
Fast Algorithms for the Maximum Clique Problem on
Massive Sparse Graphs

Bharath Pattabiraman1 ‡, Md. Mostofa Ali Patwary1 ‡,
Assefaw H. Gebremedhin2, Wei-keng Liao1, and Alok Choudhary1

‡ Authors contributed equally

1 Northwestern University, Evanston, IL.
{bpa342,mpatwary,wkliao,choudhar}@eecs.northwestern.edu

2 Purdue University, West Lafayette, IN.
agebreme@purdue.edu

Abstract. The maximum clique problem is a well known NP-Hard problem with
applications in data mining, network analysis, information retrieval and many
other areas related to the World Wide Web. There exist several algorithms for
the problem with acceptable runtimes for certain classes of graphs, but many of
them are infeasible for massive graphs. We present a new exact algorithm that
employs novel pruning techniques and is able to quickly find maximum cliques
in large sparse graphs. Extensive experiments on different kinds of synthetic and
real-world graphs show that our new algorithm can be orders of magnitude faster
than existing algorithms. We also present a heuristic that runs orders of magnitude
faster than the exact algorithm while providing optimal or near-optimal solutions.

1 Introduction
A clique in an undirected graph is a subset of vertices in which every two vertices are
adjacent to each other. The maximum clique problem seeks to find a clique of the largest
possible size in a given graph.

The maximum clique problem, and the related maximal clique and clique enumer-
ation problems, find applications in a wide variety of domains, many intimately related
to the World Wide Web. A few examples include: information retrieval [2], community
detection in networks [15, 29, 33], spatial data mining [40], data mining in bioinformat-
ics [37], disease classification based on symptom correlation [7], pattern recognition
[31], analysis of financial networks [5], computer vision [19], and coding theory [8]. To
get a sense for how clique computation arises in the aforementioned contexts, consider
a generic data mining or information retrieval problem. A typical objective here is to
retrieve data that are considered similar based on some metric. Constructing a graph in
which vertices correspond to data items and edges connect similar items, a clique in the
graph would then give a cluster of similar data. More examples of application areas for
clique problems can be found in [18, 30].

The maximum clique problem is NP-Hard [16]. Most exact algorithms for solving
it employ some form of branch-and-bound approach. While branching systematically
searches for all candidate solutions, bounding (also known as pruning) discards fruit-
less candidates based on a previously computed bound. The algorithm of Carraghan

and Pardalos [9] is an early example of a simple and effective branch-and-bound algo-
rithm for the maximum clique problem. More recently, Östergȧrd [28] introduced an
improved algorithm and demonstrated its relative advantages via computational exper-
iments. Tomita and Seki [35], and later, Konc and Janežič [21] use upper bounds com-
puted using vertex coloring to enhance the branch-and-bound approach. Other examples
of branch-and-bound algorithms for the clique problem include [6, 34, 3]. Prosser [32]
in a recent work compares various exact algorithms for the maximum clique problem.

In this paper, we present a new exact branch-and-bound algorithm for the maximum
clique problem that employs several new pruning strategies in addition to those used in
[9], [28], [35] and [21], making it suitable for massive graphs. We run our algorithms
on a large variety of test graphs and compare its performance with the algorithm of
Carraghan and Pardalos [9], the algorithm of Östergȧrd [28] and the algorithm of Konc
and Janežič [21]. We find our new exact algorithm to be up to orders of magnitude
faster on large, sparse graphs and of comparable runtime on denser graphs. We also
present a hew heuristic, which runs several orders of magnitude faster than the exact
algorithm while providing solutions that are optimal or near-optimal for most cases.
We have made our implementations publicly available3. Both the exact algorithm and
the heuristic are well-suited for parallelization.

2 Related Previous Algorithms
Given a simple undirected graph G, the maximum clique can clearly be obtained by
enumerating all of the cliques present in it and picking the largest of them. Carraghan
and Pardalos [9] introduced a simple-to-implement algorithm that avoids enumerating
all cliques and instead works with a significantly reduced partial enumeration. The re-
duction in enumeration is achieved via a pruning strategy which reduces the search
space tremendously. The algorithm works by performing at each step i, a depth first
search from vertex vi, where the goal is to find the largest clique containing the vertex
vi. At each depth of the search, the algorithm compares the number of remaining ver-
tices that could potentially constitute a clique containing vertex vi against the size of the
largest clique encountered thus far. If that number is found to be smaller, the algorithm
backtracks (search is pruned).

Östergȧrd [28] devised an algorithm that incorporated an additional pruning strat-
egy to the one by Carraghan and Pardalos. The opportunity for the new pruning strategy
is created by reversing the order in which the search is done by the Carraghan-Pardalos
algorithm. This allows for an additional pruning with the help of some auxiliary book-
keeping. Experimental results in [28] showed that the Östergȧrd algorithm is faster than
the Carraghan-Pardalos algorithm on random and DIMACS benchmark graphs [20].
However, the new pruning strategy used in this algorithm is intimately tied to the order
in which vertices are processed, introducing an inherent sequentiality into the algorithm.

A number of existing branch-and-bound algorithms for maximum clique also use
a vertex-coloring of the graph to obtain an upper bound on the maximum clique. A
popular and recent algorithm based on this idea is the algorithm of Tomita and Seiku

3 http://cucis.ece.northwestern.edu/projects/MAXCLIQUE/

[35] (known as MCQ). More recently, Konc and Janežič [21] presented an improved
version of MCQ, known as MaxCliqueDyn (MCQD and MCQD+CS), that involves the
use of tighter, computationally more expensive upper bounds applied on a fraction of
the search space.

