
Data Windows: A Data-Centric Approach for Query Execution in
Memory-Resident Databases ∗

Jayaprakash Pisharath, Alok Choudhary
Dept. of Electrical and Computer Engineering

Northwestern University
Evanston IL - 60208 USA

{jay, choudhar}@ece.northwestern.edu

Mahmut Kandemir
Dept. of Computer Science and Engineering

The Pennsylvania State University
University Park PA - 16802 USA

kandemir@cse.psu.edu

Abstract

Structured embedded databases are currently becom-
ing an integrated part of embedded systems, thus, enabling
higher standards in system automation. These embedded
databases are typically memory resident. In this paper, we
present a data-centric approach called data windowing that
optimizes multiple queries issued to an embedded database.
Traditional approaches improve the performance by op-
timizing the control flow of operations, whereas we tar-
get performance improvements based on the data that is
brought into the system.

1. Introduction

As more and more functionalities of embedded systems
are being implemented in software, there is a clear need
for system software support. While most of prior software-
based studies on embedded systems targeted operating sys-
tems, compilers, and applications, a growing segment of
the industry is now considering embedded database support
[4, 6]. This is because, with the growing complexities of
real-time embedded systems, use of a commercially devel-
oped structured embedded database is becoming a must [2].
To meet the performance and reliability demands, the em-
bedded database engine must be small, high-performance,
flexible, and maintenance free.

Since most embedded environments do not em-
ploy a disk subsystem, database support generally comes
in the form of an in-memory (also called memory-resident)
database [7]. Memory-resident databases have been stud-
ied since a long time back by various researchers. In the
past, memory technology bottlenecks have prevented the

∗ This work was supported by National Science Foundation (NSF) grant
CCR-0325207

actual implementation of these databases. Currently, Berke-
leyDB [8], BirdStep RDM [2], TimesTen [9], DataBlitz [5],
and Monet [3] are a few known memory-resident databases.

Obviously, one of the key issues in attaining decent per-
formance from such an embedded database is to exploit data
locality (cache behavior). In fact, it is known that data cache
misses can form as high as 90% of overall memory stalls
[1]. Consequently, optimizing database queries to improve
their data access patterns can be extremely useful in prac-
tice. This can be achieved by maximizing the reuse of the
data that resides in the data cache. With data reuse as the
primary goal, we propose a technique called data window-
ing that maximally utilizes every block of data brought into
the cache. The following section elaborates our data win-
dowing strategy.

2. Data Windowing

A database usually consists of multiple tables. Each ta-
ble has multiple columns (fields). A query views the table
as a collection of data blocks. Depending on the implemen-
tation, these blocks can either be file blocks, database page
blocks or just user-defined blocks. Based on this, we de-
fine data window as a block of data from the table being
accessed by a query. We propose an optimization strategy
called data windowing that works on data windows. A query
uses a set of data windows from each table that it accesses.
We begin by presenting a scheme for a single table case and
then extend it to the multiple table case. Data windowing
consists of the following steps.

1. Consider a single table T. The table T is divided into N
data windows such that each window (i ∈ N) fits into
the cache.

2. For each data window i in N, identify a set of queries
Q to be performed when i is loaded to the processor.
The goal is to reuse the data in a data window to the
maximum possible extent.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

3. The number of queries to look at, and the order in
which the selected queries are executed is not fixed.
That is, the order of accessing the data in a data win-
dow is not pre-determined. One way to do it is to just
follow the actual execution order as done without this
optimization. Given a data window, there is lot of room
usually for reusing the data when the execution order
is rearranged. A query queue contains the queries that
can be handled at a given instance (maximum look-
ahead of multiple queries).

4. The queries are scheduled based on the window ac-
cesses. For each window that is accessed, instances of
multiple queries that require data from the particular
window are scheduled sequentially. That is, queries in
the query queue are shuffled in a safe way to reuse the
data that is being processed at a given instance. Thus,
a schedule queue is built based on the data accessed by
queries in the query queue.

5. The first query finishes executing the particular code
section that requires data from the window and passes
control to the section of the second query that requires
the same set of data. The control goes from one query
to another until all queries in the schedule queue are
executed.

6. Now control is shifted to the next data window of the
table. Steps 2 to 5 are repeated for this data window.
The algorithm continues until all data windows are
completed.

As an example, consider a single table T and three
queries, Q1, Q2, and Q3. The table T is first divided into
data windows (say, T1, T2, T3, and T4) such that each Ti
fits in the cache. Let Qij refer to the part of Qi that ac-
cess Tj. A classical query execution would be in this order:
Q11, Q12, Q13, Q14, Q21, Q22, Q23, Q24, Q31, Q32, Q33,
Q34. Our approach, on the other hand, executes this: Q11,
Q21, Q31, Q12, Q22, Q32, Q13, Q23, Q33, Q14, Q24, Q34.
That is, we restructure query parts (Qij) around the data and
make use of the best cache locality. A graphical schematic
of this example when applied for M queries and N windows
is shown in Figure 1. An extension to the algorithm is the
presence of multiple tables. When multiple tables are ac-
cessed by a query, each table has its set of data windows.
The queries are scheduled based on multiple data windows
from multiple tables. The main goal of our technique is to
exploit spatial locality in database queries. Since data win-
dowing changes cursor control based on the data windows,
care should be taken to ensure that the data consistency of
the database and data dependencies in the original query ex-
ecution plan does not change. When queries are reordered,
they might corrupt the database or just follow a wrong exe-
cution order violating the dependencies.

Data windowing uses the data and not the query execu-
tion flow to improve performance. Our technique achieves

Order of query execution
in data windowing

Data window N
TN = [records: N-4 to N]

Data Table

Record 1

Record 10

Record 6

Record N

Record 5

Record N-4

:

:

.

.

.

.

.

:

Field 1 Field NField n-1Field 3Field 2

.

.

.

.

.

Data window 1
T1 = [records: 1 - 5]

Data window 2
T2 = [records: 6 - 10]

. . .

.

.

.

.

.

Qij = Query Qi accessing data
window Tj

Q11

Q1N

Q12

Q21

Q2N

Q22

QM1

QMN

QM2

.

.

.

Classical query
execution order

Currently ACTIVE
data window

Other data windows

from
QM-1N

adfdf

Query 1 Query 2 Query M

.

.

.
.
.
.

Figure 1. Data windowing applied to M
queries that work on data from a single ta-
ble with N data windows.

significant improvements in the latency of memory hierar-
chy (results not presented here). We also studied the impact
of our technique on the overall system. Our results showed
that data windowing improves the overall execution times
as well.

References

[1] A. Ailamaki, D. DeWitt, M. Hill, and D. Wood. Dbmss on a
modern processor: Where does time go? The VLDB Journal,
1999.

[2] Birdstep Technology. Database Management In Real-time
and Embedded Systems - Technical White Paper, 2003.

[3] P. A. Boncz. Monet: A Next-Generation DBMS Kernel For
Query-Intensive Applications. PhD thesis, Universiteit van
Amsterdam, The Netherlands, May 2002.

[4] Database Trends and Applications. Embedded Databases
Drive New Computing Model, July 2002.

[5] J. B. et al. Datablitz storage manager: Main memory database
performance for critical applications. In ACM SIGMOD - In-
dustrial Session: Database Storage Management, 2000.

[6] Information Week. Embedded Databases Reveal Gems, Oc-
tober 7, 2002.

[7] McObject LLC. Main Memory vs. RAM-Disk Databases,
2003.

[8] Sleepycat Software. Berkeley DB V4.1.25, 2003.
[9] TimesTen Inc. TimesTen Architectural Overview, 2003.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

