nap and power-down respec-
tively.

mains idle. This is illustrated in Figure 11 for the hardware-directed
scheme with 10, 100, 1000 cycles as thresholds for transition to
the standby, nap and power-down modes, respectively. An inter-
esting note is that the power-down mode is the most widely-used
low-power mode, and nap is the least frequently used. This proves
that when an application goes to the nap mode, it is more likely to
continue on to the power-down mode. This also explains why the
static standby mode fails to exhibit good energy behavior as com-
pared to the dynamic threshold scheme (which is able to utilize the
most preferred low-power mode). In this case, it is seen that the
nap mode is insignificant in contributing towards energy savings.
Thus, power-down contributes the maximum benefits, and is also
the most sought low-power mode of applications.

5.4 Performance Overhead Analysis
Our techniques are very effective in reducing the memory energy

consumption. As mentioned earlier, transitions from the low-power
modes to the active mode come with an overhead of resynchroniza-
tion (in terms of both performance and energy). The energy values
reported in previous section take into consideration the extra energy
needed to activate the modules as well. In this part, we quantify
the basic performance overheads that are faced in supporting our
schemes.

Figure 12 shows the performance overheads for both the hard-
ware and software-directed schemes. The static standby scheme
has the maximum overhead, which is expected. This is especially
the case when queries generate frequent memory accesses. The
memory is brought down to the standby mode after each access,
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Figure 12: The performance overhead involved in supporting
our schemes. There is an average overhead of 11.9%, 10.6%,
and 2.5% for standby, dynamic and on/off schemes, respec-
tively, over the unoptimized version.

and is resynchronized in another access that follows immediately.
As a result, the performance worsens as bad as 13% for the static
standby case. Note that a 13% overhead does not mean that there is
13% memory accesses in the program. This overhead includes the
total resynchronization cycles incurred while supporting the static
standby scheme. It is possible that a bank is accessed in succes-
sive cycles, in which case the banks are not turned off to low-power
modes (which implies there could be more memory references than
the percentage of overheads). For the dynamic threshold scheme,
the performance overhead is slightly better since the banks are not
blindly put to a low-power mode after each access. This verifies our
prediction that when a module goes to low-power mode, it would
either remain for a while in that mode or may even be transitioned
into a lower power mode. The query-directed scheme has the least
overhead (<3%). The main reason for this is the ability of preacti-
vating a bank before it is actually accessed. In addition, the num-
ber of bank turn on/off instructions inserted are less (average of
2%). Therefore, considering both performance and energy results,
one may conclude that the query-directed scheme is better than the
hardware-directed schemes. However, it is also to be noted that the
query-directed scheme requires access to the query optimizer. In
comparison, the hardware-based schemes can work with any query
optimizer. Therefore, they might be better candidates when it is not
possible/profitable to modify the query plan.

5.5 Sensitivity Analysis
We now study the sensitivity of our schemes to various key pa-

rameters in the simulations.

5.5.1 Number of Banks
We varied the bank size of the memory, keeping the total mem-

ory capacity the same. When the size of a bank is increased, the
number of banks decreases (for a fixed total memory size). This
implies that more data fits into a bank, that is, a table fits into lesser
number of banks. This reduces the opportunity to put more banks
into a low-power mode. Figure 13 illustrates this by showing the
average energy savings for our benchmarks. When the bank size is
increased from 4MB to 32MB, the savings in energy starts to drop.
Also, too many smaller banks lead to increased resynchronization
times. So, care should be taken to choose a fitting bank size for
a given system; but, this architectural design issue is beyond the
scope of this paper.
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Figure 13: Impact of bank size on the energy consumption. As
bank sizes increase (number of banks reduce), there is less sav-
ings in energy.