3 The New Algorithms
We describe in this section new algorithms that overcome the shortcomings mentioned
earlier; the new algorithms use additional pruning strategies, maintain simplicity, and
avoid a sequential computational order. We begin by first introducing the following
notations. We identify the n vertices of the input graphG = (V,E) as {v1, v2, . . . , vn}.
The set of vertices adjacent to a vertex vi, the set of its neighbors, is denoted by N(vi).
And the degree of the vertex vi, the cardinality of N(vi), is denoted by d(vi).

3.1 The Exact Algorithm

Algorithm 1 Algorithm for finding the maximum clique
of a given graph. Input: Graph G = (V,E), lower bound
on clique lb (default, 0). Output: Size of maximum clique.
1: procedure MAXCLIQUE(G = (V,E), lb)
2: max← lb
3: for i : 1 to n do
4: if d(vi) ≥ max then . Pruning 1
5: U ← ∅
6: for each vj ∈ N(vi) do
7: if j > i then . Pruning 2
8: if d(vj) ≥ max then . Pruning 3
9: U ← U ∪ {vj}

10: CLIQUE(G,U, 1)

– Subroutine
1: procedure CLIQUE(G = (V,E), U , size)
2: if U = ∅ then
3: if size > max then
4: max← size
5: return
6: while |U | > 0 do
7: if size+ |U | ≤ max then . Pruning 4
8: return
9: Select any vertex u from U

10: U ← U \ {u}
11: N ′(u) := {w|w ∈ N(u) ∧ d(w) ≥ max} .

Pruning 5
12: CLIQUE(G,U ∩N ′(u), size+ 1)

The maximum clique in a graph
can be found by computing the
largest clique containing each
vertex and picking the largest
among these. A key element of
our exact algorithm is that dur-
ing the search for the largest
clique containing a given vertex,
vertices that cannot form cliques
larger than the current maxi-
mum clique are pruned, in a hi-
erarchical fashion. The method
is outlined in detail in Algo-
rithm 1. Throughout, the vari-
able max stores the size of the
maximum clique found thus far.
Initially it is set to be equal to
the lower bound lb provided as
an input parameter. It gives the
maximum clique size when the
algorithm terminates.

To obtain the largest clique
containing a vertex vi, it is suffi-
cient to consider only the neigh-
bors of vi. The main routine
MAXCLIQUE thus generates for
each vertex vi ∈ V a set U ⊆
N(vi) (neighbors of vi that survive pruning) and calls the subroutine CLIQUE on U .
The subroutine CLIQUE goes through every relevant clique containing vi in a recursive
fashion and returns the largest. We use size to maintain the size of the clique found

at any point through the recursion. Since we start with a clique of just one vertex, the
value of size is set to one initially, when CLIQUE is called (Line 10, MAXCLIQUE).

Our algorithm consists of several pruning steps. Pruning 1 (Line 4, MAXCLIQUE)
filters vertices having strictly fewer neighbors than the size of the maximum clique al-
ready computed. These vertices can be ignored, since even if a clique were to be found,
its size would not be larger than max. While forming the neighbor list U for a vertex
vi, we include only those of vi’s neighbors for which the largest clique containing them
has not been found (Pruning 2; Line 7, MAXCLIQUE), to avoid recomputing previously
found cliques. Pruning 3 (Line 8, MAXCLIQUE) excludes vertices vj ∈ N(vi) that have
degree less than the current value ofmax, since any such vertex could not form a clique
of size larger than max. Pruning 4 (Line 7, CLIQUE) checks for the case where even if
all vertices of U were added to get a clique, its size would not exceed that of the largest
clique encountered so far in the search, max. Pruning 5 (Line 11, CLIQUE) reduces the
number of comparisons needed to generate the intersection set in Line 12. Note that the
routine CLIQUE is similar to the Carraghan-Pardalos algorithm [9]; Pruning 5 accounts
for the main difference. Also, Pruning 4 is used in most existing algorithms, whereas
Prunings 1, 2, 3 and 5 are not.

3.2 The Heuristic

Algorithm 2 Heuristic for finding the maximum clique
in a graph. Input: Graph G = (V,E). Output: Approxi-
mate size of maximum clique.
1: procedure MAXCLIQUEHEU(G = (V,E))
2: for i : 1 to n do
3: if d(vi) ≥ max then
4: U ← ∅
5: for each vj ∈ N(vi) do
6: if d(vj) ≥ max then
7: U ← U ∪ {vj}
8: CLIQUEHEU(G,U, 1)

– Subroutine
1: procedure CLIQUEHEU(G = (V,E), U , size)
2: if U = ∅ then
3: if size > max then
4: max← size
5: return
6: Select a vertex u ∈ U of maximum degree in G
7: U ← U \ {u}
8: N ′(u) := {w|w ∈ N(u) ∧ d(w) ≥ max}
9: CLIQUEHEU(G,U ∩N ′(u), size+ 1)

The exact algorithm examines
all relevant cliques contain-
ing every vertex. Our heuristic,
shown in Algorithm 2, considers
only the maximum degree neigh-
bor at each step instead of recur-
sively considering all neighbors
from the set U , and thus is much
faster.

