
Scalable Parallel OPTICS Data Clustering

Using Graph Algorithmic Techniques

Md. Mostofa Ali Patwary1,†, Diana Palsetia1, Ankit Agrawal1,
Wei-keng Liao1, Fredrik Manne2, Alok Choudhary1

1Northwestern University, Evanston, IL 60208, USA 2University of Bergen, Norway
†Corresponding author: mpatwary@eecs.northwestern.edu

ABSTRACT
OPTICS is a hierarchical density-based data clustering algorithm
that discovers arbitrary-shaped clusters and eliminates noise using
adjustable reachability distance thresholds. Parallelizing OPTICS is
considered challenging as the algorithm exhibits a strongly sequen-
tial data access order. We present a scalable parallel OPTICS algo-
rithm (POPTICS) designed using graph algorithmic concepts. To
break the data access sequentiality, POPTICS exploits the similar-
ities between the OPTICS algorithm and PRIM’s Minimum Span-
ning Tree algorithm. Additionally, we use the disjoint-set data
structure to achieve a high parallelism for distributed cluster ex-
traction. Using high dimensional datasets containing up to a billion
floating point numbers, we show scalable speedups of up to 27.5
for our OpenMP implementation on a 40-core shared-memory ma-
chine, and up to 3,008 for our MPI implementation on a 4,096-core
distributed-memory machine. We also show that the quality of the
results given by POPTICS is comparable to those given by the clas-
sical OPTICS algorithm.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Clustering; I.5.3 [Pattern Recognition]: Cluster-
ing—Algorithms; H.2.8 [Database Management]: Database Ap-
plications—Data Mining; G.1.0 [Mathematics of Computing]:
Numerical Analysis—Parallel Algorithms

General Terms
Algorithms, Experimentation, Performance, Theory

Keywords
Density-based clustering, Minimum spanning tree, Union-Find al-
gorithm, Disjoint-set data structure

1. INTRODUCTION
Clustering is a data mining technique that groups data into mean-

ingful subclasses, known as clusters, such that it minimizes the
intra-differences and maximizes inter-differences of these subclasses
[21]. For the purpose of knowledge discovery, it identifies dense
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SC 13 November 17-21, 2013, Denver, CO, USA
Copyright 2013 ACM 978-1-4503-2378-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2503210.2503255

and sparse regions and therefore, discovers overall distribution pat-
terns and correlations in the data. Based on the data properties or
the task requirements, various clustering algorithms have been de-
veloped. Well-known algorithms include K-means [35], K-medoids
[41], BIRCH [55], DBSCAN [20], OPTICS [5, 29], STING [52],
and WaveCluster [48]. These algorithms have been used in vari-
ous scientific areas such as satellite image segmentation [38], noise
filtering and outlier detection [11], unsupervised document clus-
tering [50], and clustering of bioinformatics data [36]. Existing
clustering algorithms have been roughly categorized as partitional,
hierarchical, grid-based, and density-based [26, 27]. OPTICS (Or-
dering Points To Identify the Clustering Structure) is a hierarchical
density-based clustering algorithm [5]. The key idea of the density-
based clustering algorithm such as OPTICS and DBSCAN is that for
each data point in a cluster, the neighborhood within a given radius
(ε), known as generating distance, has to contain at least a mini-
mum number of points (minpts), i.e. the density of the neighbor-
hood has to exceed some threshold [5, 20]. Additionally, OPTICS
addresses DBSCAN’s major limitation: the problem of detecting
meaningful clusters in data of varying density.

OPTICS provides an overview of the cluster structure of a dataset
with respect to density and contains information about every clus-
ter level of the dataset. In order to do so, OPTICS generates a linear
order of points where spatially closest points become neighbors.
Additionally, for each point, a spacial distance (known as reach-
ability distance) is computed which represents the density. Once
the order and the reachability distances are computed using ε and
minpts, we can query for the clusters that a particular value of
ε
� (known as clustering distance) would give where ε

� ≤ ε. The
query is answered in linear time.

One example application of OPTICS, which requires high per-
formance computing, is finding halos and subhalos (clusters) from
massive cosmology data in astrophysics [34]. Other application
domains include analyzing satellite images, X-ray crystallography,
and anomaly detection [7]. However, OPTICS is challenging to
parallelize as its data access pattern is inherently sequential. To
the best of our knowledge, there has not been any effort yet to do
so. Due to the similarities with DBSCAN, a natural choice for de-
signing a parallel OPTICS could be one of the several master-slave
based approaches [6, 13, 14, 17, 23, 54, 56]. However, in [44],
we showed that these approaches incur high communication over-
head between the master and slaves, and low parallel efficiency. As
an alternative to these approaches we presented a parallel DBSCAN
algorithm based on the disjoint-set data structure, suitable for mas-
sive data sets [44]. However, this approach is not directly applica-
ble to OPTICS as DBSCAN produces a clustering result for a single
set of density parameters, whereas OPTICS generates a linear or-
der of the points that provides an overview of the cluster structure

for a wide range of input parameters. One key difference between
these two algorithms from the viewpoint of parallelization is that in
DBSCAN, after processing a point one can process its neighbors in
parallel, whereas in OPTICS, the processing of the neighbors fol-
lows a strict order.

To overcome this challenge, we develop a scalable parallel OPTI-
CS algorithm (POPTICS) using graph algorithmic concepts. POPTI-
CS exploits the similarities between OPTICS and PRIM’s Minimum
Spanning Tree (MST) algorithm [46] to break the sequential access
of data points in the classical OPTICS algorithm. The main idea
is that two points should be assigned to the same cluster if they
are sufficiently close (if at least one of them has sufficiently many
neighbors). This relationship is transitive so a connected compo-
nent of points should also be in the same cluster. If the distance
bound is set sufficiently high, all vertices will be in the same clus-
ter. As this bound is lowered, the cluster will eventually break apart
forming sub-clusters. This is modeled by calculating a minimum
distance spanning tree on the graph using an initial (high) distance
bound (ε). Then to query the dataset for the clusters that an ε

� ≤ ε

would give, one has only to remove edges from the MST of weight
more than ε

� and the remaining connected components will give
the clusters.

The idea of our POPTICS algorithm is as follows. Each processor
computes a MST on its local dataset without incurring any commu-
nication. We then merge the local MSTs to obtain a global MST.
Both steps are performed in parallel. Additionally, we extract the
clusters directly from the global MST (without a linear order of
the points) for any clustering distance, ε�, by simply traversing the
edges of the MST once in an arbitrary order, thus also enabling
the cluster generation in parallel using the parallel disjoint-set data
structure [42]. POPTICS shows higher concurrency for data access
while maintaining a comparable time complexity and quality with
the classical OPTICS algorithm. We note that MST-based tech-
niques have been applied previously in cluster analysis, such as the
single-linkage method that uses MST to join clusters by the shortest
distance between them [25]. [22] and [31] also make the connec-
tion between OPTICS and PRIM’s MST construction, but their pro-
posed algorithms themselves do not exploit this idea to re-engineer
OPTICS in order to implement it in a distributed environment or to
achieve scalable performance.

POPTICS is parallelized using both OpenMP and MPI to run on
shared-memory machines and distributed-memory machines, re-
spectively. Our performance evaluation used a rich set of high
dimensional data consisting of instances from real-world and syn-
thetic datasets containing up to a billion floating point numbers.
The speedups obtained on a shared-memory machine show scal-
able performance, achieving a speedup of up to 27.5 on 40 cores.
Similar scalability results were observed for the MPI implemen-
tation on a distributed-memory machine with a speedup of 3,008
using 4,096 processors. In our experiments, we found that while
achieving the scalability, POPTICS produces clustering results with
comparable quality to the classical OPTICS algorithm.

The remainder of this paper is organized as follows. In Section 2,
we describe the classical OPTICS algorithm. In Section 3, we pro-
pose the Minimum Spanning Tree based OPTICS algorithm along
with a proof of correctness and complexity analysis. The parallel
version, POPTICS is given in Section 4. We present our experi-
mental methodology and results in Section 5 before concluding in
Section 6.

