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ABSTRACT
Computing the interactions between the stars within dense
stellar clusters is a problem of fundamental importance in
theoretical astrophysics. However, simulating realistic sized
clusters of about 106 stars is computationally intensive and
often takes a long time to complete. This paper presents the
parallelization of a Monte Carlo method-based algorithm for
simulating stellar cluster evolution on programmable Graph-
ics Processing Units (GPUs). The kernels of this algorithm
involve numerical methods of root-bisection and von Neu-
mann rejection. Our experiments show that although these
kernels exhibit data dependent decision making and un-
avoidable non-contiguous memory accesses, the GPU can
still deliver substantial near-linear speed-ups which is un-
likely to be achieved on a CPU-based system. For problem
sizes ranging from 106 to 7 × 106 stars, we obtain up to
28× speedups for these kernels, and a 2× overall application
speedup on an NVIDIA GTX280 GPU over the sequential
version run on an AMD c© PhenomTM Quad-Core Proces-
sor.
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1. INTRODUCTION
The dynamical evolution of dense star clusters is a prob-

lem of fundamental importance in theoretical astrophysics,
but many aspects of it have remained unresolved in spite
of years of numerical work and improved observational data
[12]. Important examples of star clusters include globular
clusters, spherical systems containing typically 105 - 107

stars densely packed within radii of just a few light years,
and galactic nuclei, even denser systems with up to 109 stars

contained in similarly small volumes, and often surrounding
a supermassive black hole at the center. These are colli-
sional, or relaxation dominated systems, where relaxation is
the collective effect of many weak, random gravitational en-
counters between stars, as opposed to collision-less systems
like galaxies. Studying their evolution is critical to many
key unsolved problems in astrophysics. It connects directly
to our understanding of star formation, as well as galaxy
and supermassive black hole formation and evolution. Dy-
namical interactions in dense star clusters play a key role
in the formation of many of the most interesting and exotic
astronomical sources, such as bright X-ray and gamma-ray
sources, radio pulsars, and supernovae.

The evolution of dense star clusters is a challenging multi-
physics, multi-scale problem, consisting of three key ele-
ments: (i) stellar dynamics, which is relevant on timescales
from 10−4 to 1010 years and on spatial scales from 1011 to
1019 cm; (ii) single and binary star evolution, with timescales
from 103 to 1010 years and spatial scales from 106 to 1013

cm; and (iii) hydrodynamics of close stellar interactions, rel-
evant on timescales from 10−4 to 1 year and spatial scales
of 1010 to 1013 cm. The primary challenge lies in the tight
coupling of these scales and physical processes as they in-
fluence one another both locally through close encounters
or collisions and globally through long-range, gravitational
interactions of the whole system.

There are two main approaches to simulating the gravita-
tional dynamics of dense stellar systems. The direct N-body
method evolves each point-particle by summing up all inter-
particle forces, and thus requires N2 force calculations per
timestep [1, 16], where N is the number of particles. The
orbit-averaged technique solves for the evolution of stars in
energy and angular momentum space, allowing for a scaling
closer to O(N logN), but assumptions of spherical symme-
try and dynamical equilibrium have to be made.

Although N-body simulations have been performed for a
large number of stars (eg. [10]) for collision-less systems, the
methods employed are unsuitable for dense stellar systems
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where the evolution is dominated by relaxation. The inclu-
sion of all relevant physics for collisional systems and the
steep N2 scaling have limited N-body simulations of dense
stellar systems to N . 105. However, the typical number of
stars in globular clusters and galactic nuclei is 1 to 5 orders
of magnitude larger than that. For example, to date, only
Hurley [15] carried out direct N-body simulations of globular
clusters containing 105 stars with up to 10% primordial bi-
naries. Even with this limited number of stars, each of these
simulations took half a year to complete on special purpose
hardware (GRAPE processors [6]), obviously limiting assess-
ment of the robustness of results and preventing any kind
of extensive parameter-space exploration. Although recent
advances in high performance computing have led to the de-
velopment of a number of parallel N-body codes [7, 8, 33],
there does not exist one that includes all relevant physics
and can still simulate a realistic number of stars.