3.3 Complexity

The exact algorithm, Algorithm
1, examines for every vertex vi
all candidate cliques containing
the vertex vi in its search for the
largest clique. Its time complex-
ity is exponential in the worst
case. The heuristic, Algorithm
2, loops over the n vertices, each
time possibly calling the subrou-
tine CLIQUEHEU, which effec-
tively is a loop that runs until the
set U is empty. Clearly, |U | is bounded by the max degree ∆ in the graph. The subrou-
tine also includes the computation of a neighbor list, whose runtime is bounded by
O(∆). Thus, the time complexity of the heuristic is bounded by O(n ·∆2).

Table 1. Overview of real-world graphs in the testbed and their origins.

Graph Description
cond-mat-2003 [26] A collaboration network of scientists posting preprints on

the condensed matter archive at www.arxiv.org in the period
email-Enron [23] A communication network representing email exchanges.
dictionary28 [4] Pajek network of words.
Fault 639 [14] A structural problem discretizing a faulted gas reservoir with

tetrahedral Finite Elements and triangular Interface Elements.
audikw 1 [11] An automotive crankshaft model of TETRA elements.
bone010 [39] A detailed micro-finite element model of bones representing

the porous bone micro-architecture.
af shell [11] A sheet metal forming simulation network.
as-Skitter [23] An Internet topology graph from trace routes run daily in 2005.
roadNet-CA [23] A road network of California. Nodes represent intersections

and endpoints and edges represent the roads connecting them.
kkt power [11] An Optimal Power Flow (nonlinear optimization) network.

4 Experiments and Results
We present in this section results comparing the performance of our algorithm with
the algorithms of Carraghan-Pardalos [9], Östergȧrd algorithm [28], and Konc and
Janezik [21]. We implemented the algorithm of [9] ourselves. For the algorithm of
[28], we used the publicly available cliquer source code [27]. For the algorithm of
[21], we used the code MaxCliqueDyn (MCQD, available at http://www.sicmm.
org/˜konc/maxclique/). Among the variants available in MCQD, we report results
on MCQD+CS (which uses improved coloring and dynamic sorting), since it is the
best-performing variant.

The experiments are performed on a Linux workstation running 64-bit Red Hat En-
terprise Linux Server release 6.2 with a 2 GHz Intel Xeon E7540 processor. The codes
are implemented in C++ and compiled using gcc version 4.4.6 with -O3 optimization.

4.1 Test Graphs
Our testbed is grouped in three categories.

1. Real-world graphs Under this category, we consider 10 graphs (downloaded from
the University of Florida Sparse Matrix Collection [11]) that originate from various
real-world applications. Table 1 gives a quick overview of the graphs and their origins.

2. Synthetic Graphs In this category we consider 15 graphs generated using the R-
MAT algorithm [10]. The graphs are subdivided in three categories depending on the
structures they represent.
A. Random graphs (5 graphs) – Erdős-Rényi random graphs generated using R-MAT
with the parameters (0.25, 0.25, 0.25, 0.25). Denoted with prefix rmat er.
B. Skewed Degree, Type 1 graphs (5 graphs) – graphs generated using R-MAT with
the parameters (0.45, 0.15, 0.15, 0.25). Denoted with prefix rmat sd1.
C. Skewed Degree, Type 2 graphs (5 graphs) – graphs generated using R-MAT with
the parameters (0.55, 0.15, 0.15, 0.15). Denoted with prefix rmat sd2.

Table 2. Structural properties (the number of vertices, |V |; edges, |E|; and the maximum degree,
∆) of the graphs,G in the testbed: DIMACS Challenge graphs (upper left); UF Collection (lower
and middle left); RMAT graphs (right).

G |V | |E| ∆ G |V | |E| ∆

cond-mat-2003 31,163 120,029 202 rmat sd1 1 131,072 1,046,384 407
email-Enron 36,692 183,831 1,383 rmat sd1 2 262,144 2,093,552 558
dictionary28 52,652 89,038 38 rmat sd1 3 524,288 4,190,376 618
Fault 639 638,802 13,987,881 317 rmat sd1 4 1,048,576 8,382,821 802
audikw 1 943,695 38,354,076 344 rmat sd1 5 2,097,152 16,767,728 1,069

bone010 986,703 35,339,811 80 rmat sd2 1 131,072 1,032,634 2,980
af shell10 1,508,065 25,582,130 34 rmat sd2 2 262,144 2,067,860 4,493
as-Skitter 1,696,415 11,095,298 35,455 rmat sd2 3 524,288 4,153,043 6,342
roadNet-CA 1,971,281 2,766,607 12 rmat sd2 4 1,048,576 8,318,004 9,453
kkt power 2,063,494 6,482,320 95 rmat sd2 5 2,097,152 16,645,183 14,066

rmat er 1 131,072 1,048,515 82 hamming6-4 64 704 22
rmat er 2 262,144 2,097,104 98 johnson8-4-4 70 1,855 53
rmat er 3 524,288 4,194,254 94 keller4 171 9,435 124
rmat er 4 1,048,576 8,388,540 97 c-fat200-5 200 8,473 86
rmat er 5 2,097,152 16,777,139 102 brock200 2 200 9,876 114