5.5.2 Idleness Threshold
In our next set of experiments, we tighten the threshold of Sec-

tion 5.3 and study the alteration in the behavior of applications.
Figure 14 shows the behavior of our queries when the threshold
for standby, nap and power-down transition is tightened to 100,
250 and 500 cycles, respectively. When this is compared with Fig-
ure 11, it is evident that the usage of standby mode decreases dras-
tically. Also, when a memory module enters the standby mode, it
has a high probability of getting transitioned all the way to power-
down mode. Thus, the behavior is dependent on the chosen thresh-
old. Such techniques of tightening the thresholds can be deployed
to reduce the energy consumption. For instance, if the power-
down mode is the most frequently-used mode (and if there is a
high probability that when a module enters standby, it will get
transitioned all the way), modules could be transitioned directly to
power-down mode using turn-on/off instructions instead of using
hardware-directed mechanisms. However, it should also be noted
that the resynchronization times could increase if the module is fre-
quently transitioned back to active mode from power-down mode.
It should be noted that changing the threshold affects the behav-
ior of the entire system. If the standby threshold is too low, it
leads to many resynchronizations. If is too high, nap and power-
down modes are used more frequently, making the impact of the
standby mode insignificant. This is the case for all thresholds. Con-
sequently, care should be taken to ensure that all modes are utilized
properly in dynamic schemes.

5.6 History-Based Adaptive Scheme
There are two main problems associated with the dynamic

threshold scheme. First, we gradually decay from one mode to
another (i.e., to get to power-down, we go through standby and
nap), though one could have directly transitioned to the final mode
if we had a good estimate. Second, we pay the cost of resynchro-
nization on a memory access if the module has been transitioned.
To tackle this problem, we also implemented and conducted ex-
periments with ahistory-based scheme.In this scheme, we try to
estimate the bank inter-access time, directly transition to the best
energy mode, and activate (resynchronize) the module so that it
becomes ready by the time of the next estimated access. While
one could use sophisticated history information to estimate bank
inter-access time, in this paper, we use a relatively simple mecha-
nism (keeping hardware implementation energy costs in mind): the
estimate for the next bank inter-access time is set to the previous

Standby
0.1%

Nap
0.1%

Powerdown
29.6% Active

70.3%

Figure 14: Mode utilization. When threshold for transition
is tightened to 100, 250 and 500 cycles (for standby, nap and
power-down), the utilization of power-modes also changes. In-
termediate low-power modes are very less utilized.

bank inter-access time. History-based scheme requires a mode
assignment table that contains the maximum and minimum values
of the estimated inter-access time for which a particular mode is
optimum. This table can easily be pre-constructed based on the
energy values and resynchronization times for the different modes
available, and needs to hold only as many entries as energy modes.
Once the target power mode is determined, the corresponding
resynchronization time is subtracted from the inter-access time
estimate, to determine the amount of time to spend in that mode.

We implemented this scheme using our experimental setup, and
studied its energy and performance behavior. The last bar of Fig-
ure 10 shows the performance of history-based scheme. There is
an average 35% reduction for organizer queries. However, the
improvements obtained from our hardware and software-directed
schemes of Section 4.1 are better than history-based scheme. This
is due to the following reason. We found that it is very difficult to
predict/reestimate the bank inter-access times accurately. This is
partly due to our particular workloads. In particular, the decision
support database workloads exhibit complex memory access be-
havior, and it is not easy to extract exploitable patterns. While one
may argue that a more sophisticated predictor could do better, such
a predictor would also have substantial energy and performance
cost as well.

6. CONCLUDING REMARKS
This paper is an attempt to study the potential of employing

low-power operating modes to save memory energy during query
execution. We propose hardware-directed and software-directed
(query-directed) schemes that periodically transition the memory
to low-power modes in order to reduce the energy consumption
of memory-resident databases. Our experimental evaluations using
two sets of queries clearly demonstrate that query-directed schemes
perform better than hardware-directed schemes since the query op-
timizer knows the query access pattern prior to query execution,
and can make use of this information in selecting the most suitable
mode to use when idleness is detected. This scheme brings about
68% reduction in energy consumption. In addition, the query-
directed scheme can also preactivate memory banks before they are
actually needed to reduce potential performance penalty. Overall,
we can conclude that a suitable combination of query restructuring
and low-power mode management can bring large energy benefits
without hurting performance.
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