Recently, the Cluster Monte Carlo (CMC) algorithm [2,
5, 17, 18, 32] which is based on the orbit-averaging method,
demonstrated that it can simulate the evolution of systems
containing up to a few million stars. Yet, a typical simula-
tion of about a million stars up to average cluster ages of 10
billion years takes typically 3 - 4 weeks on a modern desktop
computer, which means simulations of clusters of 107 stars
will take a prohibitive amount of time. Moreover, there has
been no previous parallel implementation of the algorithm.
To accelerate simulations of such large data sizes, High Per-
formance Computing (HPC) techniques can play a key role.
Many special accelerator technologies and many-core archi-
tectures such as FPGAs [27, 31], and GPUs [4, 31] can be
of great help for such intensive computations. With Gen-
eral Purpose Graphics Processing Units (GPGPUs) becom-
ing increasingly powerful, inexpensive, and relatively easy
to program, they have become a very attractive hardware
acceleration platform.

In this paper, we present a GPU accelerated implementa-
tion of the CMC algorithm. The contributions of this paper
are as follows: 1) We present a GPU accelerated CMC al-
gorithm for dense stellar systems which allows us to explore
physical regimes which were out of reach of current astro-
physical simulations. 2) We devise a memory-layout strategy
to pack the data elements before transferring them to the
GPU which optimizes the global memory reads and writes.
This idea can be reused for parallelizing applications having
similar data structures. 3) We present a parallel random
number generator which uses a splitting method to gener-
ate parallel statistically independent random numbers. We
also discuss the problems related to consistency of results
that arise, and a possible way to resolve them that could be
employed in other parallel Monte Carlo algorithms. 4) Our
experimental results show that for memory-access bound al-
gorithms, the GPU, owing to its much higher memory band-
width is a much better platform for parallelization compared
to multicore architectures.

The rest of the paper is organized as follows: In Section 2,
we present an overview of the CMC algorithm, its complex-
ity, and performance bottlenecks. Section 3 talks about the
design and implementation of our GPU accelerated version.
Finally, in Section 4, we discuss experimental results.

2. OVERVIEW OF CMC
The CMC algorithm is developed to model the evolution

of massive globular clusters and galactic nuclei with a real-

Figure 1: Flowchart of the CMC algorithm.

istic number of stars, and at the same time account for all
relevant physical processes including treatment of strong bi-
nary interactions, physical stellar collisions, and stellar evo-
lution. Its results agree very well with more accurate but
much slower methods such as N-body and direct numerical
integrations of the Fokker-Planck equation [2,5,17,32]. The
algorithm calculates the overall evolution of the cluster over
many timesteps by keeping track of the physical properties
(such as mass, orbital energy, angular momentum, etc.) of
individual stars. The cluster may contain different types of
systems (single stars, binaries, etc.) and their properties
can change over time based on two-body relaxation, stellar
collisions and binary interactions. The CMC algorithm han-
dles these multi-physics by running different algorithms for
different types of physical systems and processes.

Figure 1 shows the flowchart of the CMC algorithm. The
outer loop keeps track of the total number of simulation
timesteps and terminates when a user-specified limit is reached.
It consists of the following computational kernels. (1) Timestep
calculation - Due to the multi-scale nature of the problem,
different physical processes use different time scales. Moving
averages are used to calculate the timesteps for each pro-
cess. The smallest among them is chosen to be the global
timestep shared by all processes during the iteration. This
ensures no interesting process is missed at any timestep dur-
ing the simulation. (2) Relaxation and strong interac-
tions - Three algorithms can be chosen to run based on the
physical system type. (i) Two-body relaxation evaluates an
analytic expression for a representative encounter between
two nearest-neighbors. (ii) Binary interactions does a direct
integration of Newton’s equations for 3 or 4 bodies using
the 8th order Runge-Kutta Prince-Dormand method. (iii)
Stellar collisions merges two bodies based on the local col-
lision probability and changes their properties correspond-
ingly. (3) New orbits computation - The processes in
(2) cause changes in the orbital properties of the stars and
thus their probability to be found at a given location at the
next timestep in the cluster. According to this probability
distribution, the kernel samples new positions. It uses the