2. THE OPTICS ALGORITHM
OPTICS is a hierarchical clustering algorithm that relies on a den-

sity notion of clusters [5, 20]. It is capable of detecting meaningful

clusters in data of varying density by producing a linear order of
points such that points which are spatially closest become neigh-
bors in the order. OPTICS starts with adding an arbitrary point of a
cluster to the order list and then iteratively expands the cluster by
adding a point within the ε−neighborhood of a point in the clus-
ter which is also closest to any of the already selected points. The
process continues until the entire cluster has been added to the or-
der. The process then moves on to the remaining clusters. Addi-
tionally, OPTICS computes the reachability distance for each point.
This represents the required density in order to keep two points in
the same cluster. Once the order and the reachability distances are
computed, we can extract the clusters for any clustering distance,
ε
� where ε

� ≤ ε, in linear time. In the following we first define
the notation used throughout the paper and then present a brief de-
scription of OPTICS based on [5].

reachability distance (y)

MinPts = 3
!

!”

x

y

z

core distance (x)

reachability distance (z)

Figure 1: An example showing
the core distance of x and the
reachability distances of y and z

with respect to x.

Let X be the set of
data points to be clus-
tered. The neighborhood
of a point x ∈ X within
a given radius ε (known as
the generating distance) is
called the ε-neighborhood
of x, denoted by Nε(x).
More formally, Nε(x) =
{y ∈ X|DISTANCE(x, y)
≤ ε, y �= x}, where
DISTANCE(x, y) is the dis-
tance function. A point
x ∈ X is referred to
as a core point if its ε-
neighborhood contains at
least a minimum number of points (minpts), i.e., |Nε(x)| ≥
minpts. A point y ∈ X is directly density-reachable from x ∈ X

if y is within the ε-neighborhood of x and x is a core point. A
point y ∈ X is density-reachable from x ∈ X if there is a chain
of points x1,x2,. . .,xn, with x1 = x, xn = y such that xi+1 is
directly density-reachable from xi for all 1 ≤ i < n, xi ∈ X .

DEFINITION 2.1 (GENERATING DISTANCE). The generating
distance ε is the largest distance used to compute Nε(x) for each
point x ∈ X .

DEFINITION 2.2 (CORE DISTANCE). The core distance, CD,
of a point x is the smallest distance ε

��
such that |Nε

�� (x)| ≥
minpts. If |Nε(x)| < minpts, the core distance is NULL.

DEFINITION 2.3 (REACHABILITY DISTANCE). The reacha-
bility distance, RD of y with respect to another point x is either the
smallest distance such that y is directly density reachable from x if
x is a core point, or NULL if x is not a core point.

RD(y) =

�
NULL, if |Nε(x)| < minpts

MAX{CD(x), DISTANCE(x, y)}, otherwise

Figure 1 shows an example explaining the core distance of a
point x and the reachability distance of y and z w.r.t. x.

The relationship between OPTICS and Minimum Spanning Tree
computation is as follows. The OPTICS algorithm allows to ex-
tract clusters for different values of ε� (but always keeping minpts

fixed). It does so by constructing a minimum reachability distance
spanning tree for the data points. Starting from an unprocessed
point x such that Nε(x) ≥ minpts it first picks and stores the
point pair (or edge) (x, y) such that y ∈ Nε(x) where the reach-
ability distance of y from x, RD[y] is minimum. Then for any ε

�

where RD[y] ≤ ε
�, the points x and y will be in the same cluster as

Algorithm 1 The OPTICS algorithm. Input: A set of points X and
the input parameters, generating distance, ε and the minimum num-
ber of points required to form a cluster, minpts. Output: An order
of points, O, the core distances, and the reachability distances.
1: procedure OPTICS(X, ε,minpts,O)
2: pos ← 0
3: for each unprocessed point x ∈ X do
4: mark x as processed
5: N ← GETNEIGHBORS(x, ε)
6: SETCOREDISTANCE(x,N, ε,minpts)
7: O[pos] ← x; pos ← pos+ 1
8: RD[x] ← NULL
9: if CD[x] �= NULL then

10: UPDATE(x,N,Q)
11: while Q �= empty do
12: y ← EXTRACTMIN(Q)
13: mark y as processed
14: N

� ← GETNEIGHBORS(y, ε)
15: SETCOREDISTANCE(y,N �

, ε,minpts)
16: O[pos] ← y; pos ← pos+ 1
17: if CD[y] �= NULL then
18: UPDATE(y,N �

, Q)

long as Nε�(x) ≥ minpts. If ε� < RD[y] then it is clear that x and
y will be in different clusters as there cannot be a density-reachable
path from x to y since y is the closest point to x. Thus it follows
that for a given value ε

� we can immediately determine if x and y

should be in the same cluster. OPTICS then continues this process
by repeatedly picking and storing the point z which is closest to
the previously picked core points. In this way it builds a spanning
tree very much like a minimum weight spanning tree in traditional
graph theory. Once the tree is maximal one can query it for the
clusters that a particular value of ε� would give where ε

� ≤ ε. The
answer is obtained by removing any edge (x, y) where RD(y) > ε

�

from the resulting spanning tree and returning the points in the re-
maining connected components as the clusters. In our work to par-
allelize the OPTICS algorithm, we exploit ideas from computing
minimum weight spanning trees in parallel and also from how to
compute connected components in parallel.

The pseudocode for the classical OPTICS algorithm is given in
Algorithm 1. The algorithm computes the core distance and the
reachability distance for each point and generates an order, O of
all the points in X . It starts with an arbitrary point x ∈ X and
retrieves its ε-neighborhood, N (Line 5). It then computes the core
distance, CD of x using the SETCOREDISTANCE function. If the
ε-neighborhood of x does not contain at least minpts points, then
x is not a core point and therefore the SETCOREDISTANCE func-
tion sets CD[x] to NULL. Otherwise, x is a core point and the
SETCOREDISTANCE function finds the minpts

th closest point to
x in N and sets the distance to that point from x as CD[x]. This
can easily be achieved by using a maximum priority queue of length
equal to minpts and traversing the points in N once.

The next step in OPTICS is to add x to the order, O (Line 7)
and set the reachability distance of x, RD[x] to NULL (Line 8) as
it is the first point of the cluster added to the order or a noise point.
We then check if the core distance of x is NULL, indicating that, x
doesn’t have sufficient neighbors to be a core point. In this case we
continue to the next unprocessed point in X . Otherwise, we add
(update if the reachability distance w.r.t. x is smaller) all the un-
processed neighbors in N into a (min) priority queue, Q for further
processing using the UPDATE function (Line 10). The details of the
UPDATE function are given in Algorithm 2. For each unprocessed
point, x� ∈ N , the UPDATE function computes the reachability dis-
tance of x� w.r.t. x (newD). If the reachability distance of x� was

NULL, we set RD[x�] to newD and insert x� into Q for further pro-
cessing. Otherwise, x� was already reached from other points and
we check whether x is closer to x

� compared to the earlier points.
If so, we update RD[x�] to newD.

Algorithm 2 The UPDATE function. Input: A point x, its neigh-
bors, N , and a priority queue, Q. Each element in Q stores two
values, a point x� and its best reachability distance so far.
1: procedure UPDATE(x,N,Q)
2: for each unprocessed point x� ∈ N do
3: newD = MAX(CD[x], DISTANCE(x�

, x))
4: if RD[x�] = NULL then
5: RD[x�] ← newD

6: INSERT(Q, x
�
, newD)

7: else if newD < RD[x�] then
8: RD[x�] ← newD

9: DECREASE(Q, x
�
, newD)

The next step in Algorithm 1 is to process each point y ∈ Q

(Line 11-18) in the same way as discussed above (Line 4-10) for x.
As Q is a minimum priority queue, each point y extracted from Q

is the closest neighbor of the already processed points belonging to
the current cluster. Note that while processing the points in Q, new
neighbors might be added or the reachability distance of the un-
processed points in Q might be updated, which essentially changes
the order of the points in Q. When Q is empty, the entire cluster
has been explored and added to the order, O. The algorithm then
continues to the next unprocessed point in X .

The computational complexity of Algorithm 1 is O(n∗runtime

of an ε-neighborhood query), where n is the number of points
in X . The retrieval of ε-neighborhood of a point (GETNEIGHBORS
function) in Algorithm 1 is known as a region-query with center x
and generating distance ε. This requires a linear scan of the entire
datasets, therefore, the complexity of Algorithm 1 is O(n2). But, if
spatial indexing (for example, using a kd-tree [28] or an R*-tree [8])
is used for serving the region-queries (GETNEIGHBORS function),
the complexity reduces to O(n log n) [9].