3. DIMACS graphs This last category consists of 5 graphs selected from the Second
DIMACS Implementation Challenge [20].

The DIMACS graphs are an established benchmark for the maximum clique prob-
lem, but they are of rather limited size and variation. In contrast, the real-work net-
works included in category 1 of the testset and the synthetic (RMAT) graphs in cate-
gory 2 represent a wide spectrum of large graphs posing varying degrees of difficulty
for testing the algorithms. The rmat er graphs have normal degree distribution, whereas
the rmat sd1 and rmat sd2 graphs have skewed degree distributions and contain many
dense local subgraphs. The rmat sd1 and rmat sd2 graphs differ primarily in the mag-
nitude of maximum vertex degree they contain; the rmat sd2 graphs have much higher
maximum degree. Table 2 lists basic structural information (the number of vertices,
number of edges and the maximum degree) about all 30 of the test graphs.

4.2 Results
Table 3 shows the size of the maximum clique (ω) and the runtimes of our exact al-
gorithm (Algorithm 1) and the algorithms of Caraghan and Pardalos (CP), Östergȧrd
(cliquer) and Konc and Janežič (MCQD+CS) for all the graphs in the testbed. The last
two columns show the results of our heuristic (Algorithm 2)—the size of the maximum
clique returned and its runtime. The columns labeled P1, P2, P3 and P5 list the num-
ber of vertices/branches pruned in the respective pruning steps of Algorithm 1. Pruning
4 is omitted since it is used by all the algorithms compared in the table. These numbers
have been rounded (K stands for 103, M for 106 and B for 109), although the exact
numbers can be found in the Appendix (Table 4).

In Table 3, the fastest runtime for each instance is indicated with boldface. An as-
terisk (*) indicates that an algorithm did not terminate within 25,000 seconds for a

Table 3. Comparison of runtimes (in seconds) of algorithms [9] (CP), [28] (cliquer), [21]
(MCQD+CS) and our new exact algorithm (τA1) for the graphs in the testbed. P1, P2, P3
and P5 are the number of vertices/branches pruned in steps Pruning 1, 2, 3 and 5 of our exact
algorithm (K stands for 103, M for 106 and B for 109). ω denotes the maximum clique size in the
graph, ωA2 denotes the clique size returned by our heuristic and τA2 shows its runtime.

τMCQD

Graph ω τCP τcliquer +CS τA1 P1 P2 P3 P5 ωA2 τA2

cond-mat-2003 25 4.875 11.17 2.41 0.011 29K 48K 6,527 17K 25 <0.01
email-Enron 20 7.005 15.08 3.70 0.998 32K 155K 4,060 8M 18 0.261
dictionary28 26 7.700 32.74 7.69 <0.01 52K 4,353 2,114 107 26 <0.01
Fault 639 18 14571.20 4437.14 - 20.03 36 13M 126 1,116 18 5.80
audikw 1 36 * 9282.49 - 190.17 4,101 38M 59K 721K 36 58.38
bone010 24 * 10002.67 - 393.11 37K 34M 361K 44M 24 24.39
af shell10 15 * 21669.96 - 50.99 19 25M 75 2,105 15 10.67
as-Skitter 67 24385.73 * - 3838.36 1M 6M 981K 737M 66 27.08
roadNet-CA 4 * * - 0.44 1M 1M 370K 4,302 4 0.08
kkt power 11 * * - 2.26 1M 4M 401K 2M 11 1.83

rmat er 1 3 256.37 215.18 49.79 0.38 780 1M 915 8,722 3 0.12
rmat er 2 3 1016.70 865.18 - 0.78 2,019 2M 2,351 23K 3 0.24
rmat er 3 3 4117.35 3456.39 - 1.87 4,349 4M 4,960 50K 3 0.49
rmat er 4 3 16419.80 13894.52 - 4.16 9,032 8M 10K 106K 3 1.44
rmat er 5 3 * * - 9.87 18K 16M 20K 212K 3 2.57

rmat sd1 1 6 225.93 214.99 50.08 1.39 39K 1M 23K 542K 6 0.45
rmat sd1 2 6 912.44 858.80 - 3.79 90K 2M 56K 1M 6 0.98
rmat sd1 3 6 3676.14 3446.02 - 8.17 176K 4M 106K 2M 6 1.78
rmat sd1 4 6 14650.40 13923.93 - 25.61 369K 8M 214K 5M 6 4.05
rmat sd1 5 6 * * - 46.89 777K 16M 455K 12M 6 9.39

rmat sd2 1 26 427.41 213.23 48.17 242.20 110K 853K 88K 614M 26 32.83
rmat sd2 2 35 4663.62 851.84 - 3936.55 232K 1M 195K 1B 35 95.89
rmat sd2 3 39 13626.23 3411.14 - 10647.84 470K 3M 405K 1B 37 245.51
rmat sd2 4 43 * 13709.52 - * * * * * 42 700.05
rmat sd2 5 N * * - * * * * * 51 1983.21

hamming6-4 4 <0.01 <0.01 <0.01 <0.01 0 704 0 0 4 <0.01
johnson8-4-4 14 0.19 <0.01 <0.01 0.23 0 1,855 0 0 14 <0.01
keller4 11 22.19 0.15 0.02 23.35 0 9,435 0 0 11 <0.01
c-fat200-5 58 0.60 0.33 0.01 0.93 0 8,473 0 0 58 0.04
brock200 2 12 0.98 0.02 <0.01 1.10 0 9,876 0 0 10 <0.01

particular instance. A hyphen (-) indicates that the publicly available implementation
(the MaxCliqueDyn code) had to be aborted because the input graph was too large for
the implementation to handle. Even for the instances for which the code eventually run
successfully, we had to first modify the graph reader to make it able to handle graphs
with multiple connected components. For the graph rmat sd2 5, none of the algorithms
computed the maximum clique size in a reasonable time; the entry there is marked with
N, standing for “Not Known”.