bisection method to calculate the extension of the new or-
bits and von Neumann rejection sampling to sample the new
positions. (4) Sort stars by radial distance - This kernel
sorts the stars based on their new radial distances. Sorting
the stars is essential to determine the nearest neighbors for
relaxation and strong interactions, and for computing the
gravitational potential at various radial distances from the
center (discussed in more detail in section 2.2). (5) Ac-
count for inconsistencies - As the new orbits of the stars
were calculated in the gravitational potential of the previous
timestep, this kernel accounts for this time-lag in potential
in order to make sure conservation laws are obeyed.

2.1 Complexity and Performance Analysis
We now analyze the time complexity of these kernels per

timestep. The ‘timestep calculation’ kernel involves the com-
putation of moving averages for each star over a window of
10 stars on either side, and hence takes O(N) time, where
N is the number of stars. The ‘relaxation and strong in-
teractions’, and ‘account for inconsistencies’ kernels con-
tains a set of O(1) calculations inside a loop over all stars.
Hence, these two kernels have the time complexity of O(N).
To determine the new orbits for each star, the third kernel
finds the roots of an expression on an unstructured one-
dimensional grid through bisection. This uses the bisection
method which has a time complexity of O(N logN). The
radial sorting of all stars uses the Quick Sort algorithm and
has the same time complexity.

To identify any potential performance bottlenecks, we ran
a simulation of 2 million stars on a 2.6 GHz AMD c© PhenomTM

Quad-Core Processor with 8 GB of RAM and profiled the
kernels. Table 1 shows the time taken by each kernel per
timestep, for a simulation up to 105 timesteps, and the per-
centage each kernel contributes to the total execution time.
We can see that the ‘new orbits calculation’ kernel is a clear
bottleneck, and consumes the majority of the total execu-
tion time. For a simulation run up to 105 timesteps (typical
for globular cluster simulations), this kernel would take ∼ 17
among the ∼ 31 days the entire simulation would take. Re-
ducing the time taken by this kernel will therefore result in
significant performance improvement of the CMC algorithm
as a whole.

2.2 Bottlenecks
The ‘new orbit calculation’ kernel consists of two parts.

The first finds the pericenter and apocenter distances of a
star’s new orbit. This is done by calculating the roots of a
function using the bisection method. The second finds the
star’s new position in the newly generated orbit using von
Neumann rejection sampling. Hénon [13] describes the orbit
sampling procedure in more detail.

The algorithm computes the gravitational potential of the
cluster by summing the potential due to each star, under
the assumption of spherical symmetry. It maintains only the
radial position r of each star (due to the spherical symmetry
assumption, the angular positions can be neglected to a very
good approximation in globular clusters and galactic nuclei).
After the stars are sorted by increasing radii, the potential
at a point r, which lies between two stars at positions rk
and rk+1, is given by

Φ(r) = G

(
−1

r

k∑
i=1

mi −
N∑

i=k+1

mi

ri

)
(1)

where mi is the mass, ri the position of star i, and G the
gravitational constant.

At the beginning of every timestep, the algorithm com-
putes and stores the potential Φk = Φ(rk) at radial distances
rk (k = 1, ..., N) which are the positions of the stars. To get
the potential Φ(r) at any radial position r from the center,
one first has to find the k such that rk ≤ r ≤ rk+1 and then
compute Φ(r) by:

Φ(r) = Φk +
1/rk − 1/r

1/rk − 1/rk+1
(Φk+1 − Φk) (2)

Figure 2: Iterations of the bisection method con-
verging on the roots rmin and rmax.