Algorithm 3 The ORDERTOCLUSTERS function. Input: An order
of points, O and clustering distance, ε�. Output: Clusters in CID.
1: procedure ORDERTOCLUSTERS(O, ε

�)
2: id ← 0
3: for each point x ∈ O do
4: if RD[x] > ε

� then
5: if CD[x] ≤ ε

� then
6: id ← id+ 1
7: CID[x] = id

8: else
9: CID[x] = NOISE

10: else
11: CID[x] = id

Once the order, core distances, and the reachability distances are
computed by Algorithm 1, any density-based clusters of clustering
distance, ε�, ranging from 0 to ε, can be extracted in linear time.
Algorithm 3, ORDERTOCLUSTERS provides the pseudocode for
extracting the clusters for an ε

�. The idea is that two points x and y

belong to the same cluster if one, say x, is directly density reachable
(w.r.t. ε�) from the other one, y (a core point), that is, RD[x] ≤ ε

�

which ensures that CD[y] ≤ ε
�. Since the closest points in X are

grouped together in the order O, ORDERTOCLUSTERS finds the
groups (each group is a cluster) satisfying this criteria. However,
for the first point x of a cluster in O, RD[x] is greater than ε

�, but x
is a core point, that is, CD[x] ≤ ε

� (Line 4-5). We therefore begin a

new cluster (Line 6-7) and keep adding the following points, say y,
in O (Line 11) as long as y is directly density reachable from any
of the previously added core points, say z, in the same cluster, that
is, RD[y] ≤ ε

�, which implies that CD[z] ≤ ε
�. Any point not part

of a cluster (not reachable w.r.t. ε
�) is declared as a NOISE point

(Line 9). The process continues until all points in O are scanned.
Since we traverse the order O once to extract all the clusters and
noise points, the complexity of Algorithm 3 is linear.

Note that deriving clusters in such a way in OPTICS and run-
ning DBSCAN with the chosen clustering distance ε� yield the same
clustering result on the core points of a dataset. The assignment of
non-core points to neighboring clusters is non-deterministic both in
DBSCAN and in OPTICS. However, to obtain a hierarchical cluster-
ing using DBSCAN requires multiple runs of the expensive cluster-
ing algorithm. This method also incurs a huge memory overhead to
store the cluster memberships for many different values of the in-
put parameter, ε�. On the contrary, OPTICS executes the expensive
clustering algorithm once for a larger value of ε

�, the generating
distance ε to store the structure of the datasets and later, extracts
the clusters in linear time for any value of ε�, where ε

� ≤ ε.

3. DESIGN FOR SCALABILITY
The major limiting factor when parallelizing the OPTICS algo-

rithm is that it exhibits a strongly inherent sequential data access
order always processing the closest point when producing the or-
der and the reachability distances. To break this sequentiality, we
present a new OPTICS algorithm which exploits the similarities be-
tween OPTICS and PRIM’s Minimum Spanning Tree (MST) algo-
rithm.

As mentioned before, [22] and [31] also make the connection be-
tween OPTICS and PRIM’s MST construction, but their proposed al-
gorithms themselves do not exploit this idea to re-engineer OPTICS
in order to implement it in a distributed environment or to achieve
scalable performance. Moreover, the algorithms assume that the
reachability distances between two points are symmetric, which in
reality is not the case for classical OPTICS. Additionally, [22] is
computationally expensive as it does not use any input parameter
(e.g. ε). In contrast to our approach which extract clusters directly
from the MST in parallel, these algorithms compute the order from
the MST and the clusters from the order, which make the whole
process more sequential.

In the following, we provide a brief overview of the PRIM’s MST
algorithm [46], followed by the details of our new MST-based OP-
TICS algorithm.

a
b

c

d

e

f

g

a
b

c

d

e

f

g

(a)

MinPts = 3

!

a
b

c

d

e

f

g

(b) (c)

Figure 2: An example showing the similarities between OPTICS
and PRIM’s MST algorithm. (a) The data points, (b) The ε

neighborhood of point a, b and c in OPTICS, and (c) The ad-
jacent edges of vertices a, b and c in PRIM’s MST algorithm. As
can be seen, starting from a, the processing order in both cases
are the same, a → b → c → . . . as b and c are the closest point
(vertex) of a and b, respectively.

3.1 Prim’s Minimum Spanning Tree
A subgraph T of a graph G = (V,E), where V and E denote

the set of vertices and edges of graph G, respectively, is a spanning
tree of G if it is a tree and contains each vertex v ∈ V . A Mini-
mum Spanning Tree (MST) is a spanning tree of minimum weight,
where weight in our setting is the reachability distance between two
points. PRIM’s algorithm [46] is a greedy approach to find an MST
of a given graph. The algorithm starts with adding an arbitrary
vertex into the MST. It then iteratively grows the current MST by
inserting a vertex closest to the vertices already in the current MST.
The process continues until all the vertices are added into the tree.
If the graph contains multiple components, then PRIM’s algorithm
finds one MST for each component. The set of MSTs are known
as Minimum Spanning Forest (MSF). Throughout the paper we use
MST and MSF interchangeably. The complexity of PRIM’s algo-
rithm is O(|E|log|V |) if implemented with a simple binary heap
data structure and an adjacency list representation for G.

As discussed before, PRIM’s approach to continuously increase
the MST, one edge at a time, is very similar to the OPTICS al-
gorithm. In the context of OPTICS, the vertices are analogous to
the points in our spatial dataset and edge weights are analogous to
the reachability distances. We therefore use them interchangeably
throughout the paper. While expanding the MST, PRIM’s algorithm
considers the adjacent vertices whereas in OPTICS, all points in
the ε-neighborhood are considered as adjacent points. Figure 2 is
an example showing the similarities between OPTICS and PRIM’s
MST algorithm. The ε-neighborhoods of point a, b, and c are
shown in Figure 2(b) and the corresponding edges for them are
shown in Figure 2(c). The color of the circles and the color of the
edges match with the color of the points explored.

3.2 A New MST-based OPTICS Algorithm
As discussed above, the OPTICS approach to hierarchical den-

sity based clustering consists of two stages. First, Algorithm 1 to
compute the order, core distances, and reachability distances using
the generating distance, ε and minimum number of points, minpts.
This is followed by Algorithm 3 for extracting clusters from these
values using the clustering distance, ε�, where 0 ≤ ε

� ≤ ε. Sim-
ilarly our Minimum Spanning Tree (MST) based OPTICS has two
corresponding stages, (i) MOPTICS (Algorithm 4) to compute the
MST and core distances, and (ii) extracting clusters (Algorithm 5)
from the already computed MST and core distances. We also show
that using the MST, one can compute the reachability distances and
the order of points in linear time.

Algorithm 4 Compute the Minimum Spanning Trees based on
Prim’s algorithm. Input: A set of points X and the input param-
eters, ε and minpts. Output: The Minimum Spanning Trees, T .
1: procedure MOPTICS(X, ε,minpts, T)
2: for each unprocessed point x ∈ X do
3: mark x as processed
4: N ← GETNEIGHBORS(x, ε)
5: SETCOREDISTANCE(x,N, ε,minpts)
6: if CD[x] �= NULL then
7: MODUPDATE(x,N, P)
8: while P �= empty do
9: (u, v, w) ← EXTRACTMIN(P)

10: T ← T ∪ (u, v, w)
11: mark u as processed
12: N

� ← GETNEIGHBORS(u, ε)
13: SETCOREDISTANCE(u,N �

, ε,minpts)
14: if CD[u] �= NULL then
15: MODUPDATE(u,N �

, P)

The pseudocode of the first stage to compute the MST and core
distances is given in Algorithm 4, denoted by MOPTICS. The al-
gorithm is similar to the classical OPTICS (Algorithm 1), but in-
stead of computing the reachability distances and order, it com-
putes the MST (similar to PRIM’s Minimum Spanning Tree Al-
gorithm). However, both algorithms compute the core distances.
MOPTICS starts with an arbitrary point x ∈ X and retrieves its ε-
neighborhood, N using the GETNEIGHBORS function (Line 4). We
then compute the core distance of x using the SETCOREDISTANCE
function (Line 5). Note that we use the same GETNEIGHBORS
and SETCOREDISTANCE functions as were used in the classical
OPTICS algorithm (Algorithm 1). If x is not a core point, we con-
tinue to the next unprocessed point, otherwise, we add or update
each unprocessed neighbor in N into a minimum priority queue,
P , using a modified UPDATE function, named MODUPDATE.