We discuss in what follows our observations from this table for the exact algorithm
and the heuristic.

Exact algorithms As expected, our exact algorithm gave the same size of maximum
clique as the other three algorithms for all test cases. In terms of runtime, its relative
performance compared to the other three varied in accordance with the advantages af-
forded by the various pruning steps.

Vertices that are discarded by Pruning 1 are skipped in the main loop of the al-
gorithm, and the largest cliques containing them are not computed. Pruning 2 avoids
re-computing previously computed cliques in the neighborhood of a vertex. In the ab-
sence of Pruning 1, the number of vertices pruned by Pruning 2 would be bounded by
the number of edges in the graph (note that this is more than the total number of vertices
in the graph). While Pruning 3 reduces the size of the input set on which the maximum
clique is to be computed, Pruning 5 brings down the time taken to generate the inter-
section set in Line 12 of the subroutine. Pruning 4 corresponds to back tracking. Unlike
Pruning steps 1, 2, 3 and 5, Pruning 4 is used by all three of the other algorithms in our
comparison. The primary strength of our algorithm is its ability to take advantage of
pruning in multiple steps in a hierarchical fashion, allowing for opportunities for one or
more of the steps to kick in and impact performance.

As a result of the differences seen in the effects of the pruning steps, as discussed
below, the runtime performance of our algorithm (seen in Table 3) compared to the other
three algorithms varied in accordance with the difference in the structures represented
by the different categories of graphs in the testbed.

Real-world Graphs. For most of the graphs in this category, it can be seen that our
algorithm runs several orders of magnitude faster than the other three, mainly due to
the large amount of pruning the algorithm enforced. These numbers also illustrate the
great benefit of hierarchical pruning. For the graphs Fault 639, audikw 1 and af shell10,
there is only minimal impact by Prunings 1, 3 and 5, whereas Pruning 2 makes a big
difference resulting in impressive runtimes. The number of vertices pruned in steps
Pruning 1 and 3 varied among the graph within the category, ranging from 0.001% for
af shell to a staggering 97% for as-Skitter for the step Pruning 1.

Synthetic Graphs. For the synthetic graph types rmat er and rmat sd1, our algo-
rithm clearly outperforms the other three by a few orders of magnitude in all cases. This
is also primary due to the high number of vertices discarded by the new pruning steps.
In particular, for rmat sd1 graphs, between 30 to 37% of the vertices are pruned just
in the step Pruning 1. For the rmat sd2 graphs, which have relatively larger maximum
clique and higher maximum degree than the rmat sd1 graphs, our algorithm is observed
to be faster than CP but slower than cliquer.

DIMACS Graphs. The runtime of our exact algorithm for the DIMACS graphs is
in most cases comparable to that of CP and higher than that of cliquer and MCQD+CS.
For these graphs, only Pruning 2 was found to be effective, and thus the performance
results agree with one’s expectation. We include in the Appendix timing results on a
larger collection of DIMACS graphs.

It is to be noted that the DIMACS graphs are intended to serve as challenging test
cases for the maximum clique problem, and graphs with such high edge densities and
low vertex count are rare in practice. Most of these have between 20 to 1024 vertices
with an average edge density of roughly 0.6, whereas, most real world graphs are often
very large and sparse. Good examples are Internet topology graphs [13], the web graph
[22], social network graphs [12], and the real-world graphs in our testbed.

The Heuristic It can be seen that our heuristic runs several orders of magnitude faster
than our exact algorithm, while delivering either optimal or very close to optimal so-
lution. It gave the optimal solution on 25 out of the 30 test cases. On the remaining
5 cases where it was suboptimal, its accuracy ranges from 83% to 99% (on average
93%). Additionally, we run the heuristic by choosing a vertex randomly in Line 6 of
Algorithm 2 instead of the one with the maximum degree. We observe that on average,
the solution is optimal only for less than 40% of the test cases compared to 83% when
selecting the maximum degree vertex.

Figure 1 provides an aggregated visual summary of the runtime trends of the various
algorithms across the five categories of graphs in the testbed.

Fig. 1. Runtime (normalized, mean)
comparison between various algo-
rithms. For each category of graph,
first, all runtimes for each graph
were normalized by the runtime of
the slowest algorithm for that graph,
and then the mean was calculated for
each algorithm. Graphs were consid-
ered only if the runtimes for at least
three algorithms was less than the
25,000 seconds limit set.

To give a sense of runtime growth rates, we provide in Figure 2 plots of the runtime
of the new exact algorithm and the heuristic for the synthetic and real-world graphs in
the testbed. Besides the curves corresponding to the runtimes of the exact algorithm
and the heuristic, the figures also include a curve corresponding to the number of edges
in the graph divided by the clock frequency of the computing platform used in the
experiment. This curve is added to facilitate comparison between the growth rate of the
algorithms with that of a linear-time (in the size of the graph) growth rate. It can be
seen that the runtime of the heuristic by and large grows somewhat linearly with the
size of a graph. The exact algorithm’s runtime, which is orders of magnitude larger than
the heuristic, exhibited a similar growth behavior for these test-cases (even though its
worst-case complexity suggests exponential growth).