Given a star with energy E and angular momentum J
moving in the gravitational potential Φ(r), its rosette orbit
r oscillates between two extreme values rmin and rmax, and
are roots of:

Q(r) = 2E − 2Φ(r)− J2/r2 = 0 (3)

Since the potential at an arbitrary point cannot be analyt-
ically calculated in our case, the interval in which rmin and
rmax falls must be first found. This is done by determining
k such that Q(rk) < 0 < Q(rk+1). We use the bisection
method shown in Algorithm 1 to do this. It starts with two
values of k, kleft and kright, and at each step divides the in-
terval into two parts, retaining only the one in which the so-
lution is contained and discarding the other. Figure 2 shows
the Q(rk) function and the iterations of bisection method
converging onto the roots. Once the interval is found, Φ,
and thus Q, can be computed analytically in that interval,
and determining rmin and rmax become a simple arithmetic
operation. The bisection method is a divide-and-conquer al-
gorithm and has a complexity of O(N logN), and since this
is done for all N stars, the total run-time is O(N logN).

The next step is to select a position of the star in the new
orbit between rmax and rmin. The probability to choose it in
an interval dr should be equal to the fraction of time spent
by the star in dr, i.e.:

dt

T
=

dr/ |vr|∫ rmax

rmin
dr/ |vr|

(4)

with the radial velocity vr = [Q(r)]1/2.



Kernel Time per timestep (sec) Time for 105 timesteps (days) % Time

Timestep calculation 2.39 2.77 9%

Relaxation and strong interactions 3.33 3.85 13%

New orbits calculation 14.59 16.89 54%

Sorting by radial distance 4.11 4.76 15%

Account for inconsistencies 2.26 2.62 9%

Total 26.68 30.89 100%

Table 1: Execution time break-up for various kernels of the CMC algorithm.

Algorithm 1 Bisection algorithm

if Q(kmin) ≤ Q(kmax) then
while kmax 6= kmin do

ktry = (kmin + kmax + 1)/2
if Q(ktry) < 0 then

kmin = ktry
else

kmax = ktry − 1
end if

end while
while kmax 6= kmin do

ktry = (kmin + kmax + 1)/2
if Q(ktry) > 0 then

kmin = ktry
else

kmax = ktry − 1
end if

end while
end ifreturn kmin

The computation of the half-period T is done by the classi-
cal von Neumann rejection technique [11]. We want a proba-
bility distribution to a known function f(r), without know-
ing the constant of proportionality. We take a number F
which is everywhere larger than f(r) (refer Fig 3) and select
a point (r0, f0) at random in the rectangle rmin < r0 < rmax

and 0 < f0 < F , with a uniform distribution. In other
words, we compute:

r0 = rmin + (rmax − rmin)X (5)

f0 = FX ′ (6)

where X and X ′ are a pair of normalized random numbers.
If the point is below the curve: f0 < f(r0), we take r = r0 as
the selected value. In the opposite case, this value is rejected
and a new point in the rectangle is tried with a fresh pair
of random numbers. This process continues until a point
below the curve is obtained. In the CMC algorithm a slightly
modified version of the method is used, since f(r) = 1/|vr|
becomes infinite at both ends of the interval. However, the
same principle is used.

The complexity of this part is dominated by the fact that
the potential has to be calculated at the random point cho-
sen to check whether the point should be accepted or re-
jected. Since the potential is not available at any random
point chosen, this requires another root-bisection, which makes
the complexity of this step O(N logN).

3. DESIGN AND IMPLEMENTATION

F

rmin rmax

(r0, f0)

r0
r

Figure 3: The rejection technique showing functions
f(r) and F , the rejected point and the accepted point
(r0, f0) [13].

Based on our experimental profiling and complexity anal-
ysis, the ’new orbits calculation’ kernel is the bottleneck
consuming the majority (54%) of the total run-time with
a complexity of O(N logN). We accelerate this portion us-
ing a GPU. The CMC algorithm is programmed in C, and
we used CUDA for the GPU implementation.