For each neighbor x� ∈ N , MODUPDATE computes the reach-
ability distance of x

� w.r.t. x and adds or decreases its value in
P depending on if it already existed in P or if the new reacha-
bility distance is smaller than the earlier computed one. Note that
although ideally UPDATE and the MODUPDATE functions are iden-
tical, MODUPDATE additionally stores the source point (x in this
case) from which the point x� has been reached. This is to achieve a
memory efficient parallel MOPTICS (discussed in the next section)
as otherwise each process core requires a vector of reachability dis-
tances of length equal to the total number of points in X .

The next step (Line 8-15) in Algorithm 4 is to process all the
points in the priority queue, P , in the same way as discussed above
for x (Line 3-7). Additionally, we add the extracted triples (u, v, w)
in Line 9 as an edge, v → u with weight w (as point u was reached
from v with reachability distance w) into the MST, T , in Line 10.
Similar to classical OPTICS, while processing the points in P , more
points might be added into P (until the entire cluster is explored).
Since a point can be inserted into P at most once throughout the
computation, the edges in T do not form any cycle.

For each point, x ∈ X , MOPTICS uses all the points in the ε-
neighborhood, N , of x as the adjacent points (similar to PRIM’s
algorithm which considers the adjacent vertices while processing a
vertex) and the reachability distance of each point x� ∈ N from x

is considered as the weight of the edge x → x
� in the MST. The

complexity of MOPTICS is O(n log n), identical to OPTICS.
Note that given the MST, one can easily compute the order and

the reachability distances from the MST produced by MOPTICS in
linear time (w.r.t. to the number of edges in the MST). The idea
is to rerun the MOPTICS algorithm, but instead of computing the
core distances (as already computed), we compute the reachabil-
ity distances and order using only the edges in the MST. This
process also does not need the expensive ε-neighborhood query
(GETNEIGHBORS function) as the neighbors can be found from
the MST itself. This computation only takes a fraction of the time
compared to OPTICS and MOPTICS. Due to space consideration,
we only present the results in the experiments section.

We now present the second stage of our MST-based OPTICS
algorithm, named MSTTOCLUSTERS, to extract the clusters di-
rectly from the MST for any clustering distance ε

�, where 0 ≤
ε
� ≤ ε. This is achieved by removing any edge x → y with

weight w > ε
� (hence RD(y) > ε

�) from the MST and returning
the points in the remaining connected components as the clusters.
The MSTTOCLUSTERS function uses the disjoint-set data struc-
ture [24, 43] for this purpose. Below we briefly introduce the data
structure and how it works.

The disjoint-set data structure defines a mechanism to maintain
a dynamic collection of non-overlapping sets of points. The data
structure comes with two main operations: FIND and UNION. The

FIND operation determines to which set a given point belongs,
while the UNION operation joins two existing sets. Each set is iden-
tified by a representative, x, which is usually some point of the set.
The underlying data structure of each set is typically a rooted tree
represented by a parent pointer, PAR(x) for each point x ∈ X;
the root satisfies PAR(x) = x and is the representative of the set.
The output of the FIND(x) operation is the root of the tree contain-
ing x. UNION(x, y) merges the two trees containing x and y by
changing the parent pointer of one root to the other one. To do this,
the UNION(x, y) operation first calls two find operations, FIND(x)
and FIND(y). If they return the same root (i.e. x and y are in the
same set), no merging is required. But if the returned roots are dif-
ferent, say rx and ry , the UNION operation sets PAR(rx) = ry or
PAR(ry) = rx. Note that this definition of the UNION operation
is slightly different from its standard definition which requires that
x and y belong to two different sets before calling UNION. There
exist many different techniques to improve the performance of the
UNION operation. In this paper, we have used the empirically best
known UNION technique (a lower indexed root points to a higher
indexed root), known as REM’s algorithm with the splicing com-
pression technique. Details on these can be found in [43].

The pseudocode of MSTTOCLUSTERS is given in Algorithm 5.
The idea is that two vertices u and v connected by an edge with
weight w belong to the same cluster if w ≤ ε

�. For each point
x ∈ X , MSTTOCLUSTERS starts by creating a new set by set-
ting the parent pointer to itself (Line 2-3). We then go through
each edge (u, v, w) in the MST, T (Line 4-6). We check whether
the edge weight w ≤ ε

�. If so, then u is density reachable from
v with reachability distance w, and v is core point with core dis-
tance, CD[v] ≤ ε

� as CD[v] ≤ RD[u]. Therefore, u and v should
belong to the same cluster. We therefore perform a UNION oper-
ation (Line 6) of the trees containing u and v. At the end of the
MSTTOCLUSTERS algorithm, a singleton tree containing only one
point is a NOISE point whereas all points in a tree of size more than
one belong to the same cluster.

Algorithm 5 The MSTTOCLUSTERS function. Input: The Mini-
mum Spanning Trees, T and the clustering distance, ε�. Output:
Clusters in CID.
1: procedure MSTTOCLUSTERS(T, ε�)
2: for each point x ∈ X do
3: PAR(x) ← x

4: for each edge (u, v, w) ∈ T do
5: if w ≤ ε

� then
6: UNION(u, v)

THEOREM 3.1. Algorithm 3 (ORDERTOCLUSTERS) and Algo-
rithm 5 (MSTTOCLUSTERS) produce identical clusters.

Due to space consideration, we only outline the proof. Given
the order of points, O generated by OPTICS, ORDERTOCLUSTERS
adds a point, u to a cluster if the reachability distance, RD[u] ≤
ε
�. This implies that u is reachable from a core point v with core

distance CD[v] ≤ ε
� as CD[v] ≤ RD[u]. Any point following u

in O with reachability distance less than or equal to ε
� belongs to

the same cluster, S. Therefore, ORDERTOCLUSTERS keeps adding
them to S. As MOPTICS doesn’t have the order, but it rather stores
the reachability distance of u as an edge weight w along with the
point v from which it has been reached in the MST. Therefore, for
each edge, if the edge weight w ≤ ε

� (thus RD[u] ≤ ε
�), then u and

v must belong to the same cluster, as is done in MSTTOCLUSTERS.
Note that as MSTTOCLUSTERS can process the edges in T in

an arbitrary order, it follows that, it is highly parallel in nature.
However, this stage takes only a fraction of the time taken com-
pared to OPTICS and MOPTICS as will be shown in the experiments

Algorithm 6 The parallel OPTICS algorithm on a shared memory
computer (POPTICSS) using p threads. Input: A set of points X

and the input parameters, ε and minpts. Let X be divided into p

equal disjoint partitions X1, X2, X3, . . . , Xp, each assigned to one
of the p threads. Output: The Minimum Spanning Trees, T .
1: procedure POPTICSS(X, ε,minpts, T)
2: for t = 1 to p in parallel do � Stage: Local computation
3: for each unprocessed point x ∈ Xt do
4: mark x as processed
5: N ← GETNEIGHBORS(x, ε)
6: SETCOREDISTANCE(x,N, ε,minpts)
7: if CD[x] �= NULL then
8: MODUPDATE(x,N, Pt)
9: while Pt �= empty do

10: (u, v, w) ← EXTRACTMIN(Pt)
11: Q ← INSERT(u, v, w) in critical
12: if u ∈ Xt then
13: mark u as processed
14: N

� ← GETNEIGHBORS(u, ε)
15: SETCOREDISTANCE(u,N �

, ε,minpts)
16: if CD[u] �= NULL then
17: MODUPDATE(u,N �

, Pt)
18: for each point x ∈ X in parallel do � Stage: Merging
19: PAR(x) ← x

20: while Q �= empty do
21: (u, v, w) ← EXTRACTMIN(Q)
22: if UNION(u, v) = TRUE then
23: T ← T ∪ (u, v, w)

section. We therefore omit the discussion on the parallelization
of MSTTOCLUSTERS and only present how to parallelize the first
stage, MOPTICS. However, it is worth noting that parallelization of
MSTTOCLUSTERS can be achieved easily using our prior work on
PARALLELUNION algorithm, for both shared and distributed mem-
ory computers [37, 42]. The idea behind the PARALLELUNION
operation on a shared memory computer is that the algorithm uses
a separate lock for each point. A thread wishing to set the parent
pointer of a root r1 to r2 during a UNION operation would then
have to acquire r1’s lock before doing so. More details on parallel
UNION using locks can be found in [42]. However, in distributed
memory computers, as the memory is not shared among the proces-
sors, message passing is used instead of locks and only the owner
of a point is allowed to change the parent pointers. Details are
available in [37].