5 Conclusion
We presented a new exact and a new heuristic algorithm for the maximum clique prob-
lem. We performed extensive experiments on three broad categories of graphs compar-
ing the performance of our algorithms to the algorithms due to Carraghan and Pardalos
(CP) [9], Östergȧrd (cliquer) [28] and Konc and Janežič (MCQD+CS) [21]. For DI-
MACS benchmark graphs and certain dense synthetic graphs (rmat sd2), our new exact
algorithm performs comparably with the CP algorithm, but slower than cliquer and
MCQD+CS. For large sparse graphs, both synthetic and real-world, our new algorithm
runs several orders of magnitude faster than the other three. The heuristic, which runs
many orders of magnitude faster than our exact algorithm and the others, gave opti-

Fig. 2. Run time plots of the new exact and heuristic algorithms. The third curve, labeled edges,
shows the quantity, number of edges in the graph divided by the clock frequency of the computing
platform used in the experiment.

mal solution for 83% of the test cases, and when it is sub-optimal, its accuracy ranged
between 0.83 and 0.99.

In this work, we did not compare the performance of our algorithm against those
for which an implementation is not publicly available such as [36, 25]. It would be
interesting to implement these and compare in future work. Further, the MCQD im-
plementation uses an adjacency matrix, whereas our algorithm uses an adjacency list
to represent the graph. Although it is unlikely for the overall results to be drastically
different with a change in the graph representation, it will be interesting to study to
what degree the performance will change with the change in graph representation. The
heuristic’s performance is impressive as presented; still it is worthwhile to compare
with other existing heuristics approaches such as [1, 17].

Acknowledgements

This work is supported in part by the following grants: NSF awards CCF-0833131,
CNS-0830927, IIS-0905205, CCF-0938000, CCF-1029166, and OCI-1144061; DOE
awards DE-FG02-08ER25848, DE-SC0001283, DE-SC0005309, DESC0005340, and

DESC0007456; AFOSR award FA9550-12-1-0458. The work of Assefaw Gebremed-
hin is supported by the NSF award CCF-1218916 and by the DOE award DE-SC0010205.

References
1. D. Andrade, M. Resende, and R. Werneck, Fast local search for the maximum independent

set problem, Journal of Heuristics, 18 (2012), pp. 525–547.
2. J.G. Augustson and J. Minker, An analysis of some graph theoretical cluster techniques, J.

ACM 17 (1970), pp. 571–588.
3. L. Babel and G. Tinhofer, A branch and bound algorithm for the maximum clique problem,

Mathematical Methods of Operations Research 34 (1990), pp. 207–217.
4. V. Batagelj and A. Mrvar, Pajek datasets (2006), URL http://vlado.fmf.uni-lj.

si/pub/networks/data/.
5. V. Boginski, S. Butenko, and P.M. Pardalos, Statistical analysis of financial networks, Com-

putational Statistics & Data Analysis 48 (2005), pp. 431–443.
6. I.M. Bomze, M. Budinich, P.M. Pardalos, and M. Pelillo, The Maximum Clique Problem, in

Handbook of Combinatorial Optimization, Kluwer Academic Publishers, 1999, pp. 1–74.
7. R.E. Bonner, On some clustering techniques, IBM J. Res. Dev. 8 (1964), pp. 22–32.
8. A.E. Brouwer, J.B. Shearer, N.J.A. Sloane, and W.D. Smith, A new table of constant weight

codes., IEEE Transactions on Information Theory (1990), pp. 1334–1380.
9. R. Carraghan and P. Pardalos, An exact algorithm for the maximum clique problem, Oper.

Res. Lett. 9 (1990), pp. 375–382.
10. D. Chakrabarti and C. Faloutsos, Graph mining: Laws, generators, and algorithms, ACM

Comput. Surv. 38 (2006).
11. T.A. Davis and Y. Hu, The university of florida sparse matrix collection, ACM Transactions

on Mathematical Software (TOMS) 38 (2011), pp. 1:1–1:25.
12. P. Domingos and M. Richardson, Mining the network value of customers, in Proc. of the 7th

ACM SIGKDD KDD’01, KDD ’01, San Francisco, California, ACM, New York, NY, USA,
2001, pp. 57–66.

13. M. Faloutsos, P. Faloutsos, and C. Faloutsos, On power-law relationships of the Internet
topology, in Proc. of the conference on Applications, technologies, architectures, and pro-
tocols for computer communication, SIGCOMM ’99, Cambridge, Massachusetts, United
States, ACM, 1999, pp. 251–262.

14. M. Ferronato, C. Janna, G. Gambolati, Mixed constraint preconditioning in computational
contact mechanics, Computer Methods in Applied Mechanics and Engineering 197 (2008),
pp. 3922 – 3931.