We assign one thread on the GPU to do the computa-
tions for one star. This ensures minimal data dependency
between the threads since the same set of operations are per-
formed on different data, and makes the bisection method
and rejection technique implementations naturally suited for
SIMD (Single Instruction, Multiple Data) architectures.

3.1 Memory Access Optimization
To harness the high computation power of the GPU, it is

very essential to have a good understanding of its memory
hierarchy in order to develop strategies that reduce memory
access latency. The first step towards optimizing memory
accesses is to ensure that memory transfer between the host
and the GPU is kept to a minimum. Another important
factor that needs to be considered is global memory coa-
lescing in the GPU which could cause a great difference in
performance. When a GPU kernel accesses global memory,
all threads in groups of a half-warp [28] access a bank of
memory at the same time. Coalescing of memory accesses
happens when data requested by these groups of threads
are located in contiguous memory addresses, in which case
they can be read in one (or very few number of) access(es).
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Array of Star Structures

Figure 4: Data coalescing strategy used to strip the original star data structure and pack into contiguous
arrays before transferring them to the GPU.

Hence, whether data is coalesced or not has a significant
impact on an application’s performance as it determines the
degree of memory access parallelism.

In CMC, the physical properties of each star are stored in
a C structure, containing 46 double precision variables. The
N stars are stored in an array of such C structures. Figure
4 shows the original data layout on top i.e. an array of
structures. The kernels we parallelize only require 5 among
the 49 variables present in the star structure: radial distance
(r), mass (m), energy (E), angular momentum (J), and
potential at r (phi) which are shown in color.

To achieve coalesced memory accesses, we need to pack
the data before transferring it to the GPU in a way that
they would be stored in contiguous memory locations in the
GPU global memory. A number of memory accesses involve
the same set of properties for different stars being accessed
together by these kernels since one thread works on the data
of one star. Hence, we extract and pack these into separate,
contiguous arrays, one for each property. This ensures that
the memory accesses in the GPU will be mostly coalesced.
Also, by extracting and packing only the 5 properties re-
quired by the parallel kernels, we minimize the data trans-
fer between the CPU and GPU. Figure 4 gives a schematic
representation of this data reorganization.

3.2 Random Number Generation
For Monte Carlo simulations, generation of random num-

bers is very essential [14, 22–24]. Typically, this is done by
the use of a pseudo random numbers generator (PRNG).
PRNGs maintain a set of states which are used to calculate
the random number. The values of these states are updated
to new ones every time a random number is generated. A
PRNG can be started from an arbitrary starting state using
a random seed. It will always produce the same sequence
thereafter when initialized with the same seed. The max-
imum length of the sequence before it begins to repeat is
called the period of the PRNG. In the CMC algorithm, we
use a combined Tausworthe PRNG [9] which is a maximally
equidistributed combined linear feedback shift register gen-
erator [20,21] whose period is ∼ 2113. We use this generator
due to its property of maximal equidistribution, as it ensures
that the random numbers are distributed uniformly and the
sequence does not have gaps in resolution [20, 21] which is

especially important for the very low probabilities we sam-
ple for, e.g., collisions between single stars. The lack of this
property in some PRNGs prevents us from using libraries
that support parallel random number generation such as
CURAND [29].

In order to implement a parallel version of the rejection
technique, we would like each thread to maintain its own
independent state information and generate random num-
bers as and when required. Yet, we also require these con-
currently generated random numbers to maintain statistical
independence. In short, we need a number of statistically
independent PRNGs, one for each thread. An intuitive idea
to do this would be to allocate separate state information for
each instance of the PRNG and make sure each PRNG mod-
ifies only its own state. However, this does not assure sta-
tistical independence and can suffer from serious correlation
problems. Any PRNG generates a single output sequence,
and seeding the PRNG chooses a particular starting place
in the sequence. Two instances are considered to be inde-
pendent if their sequences do not overlap during execution
of the program. In our case even if we initialize two PRNGs
with different seeds, they will start with some starting place
in the same sequence which will overlap eventually.