4. THE PARALLEL OPTICS ALGORITHM
We parallelize the OPTICS algorithm by exploiting ideas for how

to compute Minimum Spanning Trees in parallel. The key idea of
our parallel MST-based OPTICS (denoted by POPTICS) is that each
process core first runs the sequential MOPTICS algorithm (Algo-
rithm 4) on its local data points to compute local MSTs in parallel.
We then perform a parallel merge of the local MSTs to obtain the
global MST. Note that similar ideas have been used in the graph
setting for shared address space and GPUs [40, 47].

4.1 POPTICS on Shared Memory
The details of parallel OPTICS on shared memory parallel com-

puters (denoted by POPTICSS) are given in Algorithm 6. The data
points X are divided into p partitions {X1, X2, . . . , Xp} (one for
each of the p threads running in parallel) and each thread t owns
partition Xt. We divide the algorithm, POPTICSS, into two seg-
ments, local computation (Line 2-17) and merging (Line 18-23).
Local computation is similar to sequential MOPTICS but each thread
t processes only its own data points Xt instead of X and also op-
erates on its own priority queue, Pt while processing the neigh-

bors. Additionally, when we extract a point u (reached from v

with reachability distance, w, Line 10), we perform the following
two things: (i) We add the edge (u, v, w) into a minimum prior-
ity queue, Q (Line 11), shared among the threads (therefore is a
critical statement) for further processing in the merging stage, and
(ii) we check if u ∈ Xt (Line 12) to make sure thread t processes
only its own points as the GETNEIGHBORS function (Line 5 and
14) returns both local and non-local points as all points are in the
commonly accessible shared memory.

It is very likely that the union of the local MSTs found by each
thread in the local computation contains redundant edges (in partic-
ular those connecting local and non-local points), thus giving rise
to cycles. We therefore need one additional merging stage (Line
18-23) to compute the global MST from the local MSTs, stored
in Q. One can achieve this using either PRIM’s MST algorithm
[46] or KRUSKAL’s MST algorithm [30]. However, PRIM’s algo-
rithm requires an additional computation to obtain the adjacency
list computed from the edges in Q. We therefore use KRUSKAL’s
algorithm in the merging stage. KRUSKAL’s algorithm also needs
the edges in Q to be in a sorted order, but this is achieved as a by-
product as Q is a priority queue and the edges were inserted in a
critical statement. KRUSKAL’s algorithm uses the disjoint-set data
structure [18, 51] as discussed above. It first creates a new set for
each point, x ∈ X (Line 18-19) in parallel. It then iteratively ex-
tracts the top edge, (u, v, w) from Q and tries to perform a UNION
operation of the sets containing u and v. If they are already in the
same set, we continue to the next edge. Otherwise, the UNION op-
eration returns TRUE and we add the edge (u, v, w) into the global
MST, T . Although the merging stage on shared memory imple-
mentation is mostly sequential, it takes only a very small portion of
the total time taken by POPTICSS. This is because merging does
not require any communication and operates only on the edges in
the local MSTs.

Thus, given the global MST, one can compute the clusters for
any clustering distance ε

� using MSTTOCLUSTERS function (Al-
gorithm 5). Note that the MST computed by parallel OPTICS,
POPTICSS could be different than the MST computed by sequen-
tial MST-based OPTICS, MOPTICS. This is mainly because of the
following three reasons: (i) The processing sequence of the points
along with the starting points is different, (ii) The reachability dis-
tance between two neighbor points x and y are not symmetric (al-
though RD[x] w.r.t. y can be computed using RD[y] w.r.t. x and
CD[y]), and (iii) A border point (neither a core point nor a noise
point, but falls within the ε-neighborhood of a core point) that falls
within the boundary of two clusters will be taken by the first one
which reaches the point. Therefore, to evaluate the quality of the
clusters obtained from POPTICSS compared to the clusters given by
classical OPTICS, we employ a well known metric, called Omega-
Index [16], designed for comparing clustering solutions [39, 53].
The Omega-Index is based on how the pairs of points have been
clustered. Two solutions are in agreement on a pair of points if they
put both points into the same cluster or each into a different cluster.
Thus the Omega-Index is computed using the observed agreement
adjusted by the expected agreement divided by the maximum pos-
sible agreements adjusted by the expected agreement. The score
ranges from 0 to 1, where a value of 1 indicates that the two solu-
tions match. More details can be found in [16, 39, 53].

4.2 POPTICS on Distributed Memory
The details of parallel OPTICS (POPTICS) on distributed mem-

ory parallel computers (denoted by POPTICSD) are given in Algo-
rithm 7. Similar to POPTICSS and traditional parallel algorithms,
we assume that the data points X have been equally partitioned into

p partitions {X1, X2, . . . , Xp} (one for each processor) and each
processor t owns Xt only. A point x is a local point on proces-
sor t if x ∈ Xt, otherwise x is a remote point. Since the memory
is distributed, any partition Xi �= Xt, 1 ≤ i ≤ p is invisible
to processor t (in contrast to POPTICSS which uses shared mem-
ory). We therefore need the GETLOCALNEIGHBORS (Line 4) and
GETREMOTENEIGHBORS (Line 5) functions to get the local and
remote points, respectively. Note that retrieving the remote points
requires communication with other processors. Instead of calling
GETREMOTENEIGHBORS for each local point during the compu-
tation, we take advantage of the ε parameter and gather all possible
remote neighbors in one step before the start of the algorithm. In
the OPTICS algorithm, for any given point x, we are only inter-
ested in the neighbors that fall within the generating distance ε of
x. Therefore, we extend the bounding box of Xt by a distance,
ε, in every direction in each dimension and query other processors
with the extended bounding box to return their local points that fall
in it. Thus, each processor t has a copy of the remote points X

�
t

that it requires for its computation. We consider this step as a pre-
processing step (named gather-neighbors). Our experiments show
that gather-neighbors takes only a limited time compared to the to-
tal time. Thus, the GETREMOTENEIGHBORS function returns the
remote points from the local copy, X �

t without communication.

Algorithm 7 The parallel OPTICS algorithm on a distributed mem-
ory computer (POPTICSD) using p processors. Input: A set of
points X and the input parameters, ε and minpts. Let X be di-
vided into p equal disjoint partitions {X1, X2, . . . , Xp} for the
p running processors. Each processor t also has a set of remote
points, X �

t stored locally to avoid communication during local com-
putation. Output: The Minimum Spanning Trees, T .
1: procedure POPTICSD(X, ε,minpts)
2: for each unprocessed point x ∈ Xt do � Stage: Local computation

3: mark x as processed
4: Nl ← GETLOCALNEIGHBORS(x, ε)
5: Nr ← GETREMOTENEIGHBORS(x, ε)
6: N ← Nl ∪Nr
7: SETCOREDISTANCE(x,N, ε,minpts)
8: if CD[x] �= NULL then
9: MODUPDATE(x,N, Pt)

10: while Pt �= empty do
11: (u, v, w) ← EXTRACTMIN(Pt)
12: Qt ← INSERT(u, v, w)
13: if u ∈ Xt then
14: mark u as processed
15: N

�
l ← GETLOCALNEIGHBORS(u, ε)

16: N
�
r ← GETREMOTENEIGHBORS(u, ε)

17: N
� ← N

�
l ∪N

�
r

18: SETCOREDISTANCE(u,N �
, ε,minpts)

19: if CD[u] �= NULL then
20: MODUPDATE(u,N �

, Pt)
21: round ← log2(p)− 1 � Stage: Merging
22: for i = 0 to round do
23: if t mod 2i = 0 then � check if t participates
24: if t mod 2i+1 = 0 then � t is receiver
25: t

� ← t+ 2i � t
� is the sender

26: receive Qt� from Pt�

27: Qt ← KRUSKAL(Qt ∪Qt�)
28: else
29: t

� ← t− 2i � t
� is receiver

30: send Qt from Pt� � t is sender

Similar to POPTICSS, POPTICSD also has two stages, local com-
putation (Line 2-20) and merging (Line 21-30). During the local
computation, we compute the local neighbors, Nl (Line 4) and
remote neighbors, Nr (Line 5) for each point x. Based on these
we then compute the core distance using the SETCOREDISTANCE

function. The rest of the local computation is similar to POPTICSS
except that the tree edges extracted from the priority queue, Pt

(Line 11) are inserted into a local priority queue, Qt, instead of
a shared queue, Q, as was done in POPTICSS.