15. S. Fortunato, Community detection in graphs, Physics Reports 486 (2010), pp. 75–174.
16. M.R. Garey and D.S. Johnson, W. H. Freeman & Co., New York, NY, USA 1979.
17. A. Grosso, M. Locatelli, and W. Pullan, Simple ingredients leading to very efficient heuristics

for the maximum clique problem, Journal of Heuristics, 14 (2008), pp. 587–612.
18. G. Gutin, Gross, J. L.; Yellen, J., Handbook of graph theory, Discrete Mathematics & Its

Applications, CRC Press 2004.
19. R. Horaud and T. Skordas, Stereo correspondence through feature grouping and maximal

cliques, IEEE Trans. Pattern Anal. Mach. Intell. 11 (1989), pp. 1168–1180.
20. D. Johnson and M.A. Trick, Editors, Cliques, coloring and satisfiability: Second dimacs

implementation challenge, DIMACS Series on Discrete Mathematics and Theoretical Com-
puter Science 26 (1996).

21. J. Konc and D. Janežič, An improved branch and bound algorithm for the maximum clique
problem, MATCH Commun. Math. Comput. Chem., 2007, 58, pp. 569590.

22. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, Extracting Large-Scale Knowledge
Bases from the Web., in VLDB’99, 1999, pp. 639–650.

23. J. Leskovec, J. Kleinberg, and C. Faloutsos, Graphs over time: densification laws, shrinking
diameters and possible explanations, in Proceedings of the eleventh ACM SIGKDD interna-
tional conference on Knowledge discovery in data mining, KDD ’05, Chicago, Illinois, USA,
ACM, New York, NY, USA, 2005, pp. 177–187.

24. L. Leydesdorff, On the normalization and visualization of author co-citation data: Salton’s
cosine versus the jaccard index, J. Am. Soc. Inf. Sci. Technol. 59 (2008), pp. 77–85.

25. C.-M. Li and Z. Quan, An efficient branch-and-bound algorithm based on maxsat for the
maximum clique problem, 2010.

26. M.E.J. Newman, Coauthorship networks and patterns of scientific collaboration, Proceed-
ings of the National Academy of Sciences of the United States of America 101 (2004), pp.
5200–5205.

27. S. Niskanen and P.R.J. Östergård, Cliquer user’s guide, version 1.0, Tech. Rep. T48, Com-
munications Laboratory, Helsinki University of Technology, Espoo, Finland, 2003.

28. P.R.J. Östergård, A fast algorithm for the maximum clique problem, Discrete Appl. Math.
120 (2002), pp. 197–207.

29. G. Palla, I. Derenyi, I. Farkas, and T. Vicsek, Uncovering the overlapping community struc-
ture of complex networks in nature and society, Nature 435 (2005), pp. 814–818.

30. P.M. Pardalos and J. Xue, The maximum clique problem, Journal of Global Optimization 4
(1994), pp. 301–328.

31. M. Pavan and M. Pelillo, A new graph-theoretic approach to clustering and segmentation, in
Proc. of the 2003 IEEE computer society conference on Computer vision and pattern recog-
nition, CVPR’03, Madison, Wisconsin, IEEE Computer Society, Washington, DC, USA,
2003, pp. 145–152.

32. P. Prosser, Exact algorithms for maximum clique: A computational study, arXiv preprint
arXiv:1207.4616v1 (2012).

33. S. Sadi, S. Öğüdücü, and A.S. Uyar, An efficient community detection method using parallel
clique-finding ants, in Proc. of IEEE Congress on Evol. Comp, July, 2010, pp. 1–7.

34. P. San Segundo, D. Rodrı́guez-Losada, and A. Jiménez, An exact bit-parallel algorithm for
the maximum clique problem, Comput. Oper. Res. 38 (2011), pp. 571–581.

35. E. Tomita and T. Seki, An efficient branch-and-bound algorithm for finding a maximum
clique, in Proc. of the 4th international conference on Discrete mathematics and theoretical
computer science, Dijon, France, Springer-Verlag, Berlin, Heidelberg, 2003, pp. 278–289.

36. E. Tomita, Y. Sutani, T. Higashi, S. Takahashi, and M. Wakatsuki, A simple and faster
branch-and-bound algorithm for finding a maximum clique, in WALCOM: Algorithms and
Computation, M. Rahman and S. Fujita, eds., vol. 5942 of Lecture Notes in Computer Sci-
ence, Springer Berlin Heidelberg, 2010, pp. 191–203.

37. T. Matsunaga, C. Yonemori, E. Tomita, and M. Muramatsu, Clique-based data mining for
related genes in a biomedical database, BMC Bioinformatics 10 (2009), p. 205.

38. J. Turner, Almost all k-colorable graphs are easy to color, Journal of Algorithms 9 (1988),
pp. 63–82.

39. B. van Rietbergen, H. Weinans, R. Huiskes, and A. Odgaard, A new method to determine
trabecular bone elastic properties and loading using micromechanical finite-element models,
Journal of Biomechanics 28 (1995), pp. 69 – 81.

40. L. Wang, L. Zhou, J. Lu, and J. Yip, An order-clique-based approach for mining maximal
co-locations, Information Sciences 179 (2009), pp. 3370–3382.

Appendix

Table 4. P1, P2, P3, P4 and P5 are the number of vertices pruned in steps Pruning 1, 2, 3, 4,
and 5 of Algorithm 1. An asterisk (*) indicates that the algorithm did not terminate within 25,000
seconds for that instance. ω denotes the maximum clique size.