A very efficient technique to produce multiple states from
a single random sequence is to use jump functions. We fol-
low a procedure [3] that would generate multiple states from
a single seed by repeatedly applying the jump functions and
saving intermediate results. We implemented this task on
the host (CPU), and it performs extremely fast (in the order
of microseconds). The jump displacement (number of ran-
dom numbers between two states) depends on the number
of random numbers required by each thread for the entire
simulation. In our implementation, we chose a displacement
of 280 to ensure a sufficient number of random numbers per
thread while still allowing a large number of threads to run
in parallel. Once generated on the CPU, these states are
transferred to the GPU global memory. Each thread reads
the respective starting state from the memory and produces
random numbers independently.

However, in the GPU-accelerated version, the way random
numbers are assigned to stars is different from the original
serial version. This brings in a problem of inconsistency in
the results of a serial and parallel simulation, and verifying



Figure 5: Technique used to generate multiple statistically independent random states. This is done on the
CPU, after which the states are transferred to the GPU to allow the thread to use them to generate random
numbers independently.

the correctness of results of a parallel version becomes a
problem. In order to verify the correctness of the results,
we change the serial version such that the same mapping of
random numbers to particles is followed by the serial version
as used in the parallel version. For our choice of random
number generator this does not change in any significant way
the statistical properties of the generated random numbers.

An implementation of the parallel Tausworthe 113 random
number generator is publicly available at http://ciera.

northwestern.edu/Research/CS_Astro.php

3.3 Limitations
In spite of our efforts to optimize the kernel implementa-

tion, there are two factors that prevent us from harnessing
the complete potential of the GPU. First, in the bisection
kernel, the algorithm starts with two end points of an array,
and at each step computes their mid-point. It then picks
the interval that contains the solution, and repeats the pro-
cess with the new end points, i.e. the previously computed
mid-point and one of earlier end points. These mid and
end points are separated by a large distance in most cases.
Therefore, the memory reads of these array elements are
not contiguous. The only exception is towards the end of
the bisection, when it has almost converged on to the root.
At this time these points will be close together and hence
the memory reads might be coalesced. As these accesses
(mid-points) are data-dependent and cannot be easily pre-
determined, non-coalesced accesses cannot be avoided. Such
random accesses leaves us with no simple way of using other
types of faster memory on the GPU memory hierarchy such
as shared and texture memory.

Secondly, in the rejection kernel, random numbers are re-
peatedly generated until the random number satisfies a spec-
ified termination condition. Since the random numbers used

by the threads are completely independent, different threads
may fulfill the condition and terminate the loop at differ-
ent times during the execution. In this case, the terminated
threads will remain idle until all the other threads complete.
Such idling of threads in a GPU warp can significantly im-
pede the performance. We minimize such branch divergence
by running the loop for a fixed, large number of iterations
and making all threads perform redundant calculations after
the termination condition is satisfied. As it turns out, how-
ever, the overhead due to branch divergence was very small,
and we did not obtain a measurable performance gain. On
the other hand, it could be an idea that could be applied to
solve other similar problems.

4. EXPERIMENTS AND RESULTS
All our experiments are carried out on a 2.6 GHz AMD c©

PhenomTM Quad-Core Processor with 2 GB of RAM per
core running Fedora 9 Linux, and an NVIDIA GTX280 GPU
with 30 multiprocessors, and 1 GB of RAM, using the ver-
sion 3.1 of the CUDA compiler. All computations are done
in double precision, and the GTX280 GPU has only a single
Double Precision Unit (DPU) per multiprocessor.