As the local MSTs found by the local computation are distributed
among the process cores, we need to gather and merge these local
MSTs to remove any redundant edges (thus breaking cycles) to ob-
tain the global MST. To do this, we perform a pairwise-merging
in the merging stage (Line 21-30). To simplify the explanation, we
assume that p is a multiple of 2. The merging stage then runs in
log2(p) rounds (Line 22) following the structure of a binary tree
with p leaves. In each merging operation, the edges of two local
MSTs are gathered on one processor. This processor then com-
putes a new local MST using KRUSKAL’s algorithm on the gath-
ered edges. After the last round of merging, the global MST will be
stored on processor 0.

We use KRUSKAL’s algorithm in the merging stage even though
BORUVKA’s MST algorithm [15] is inherently more parallel than
KRUSKAL’s. This is because BORUVKA’s algorithm requires edge
contractions, which in distributed memory would require more com-
munication especially when the contracted edge spans different pro-
cessors. Since we get an ordering of the edges as a by-product of
the main algorithm, this makes KRUSKAL’s algorithm more com-
petitive for the merging stage.

However, for the merging stage, we implemented a couple of
variations to improve the performance and memory scalability, but
we only give an outline due to space considerations. In each of
the log2 p rounds in the merging, we traverse the entire graph (lo-
cal MSTs) once, thus the overhead is proportional to the number
of rounds. We therefore tried to terminate the pairwise-merging
after the first few rounds and then gather the rest of the merged lo-
cal MSTs on process core 0 to compute the global MST. Another
technique we implemented was to exclude the edges from the lo-
cal MSTs during the pairwise-merging using BORUVKA’s concept
[15]. For each point x, the lightest edge connecting x will definitely
be part of the global MST. We also considered a hybrid version of
these approaches.

5. EXPERIMENTAL RESULTS
We first present the experimental setup used for both the sequen-

tial and the shared memory OPTICS algorithms. The setup for the
distributed memory algorithm is presented later.

For the sequential and shared memory experiments we used a
Dell computer running GNU/Linux and equipped with four 2.00
GHz Intel Xeon E7-4850 processors with a total of 128 GB mem-
ory. Each processor has ten cores. Each of the 40 cores has 48 KB
of L1 and 256 KB of L2 cache. Each processor (10 cores) shares a
24 MB L3 cache. All algorithms were implemented in C++ using
OpenMP and compiled with gcc (version 4.7.2) using the -O2 flag.

Our testbed consists of 18 datasets, which are divided into three
categories, each with six datasets. The first category, called real-
world, representing alphabets and textures for information retrieval,
has been collected from Chameleon (t4.8k, t5.8k, t7.10k, and t8.8k)
[2] and CUCIS (edge and texture) [1]. The other two categories,
synthetic-random and synthetic-cluster, have been generated syn-
thetically using the IBM synthetic data generator [4, 45]. In the
synthetic-random datasets (r50k, r100k, r500k, r1m, r1.5m, and
r1.9m), points in each dataset have been generated uniformly at
random. In the synthetic-cluster datasets (c50k, c100k, c500k, c1m,
c1.5m, and c1.9m), first a specific number of random points are
taken as different clusters, points are then added randomly to these
clusters. The testbed contains up to 1.9 million data points and each
data point is a vector of up to 20 dimensions. Table 1 shows struc-

tural properties of the dataset. In the experiments, the two input
parameters (ε and minpts) shown in the table have been chosen
carefully to obtain the order, core distances, and reachability dis-
tances in a reasonable time. Higher value of ε increases the time
taken for the experiments while the number of clusters and noise
points are reduced. Higher value of minpts increases the noise
counts. We also select a clustering distance, ε� to extract a fair
number of clusters and noise points from the order or the MST.

Table 1: Structural properties of the testbed (real-world,
synthetic-random, and synthetic-cluster) and the time taken by
the OPTICS and the MOPTICS algorithms. d denotes the dimen-
sion of each point. The last three columns show the resulting
number of clusters and noise points using an ε

�.
min Time (sec.) Sample extraction

Name Points d ε pts OPTICS MOPTICS ε� Clusters Noise
t4.8 24,000 2 30 20 1.27 1.51 10 18 2,026
t5.8 24,000 2 30 20 1.98 2.40 10 27 1,852
t7.10 30,000 2 30 20 1.18 1.18 10 84 4,226
t8.8 24,000 2 30 20 1.14 1.23 10 165 9,243
edge 336,205 18 2 3 569.53 574.03 1.5 1,368 83,516
texture 371,595 20 2 3 1,124.93 1,183.44 1.5 2,058 310,925

r50k 50,000 10 120 5 8.47 8.82 100 1,058 42,481
r100k 100,000 10 120 5 22.31 23.89 100 883 33,781
r500k 500,000 10 120 5 694.71 757.77 100 2 1,161
r1m 1,000,000 10 80 5 813.15 835.65 60 10,351 948,867
r1.5m 1,500,000 10 80 5 2479.70 2,598.80 60 7,809 326,867
r1.9m 1,900,000 10 80 5 3680.21 3,792.77 60 8,387 368,917

c50k 50,000 10 120 5 11.52 14.05 25 51 3,095
c100k 100,000 10 120 5 22.49 27.57 25 103 6,109
c500k 500,000 10 120 5 119.99 142.80 25 512 36,236
c1m 1,000,000 10 80 5 226.11 275.97 25 1,022 64,740
c1.5m 1,500,000 10 80 5 331.07 405.12 25 1,543 102,818
c1.9m 1,900,000 10 80 5 431.67 526.30 25 1,949 135,948

5.1 OPTICS vs. MOPTICS
As discussed in Section 2, to reduce the running time of the

OPTICS algorithm from O(n2) to O(n log n), spatial indexing (kd-
tree [28] or R*-tree [8]) is commonly used [9]. In all of our imple-
mentations, we used kd-trees [28] and therefore obtain the reduced
time complexities. Moreover, the kd-tree gives a geometric parti-
tioning of the data points, which we use to divide the data points
equally among the cores in the parallel OPTICS algorithm. How-
ever, there is an overhead in constructing the kd-tree before running
the OPTICS algorithms. Figure 3(a) shows a comparison of the
time taken by the construction of the kd-tree over the OPTICS algo-
rithm in percent for the synthetic-cluster datasets. As can be seen,
constructing the kd-tree takes only a fraction of the time (0.33%
to 0.68%) taken by the OPTICS algorithm. We found similar re-
sults for the synthetic-random datasets (0.07% to 0.93%). How-
ever, these ranges are somewhat higher (0.06% to 3.23%) for the
real-world dataset. This is because each real-world dataset consists
of a small number of points, and therefore, the OPTICS algorithm
takes less time compared to the other two categories. It should be
noted that we have not parallelized the construction of the kd-tree
in this paper, we therefore do not consider the timing of the con-
struction of the kd-tree in the following discussion.

Figure 3(b) presents the performance of MOPTICS (Algorithm 4)
compared to OPTICS (Algorithm 1) on synthetic random datasets.
The raw run-times taken by MOPTICS and OPTICS are provided in
Table 1. As can be seen, MOPTICS takes on average 5.16% (range
2.77%-9.08%) more time compared to the time taken by OPTICS
on synthetic-random datasets. This is because, MOPTICS stores the
reachability distance in a map (instead of a vector as in OPTICS)
and therefore, retrieving the distances to update takes additional
time. In OPTICS, this is achieved in constant time as it uses a vec-
tor (Line 7 in Algorithm 2). This additional computation is needed

!"!#

!"$#

!"%#

!"&#

!"'#

()!*# (+!!*#()!!*# (+,# (+"),#(+"-,#

*.
/#0

,
1#
2#
3
45

67
8#
0,

1#
#9:

;#

(a) Timing distribution

!"

#"

$!"

%#!&" %$!!&"%#!!&" %$'" %$(#'"%$()'"

*+
,%
-"
.'