G ω P1 P2 P3 P4 P5

cond-mat-2003 25 29,407 48,096 6,527 2,600 17,576
email-Enron 20 32,462 155,344 4,060 110,168 8,835,739
dictionary28 26 52,139 4,353 2,114 542 107
Fault 639 18 36 13,987,719 126 10,767,992 1,116
audikw 1 36 4,101 38,287,830 59,985 32,987,342 721,938
bone010 24 37,887 34,934,616 361,170 96,622,580 43,991,787
af shell10 15 19 25,582,015 75 40,629,688 2,105
as-Skitter 67 1,656,570 6,880,534 981,810 26,809,527 737,899,486
roadNet-CA 4 1,487,640 1,079,025 370,206 320,118 4,302
kkt power 11 1,166,311 4,510,661 401,129 1,067,824 1,978,595

rmat er 1 3 780 1,047,599 915 118,461 8,722
rmat er 2 3 2,019 2,094,751 2,351 235,037 23,908
rmat er 3 3 4,349 4,189,290 4,960 468,086 50,741
rmat er 4 3 9,032 8,378,261 10,271 933,750 106,200
rmat er 5 3 18,155 16,756,493 20,622 1,865,415 212,838

rmat sd1 1 6 39,281 1,004,660 23,898 151,838 542,245
rmat sd1 2 6 90,010 2,004,059 56,665 284,577 1,399,314
rmat sd1 3 6 176,583 4,013,151 106,543 483,436 2,677,437
rmat sd1 4 6 369,818 8,023,358 214,981 889,165 5,566,602
rmat sd1 5 6 777,052 16,025,729 455,473 1,679,109 12,168,698

rmat sd2 1 26 110,951 853,116 88,424 1,067,824 614,813,037
rmat sd2 2 35 232,352 1,645,086 195,427 81,886,879 1,044,068,886
rmat sd2 3 39 470,302 3,257,233 405,856 45,841,352 1,343,563,239
rmat sd2 4 43 * * * * *
rmat sd2 5 N * * * * *

hamming6-4 4 0 704 0 583 0
johnson8-4-4 14 0 1855 0 136,007 0
keller4 11 0 9435 0 8,834,190 0
c-fat200-5 58 0 8473 0 70449 0
brock200 2 12 0 9876 0 349,427 0

Table 5. Comparison of runtimes of algorithms [9] (CP), [28] (cliquer) and [21] (MCQD+CS)
with that of our new exact algorithm (τA1) for DIMACS graphs. An asterisk (*) indicates that
the algorithm did not terminate within 10,000 seconds for that instance. ω denotes the maximum
clique size, ωA2 the maximum clique size found by our heuristic and τA2, its runtime.

τMCQD

G |V | |E| ω τCP τcliquer +CS τA1 ωA2 τA2

brock200 1 200 14,834 21 * 10.37 0.75 * 18 0.02
brock200 2 200 9,876 12 0.98 0.02 0.01 1.1 10 <0.01
brock200 3 200 12,048 15 14.09 0.16 0.03 14.86 12 <0.01
brock200 4 200 13,089 17 60.25 0.7 0.12 65.78 14 <0.01
c-fat200-1 200 1,534 12 <0.01 <0.01 <0.01 <0.01 12 <0.01
c-fat200-2 200 3,235 24 <0.01 <0.01 <0.01 <0.01 24 <0.01
c-fat200-5 200 8,473 58 0.6 0.33 0.01 0.93 58 0.04
c-fat500-1 500 4,459 14 <0.01 <0.01 <0.01 <0.01 14 <0.01
c-fat500-2 500 9,139 26 0.02 <0.01 0.01 0.01 26 0.01
c-fat500-5 500 23,191 64 3.07 <0.01 <0.01 * 64 0.11
hamming6-2 64 1,824 32 0.68 <0.01 <0.01 0.33 32 <0.01
hamming6-4 64 704 4 <0.01 <0.01 <0.01 <0.01 4 <0.01
hamming8-2 256 31,616 128 * 0.01 0.01 * 128 0.67
hamming8-4 256 20,864 16 * <0.01 0.1 * 16 0.03
hamming10-2 1,024 518,656 512 * 0.31 - * 512 95.24
johnson8-2-4 28 210 4 <0.01 <0.01 <0.01 <0.01 4 <0.01
johnson8-4-4 70 1,855 14 0.19 <0.01 <0.01 0.23 14 <0.01
johnson16-2-4 120 5,460 8 20.95 0.04 0.42 22.07 8 <0.01
keller4 171 9,435 11 22.19 0.15 0.02 23.35 11 <0.01
MANN a9 45 918 16 1.73 <0.01 <0.01 2.5 16 <0.01
MANN a27 378 70,551 126 * * 3.3 * 125 1.74
p hat300-1 300 10,933 8 0.14 0.01 <0.01 0.14 8 <0.01
p hat300-2 300 21,928 25 831.52 0.32 0.03 854.59 24 0.03
p hat500-1 500 31,569 9 2.38 0.07 0.04 2.44 9 0.02
p hat500-2 500 62,946 36 * 159.96 1.2 * 34 0.14
p hat700-1 700 60,999 11 12.7 0.12 0.13 12.73 9 0.04
p hat1000-1 1,000 122,253 10 97.39 1.33 0.41 98.48 10 0.11
san200 0.7 1 200 13,930 30 * 0.99 <0.01 * 16 0.01