4.1 Performance Analysis
We collect the timing results for 5 simulation timesteps

of a single-mass cluster with a Plummer density profile [30],
and sizes ranging from 106 to 7 × 106 stars, encompassing
nearly all globular cluster sizes (see, e.g., [25]). Figure 6
compares the GPU and CPU run-times. Figure 7 shows the
speedup of ‘new orbits calculation’ part and the bisection
and rejection kernels individually. We see that the average
speedups for the rejection and bisection kernels are 22 and
31, respectively. This is due to the difference in the number



of floating point operations between the two kernels which
is a factor of 10. This makes a major difference on the
CPU but not on the GPU as it has more ALUs, and hence
the difference in speedup. We also observe that the total
speedup increases slightly as the data size increases. In gen-
eral, we obtain a very good scalability. A quick calculation
on the execution times and data sizes in Figure 6 shows that
the GPU scalability strictly follows the kernel’s complex-
ity O(N logN). Note that as the memory transfer between
the CPU and GPU is currently not optimized, our speedup
calculations do not include that overhead. However, as we
transfer only a subset of the entire data for each star, there
is the potential space for improvement to interleave kernel
computations with data transfer and substantially reduce
this overhead.

In Figure 8, the run-times for the bisection and rejection
kernels on the GPU are shown. Both kernels take about
the equal amount of time in total on the GPU for all data
sizes. This indicates that the performance of these kernels is
limited by the memory bandwidth as they roughly require
the same amount of global memory accesses.

Figure 6: Comparison of total run-times of the se-
quential and parallelized kernels for various data
sizes.

Figure 7: Total speedup, and speedups of the bisec-
tion and rejection kernels.

We also evaluated our implementation with different phys-
ical configurations. With the same range of data sizes, we
simulate clusters with two different density profiles - Plum-
mer [30] and King [19], whose distribution functions have

Figure 8: Run-times of the bisection and rejection
kernels on the GPU for various data sizes.

Figure 9: Speedup obtained from a shared memory
implementation of the Bisection kernel for a cluster
with 1 million stars run on a 16-core shared memory
machine.

different forms. Figure 10 shows the comparison of run-
times for these two configurations. We can see that the
run-times for both configurations are almost the same, from
which we infer that the physical conditions of the clusters
do not influence the performance of our kernels. This is due
to the fact that changes in physical configurations do not af-
fect the computations in our kernels in any significant way,
resulting in equally good performance for all configurations.

4.2 GPU vs. Multi-core Architectures
For comparison, we also implemented the bisection kernel

using OpenMP with some optimizations to improve data
locality. We ran a simulation of 1 million stars with the
same density profile as before on a 16-core shared memory
machine with 4 Quad-Core AMD OpteronTM Processors.
Figure 9 shows the speedup we obtained compared to the
ideal speedup. We can see that the speedup increases sub-
linearly till 8 cores after which it saturates. This is possibly
due to memory contention, bandwidth limitations and/or
effects due to Non-Uniform Memory Access (NUMA) [26].
Although we reserve a thorough investigation of this for a fu-
ture work, with the given data it appears to be unlikely that
even larger shared memory machines can deliver speedups
as high as a GPU for these kernels.



Figure 10: Comparison of total run-times and
speedups for the Plummer and King density profiles
for the parallelized kernels.

4.3 Data and Workload Partitioning
We partitioned our data space into one-dimensional grid

of blocks on the GPU. Due to the complexity of the expres-
sions involved in the calculations of orbital positions, our
kernels use a significant amount of registers (64 registers
per thread). Thus, the block dimension is restricted to 256
threads per block as the GTX280 GPU has only 16384 regis-
ters per block. To analyze the performance, we first made a
parameter scan in the block and grid dimensions by varying
the block sizes from 64 to 256 and the grid sizes from 12
to 72. Figure 11 shows the plot of the execution time as a
function of the total number of threads. The time decreases
with increasing number of threads and saturates at about
6000 threads. This clearly shows that the run-time mainly
depends on the total number of threads. The decrease in
run-time is expected as the GPU utilization is increased for
larger numbers of threads. The saturation is due to either
the limited global memory bandwidth, or the limited num-
ber of multiprocessors. The NVIDIA GTX280 GPU has 30
multiprocessors, and when we multiply the maximum block
dimension 256 by 30, this number (7680) is close to the satu-
ration point. This strongly suggests an effect of the number
of multiprocessors on the saturation.