/"
,-
&/
0"
12
"3

4
56

78
9"

:;
/%
""4

56
78
9"
<=

>"

(b) Comparing MOPTICS

!"!!#

!"!$#

!"!%#

!"!&#

!"!'#

!"!(#

)(!*#)$!!*#)(!!*#)$+#)$"(+#)$",+#

-.
+
/#
01
*/
2#
)3
+
41

5/
6#
03
##

7
8-

9:
;#
<=

>#

356/5?)@A# +A0?)@A#

(c) Extracting clusters

!"!#

!"$#

%"!#

&$!'# &%!!'# &$!!'# &%(# &%"$(# &%")(#

*(
+#
,-
'+
.#
/0
#1

2*
#,3

#4
&5
+&
#3
6+
&##

4
7*

89
2#
:;

<#

(d) Order from MST

Figure 3: Performance of (a) the construction of kd-tree, (b)
MOPTICS (Algorithm 4), (c) extracting the clusters, and (d)
computing the order from MST, compared to OPTICS.

in the parallel OPTICS algorithms, otherwise, each core requires
a vector of length equal to the number of total points among the
cores. We observe similar performance for the real-world datasets
(average 9.09%, range 0.12%-21.34%). This value is higher for
the synthetic-cluster datasets with an average of 21.64% (range
19.01%-22.59%) as we observed that the number of neighbor up-
dates is much higher compared to the other categories.

Figure 3(c) shows the time taken to extract the clusters from the
order and the MST (denoted by order-cls and mst-cls, respectively)
compared to the classical OPTICS algorithm for synthetic-cluster
datasets. The clustering distances ε

�, used in the experiments can
be found in Table 1. As can be seen, both order-cls and mst-cls
take a small fraction of time (maximum 0.01% and 0.05% respec-
tively) compared to OPTICS, and are comparable to each other.
The relative maximum time spent in order-cls is unchanged for
the synthetic-random and real-world datasets, while the maximum
time spent in mst-cls is 0.04% and 0.19%, respectively. Note that
OPTICS and MOPTICS follow the same processing order of points.
Therefore, for any clustering distance, ε�, the resulting clusters are
identical and thus the corresponding Omega-Index is 1.

Figure 3(d) shows the time taken to compute the order and reach-
ability distances from the MST computed by MOPTICS compared
to the classical OPTICS algorithm for synthetic-random datasets.
As mentioned before, this step takes only a fraction of time (on
average 0.47%, 0.87%, and 1.65% on synthetic-random, synthetic-
cluster, and real-world datasets, respectively) as it only traverses
the edges in the MST once.

5.2 POPTICS on Shared Memory
Figure 4 shows the speedup obtained by parallel OPTICS on a

shared memory computer (Algorithm 6, denoted by POPTICSS),
for various number of threads. The left column in the figure shows
the speedup results considering only the local computation stage
whereas the right column shows results using total time (local com-
putation and merging) for the three categories of datasets. Clearly,
the local computation stage scales well across all the datasets as
there is no interaction between the threads. Since local computa-
tion takes substantially more time than the merging, the speedup

!"

#!"

$!"

%!"

&!"

#" #!" $!" %!" &!"

'(
))
*+

("

,-.)/"

0&123" 04123"
051#!3" 02123"
)*6)" 0)70+.)"

(a) Local computation (real-world)

!"

#!"

$!"

%!"

&!"

#" #!" $!" %!" &!"

'(
))
*+

,"

-./)0"

1&234" 15234"
162#!4" 13234"
)*7)" 1)81+/)"

(b) Total Time (real-world)

!"

#!"

$!"

%!"

&!"

#" #!" $!" %!" &!"

'(
))
*+

("

,-.)/"

.0!1" .#!!1"

.0!!1" .#2"

.#302" .#342"

(c) Local computation (syn.-rand)

!"

#!"

$!"

%!"

&!"

#" #!" $!" %!" &!"

'(
))
*+

("

,-.)/"

.0!1" .#!!1"

.0!!1" .#2"

.#302" .#342"

(d) Total time (syn.-rand)

!"

#!"

$!"

%!"

&!"

#" #!" $!" %!" &!"

'(
))
*+

("

,-.)/"

01!2" 0#!!2"
01!!2" 0#3"
0#413" 0#453"

(e) Local computation (syn.-clus)

!"

#!"

$!"

%!"

&!"

#" #!" $!" %!" &!"

'(
))
*+

("

,-.)/"

01!2" 0#!!2"
01!!2" 0#3"
0#413" 0#453"

(f) Total time (syn.-clus)

Figure 4: Speedup of parallel OPTICS (Algorithm 6, denoted by
POPTICSS) on a shared memory computer. Left column: Lo-
cal computation in POPTICSS. Right column: Total time (local
computation + merging) in POPTICSS.

behavior of just the local computation is nearly identical to that
of the overall execution. Note that the speedups for some real-
world datasets in Figure 4(a) and 4(b) saturate at around 20 process
cores as they are relatively small compared to the other datasets.
The maximum speedup obtained in our experiments by POPTICSS
is 17.06, 25.62, and 27.50 on edge, r1m, and c1.9m, respectively.
However, the ranges of maximum speedup are 5.18 to 17.06 (aver-
age 9.93) for real-world, 12.48 to 25.62 (average 19.35) for synthetic-
random, and 11.13 to 27.50 (average 20.27) for synthetic-cluster
datasets.

Figure 5(a) shows a comparison of the time taken by the merging
stage over the local computation stage in percent for the POPTICSS
algorithm using dataset r1.9m for various number of process cores.
We observe that the merging time remains almost constant (a small
fraction of the local computation time on one process core) as the
stage is mostly sequential in POPTICSS, and therefore the ratio in-
creases with the number of process cores because the local com-
putation time reduces drastically. Using up to 40 cores, this ra-
tio is maximum 9.60% (average 6.46%), 11.38% (average 5.51%),
and 8.01% (average 3.35%) on real-world, synthetic-random, and
synthetic-cluster datasets, respectively.

As discussed in Section 4.1, the MST computed by parallel OPT-
ICS could be different than the MST computed by sequential MST-
based OPTICS, MOPTICS. Therefore, to compare the quality of the
solutions obtained by POPTICSS, we compare the clustering ob-
tained by POPTICSS and classical OPTICS using the Omega-Index.

We vary both the number of process cores and clustering distances
to observe the tolerance of the POPTICSS algorithm. Figure 5(b)
shows the Omega-Index computed on the c50k dataset. The left-
most five bars show the Omega-Index on 1, 10, 20, 30, and 40
process cores, respectively, keeping the clustering distance fixed
(ε� = 25). As expected for one core, the Omega-Index is 1, that is,
the clusters found by POPTICSS and classical OPTICS match per-
fectly. Increasing the number of process cores leads to marginal
reduction in the Omega-Index, suggesting that the resulting clus-
ters are almost identical compared to ones obtained by the classical
OPTICS algorithm. Similarly, varying the clustering distance, ε�,
(the rightmost three bars in Figure 5(b) representing ε

� = 25, 30,
and 35, respectively) keeping the number of cores fixed (30), we
also found the Omega-Index close to 1. However, the computation
cost for calculating the Omega-Index is high [16] and the available
source code [3] we use for this is only capable of dealing with small
datasets. We therefore report these numbers for the smallest dataset
from each of the three categories.

!"!#

!"$#

%"!#

%"$#

&"!#

%# %!# &!# '!# (!#
)
*+
,-
.
*#
/.

*#
0#
12
34
1#

32
.
56

74
/2

8#
/.

*#
9:

;#
<2+*=#

(a) Timing distribution

!"##$%

!"##&%

!"###%

'"!!!%

()*+,-.%/0*1)23%%%%%%%%%%%%%%%%%%
4'5%'!5%6!5%7!5%8!9%

()*+,-.%:;<3/1*,-.%
2,3/)-:1%46=5%7!5%7=9%

>
?
1.
)@
A-
21

B%

(b) Qualities of the clusters (c50k)

Figure 5: (a) Timing distribution for varying number of cores
on r1.9m and (b) Comparing qualities of the clustering using
Omega-Index for varying number of cores and varying cluster-
ing distance, ei on c50k

5.3 POPTICS on Distributed Memory
To perform the experiments for parallel OPTICS on a distributed

memory computer (POPTICSD), we use Hopper, a Cray XE6 dis-
tributed memory parallel computer where each node has two twelve-
core AMD MagnyCours 2.1-GHz processors and shares 32 GB of
memory. Each core has its own 64 KB L1 and 512 KB L2 caches.
Each of the six cores on the MagnyCours processor share one 6
MB of L3 cache. The algorithms have been implemented in C/C++
using the MPI message-passing library and has been compiled with
gcc (4.7.2) and -O2 optimization level.