Figure 12 shows the variation of run-time with the grid
dimension for constant number of threads (5760). To ensure
no performance loss due to the block-size not being multi-
ples of the half-warp size (16 for the GTX280 GPU), we
choose the block sizes of multiples of 16. We observe that

the performance can degrade by 50% from the best case for
poor choices of grid dimensions. The best case is achieved
when the number of blocks is a multiple of the number of
multiprocessors, as it ensures full GPU utilization.

We also study the likely influence of effective memory
bandwidth. Figure 13 shows a plot of the run-time with
varying number of threads for a fixed grid dimension, 60,
a multiple of the number of multiprocessors. We expect a
linear decrease with increase in the number of threads per
block, but as we can see this is not the case. Thus, it is
plausible that this indicates the performance being limited
by the memory bandwidth. Another factor that could limit
our performance is branch divergence the effect of which is
more difficult to measure. However, we plan to quantify this
effect in a future study.

5. CONCLUSION AND FUTURE WORK
In this paper, we eliminate the most compute-intensive

bottlenecks of the CMC algorithm by implementing them on
a GPU. For cluster sizes ranging from 106 to 7× 106 stars,
we obtain a mean speedup of 28× for these kernels. Our
implementation also has very good scalability with the data
size and performs equally well on all physical configuration
of clusters simulated. The bottlenecks originally took ∼ 54%
of the total runtime, and by Amdahl’s Law, this acceleration
delivers a ∼ 2× speedup of the entire simulation.

We present strategies to handle branch divergence, and
to reorganize the data structure to optimize memory reads
and writes on the GPU. In addition, we show how a good
choice of data partitioning on the GPU could make a sig-
nificant difference in the performance. To produce parallel
statistically independent random numbers, we use a splitting
method which splits the output of our PRNG into a number
of substreams. The substreams are then used by different
threads of the GPU to generate random numbers. Although
generation of statistically independent random numbers is
critical for Monte Carlo simulations, this might cause a dif-
ference in the results of the serial and parallel versions. We
handle this by letting the serial version emulate the random
number generation and data partitioning of the parallel ver-
sion which then guarantees the output of the two versions
to be identical except for the least significant bit. We ob-
serve that the parts we parallelize on the GPU are limited
by memory-bandwidth rather than computations, and hence
the performance of our implementation is not comparable to
the theoretical peak performance of the NVIDIA GTX280
GPU. However, we show that the GPU is still a much better
platform for parallelization compared to multi-core architec-
tures due to its relatively higher memory bandwidth.

The GPU-accelerated version significantly reduces the run-
time of the CMC algorithm, and enables simulations of large
stellar clusters which were previously very time-consuming.
In this work, we accelerated only the ‘new orbits calculation’
kernel using a GPU. The other kernels exhibit a much higher
data dependency and conditional branching, and therefore
not ideal for a GPU. Also, with the current version, simula-
tions of clusters beyond 107 stars exceed the memory capac-
ity of a single GPU. This means we cannot simulate galactic
nuclei which can have up to 109 stars, a typical problem
size interesting to the computational astrophysics commu-
nity. We plan to develop an MPI-OpenMP-CUDA hybrid
approach to parallelize the entire CMC algorithm on large-
scale high-performance computers, in which we will use MPI
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Figure 11: Dependence of the total run-time of our kernels on the total number of threads.

Figure 12: Variation of run-time with grid size for a
fixed value of total number of threads (5760).

Figure 13: Variation of run-time with total number
of threads for a fixed grid dimension (60).

for inter-node communication, OpenMP for shared-memory
multi-core CPUs, and CUDA for GPUs.
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