The datasets used in the previous experiments are relatively small
for massively parallel computing. We therefore consider a different
testbed of 10 datasets, which are again divided into three categories,
each with three, three, and four datasets, respectively. The first
two categories, called synthetic-cluster-extended (c61m, c91.5m,
and c115.9m) and synthetic-random-extended (r61m, r91.5m, and
r115.9m), have been generated synthetically using the IBM syn-
thetic data generator [4, 45]. As the generator is limited to generate
at most 2 million high dimensional points, we replicate the same
data towards the left and right three times (separating each dataset
with a reasonable distance) in each dimension to get datasets with
hundreds of million of points. The third category, called millennium-
run-simulation consists of four datasets from the database on Mil-
lennium Run, the largest simulation of the formation of structure
with the ΛCDM cosmogony with a factor of 1010 particles [32, 49].
The four datasets, MPAGalaxiesBertone2007 (mb) [10], MPAGalax-
iesDeLucia2006a (md) [19], DGalaxiesBower2006a (db) [12], and
MPAHaloTreesMhalo (mm) [10] are taken from the Galaxy and
Halo databases. To be consistent with the size of the other two cat-

egories we have randomly selected 10% of the points from these
datasets. However, since the dimension of each dataset is high, we
are eventually considering almost a billion floating point numbers.
Table 2 shows the structural properties of the datasets and related
input parameters. To perform the experiments, we use a parallel kd-
tree representation as presented in [33, 44] to geometrically parti-
tion the data among the processors. However, we do not include the
partitioning time while computing the speedup by the POPTICSD.

Table 2: Structural properties of the testbed (synthetic- cluster-
extended, synthetic-random-extended, and millennium-run-
simulation) and the input parameters, ε and minpts, along
with the approximate time (in hours) taken by POPTICSD us-
ing one process core.

Name Points d ε minpts Time (hours)
c61m 61,000,000 10 35 800 9.35
c91.5m 91,500,000 10 35 800 10.22
c115.9m 115,900,000 10 35 800 13.65
r61m 61,000,000 10 45 2 5.72
r91.5m 91,500,000 10 45 2 16.57
r115.9m 115,900,000 10 45 2 24.55
DGalaxiesBower2006a (db) 101,459,853 8 40 180 20.35
MPAHaloTreesMhalo (mm) 76,066,700 9 40 250 14.66
MPAGalaxiesBertone2007 (mb) 105,592,018 8 40 160 11.74
MPAGalaxiesDeLucia2006a (md) 105,592,018 8 40 150 12.42

!"

#$!!!"

%$!!!"

&$!!!"

'$!!!"

!" #$!!!" %$!!!" &$!!!" '$!!!"

()
**
+,

)"

-./*0"

/1#2" /3#452" /##5432"

(a) Synthetic-random-extended

!"

#$!!!"

%$!!!"

&$!!!"

'$!!!"

!" #$!!!" %$!!!" &$!!!" '$!!!"

()
**
+,

)"

-./*0"

+1" 22" 21" 2+"

(b) Millenium-simulation-runs

!"

#!!"

$%!!!"

$%#!!"

&%!!!"

!" #!!" $%!!!" $%#!!" &%!!!"

'(
))
*+

("

,-.)/"

01$2" 03$4#2" 0$$#432"

(c) Synthetic-cluster-extended

!"

#!"

$!"

%!"

&!"

'!!"

!" $(!!!" &(!!!" '#(!!!" '%(!!!"

)*
+,
*-

./
0*
"1
2".
/3
*-

"4
5
*"

61+*7"

81,/8",159:./41-" 5*+0;-0"

(d) Local comp vs. merging

!"#

$"#

%"#

&"#

'"#

("#

)"#

*""#

+**%,)-# .**%,)-# -/#

0
1.
23
42
#5
-
1#
46

.-
78
39
1:

##
;6
#-

2<
!#
=>

?#

-2<*# -2<@# -2<!# -2<$# -2<%#

(e) Merging techniques

!"

#"

$!"

%&" ''" '&" '%"

()
*+
,-
./
,0
1+
&2

-3
"4
'
,"
5"

67
68

9:
;<

"4
'
,"
=>

?"

@A" $BC" B#@"

(f) Gathering vs. Total time

Figure 6: (a)-(c): Speedup of parallel OPTICS (Algorithm 7,
denoted by POPTICSD) on a distributed memory computer. (d)-
(e): Analyzing POPTICSD.

Figure 6(a), 6(b), and 6(c) show the speedup obtained by al-
gorithm POPTICSD using synthetic-random-extended, millenium-
simulation-run, and synthetic-cluster-extended datasets, respectively.

Since 64 is the minimum number of process cores we used to per-
form the experiments for POPTICSD and there is no merging stage
in sequential OPTICS, we multiplied the local computation time
(taken by POPTICSD on 64 process cores) by 64 and used that value
as the approximate sequential time (shown in Table 2) to compute
the speedup. We show the speedup using a maximum of 4,096
process cores for the datasets as the speedup saturates and there-
fore starts decreasing on larger number of process cores. As can be
seen the speedup on the synthetic-cluster-extended dataset (Figure
6(c)) is significantly lower than the other two datasets. We observed
that the number of edges in the local MSTs on the synthetic-cluster-
extended datasets are significantly higher than the synthetic-random-
extended and the millenium-simulation-run datasets. On synthetic-
cluster-extended, we get a maximum speedup of 466 (average 443)
whereas on the synthetic-random-extended and millenium-simula
tion-run datasets, these values change to 3,008 (average 2,638) and
2,713 (average 2,169), respectively.

Figure 6(d) shows the trade-off between the local computation
and the merging stage by comparing them with the total time (lo-
cal computation time + merging time) in percent. We use mb, one
of the millennium-simulation-run dataset for this purpose and con-
tinue up to 16,384 process cores to understand the behavior clearly.
As can be seen, the communication time increases while the com-
putation time decreases with the number of processors. When us-
ing more than 8,000 process cores, communication time starts to
dominate the computation time and therefore, the speedup starts
being saturated. For example, we achieved a speedup of 2,713 us-
ing 4,096 process cores on mb whereas the speedup is only 3,952
and 4,750 using 8,192 and 16,384 process cores, respectively. This
happens because the overlapping regions among the process cores
increase with the increment of the number of process cores. We
observe similar behavior for other datasets.

Figure 6(e) compares the variations of the merging stage we
used in POPTICSD (Algorithm 7). We call the one presented in
Algorithm 7 as pairwise-merging, denoted by mg-3. Each round
in merging traverses the entire graph (i.e. local MSTs) once, thus
overhead in merging is proportional to the number of rounds. There-
fore, instead of running the merging stage log2 p rounds, we termi-
nate the pairwise-merging after 3 rounds and then gather the (so
far) merged local MSTs to processor 0 to compute the global MST.
We call this variation mg-4. Another variation, mg-5 is the same as
mg-4 except we terminate the pairwise merging when a round takes
more than 5 seconds. Two other approaches are based on Boruvka’s
concept [15], where each processor excludes the edges from their
local MSTs that will definitely be part of the global MST. We then
use the above two approaches to merge the rest of the edges in the
local MSTs. We denote them by mg-1, and mg-2, respectively. To
compare the performance of these variations, we normalized the
taken time by the pairwise-merging (mg-3) time in percent. Figure
6(e) shows the results using the largest dataset from each category
on 64 process cores. We found that in almost all cases, mg-2 per-
forms the best by taking the minimum time and the reduction is
on average 38.46%, 39.52%, and 37.63% on 64, 128, and 256 pro-
cess cores, respectively. Similar behavior has been found for other
datasets. Also note that mg-1 and mg-2 are scalable w.r.t. required
memory.

Figure 6(f) shows a comparison of the time taken by the gather-
neighbors preprocessing step over the total time taken by POPTICSD
in percent using 64, 128, and 256 process cores on the millenium-
simulation-run datasets. As can be seen, the gather-neighbors step
adds an overhead of maximum 4.84% (minimum 0.45%, average
2.14%) of the total time. Similar results have been observed on
synthetic-random-extended datasets (maximum 6.38%, minimum

0.77%, average 3.06%). However, these numbers are relatively
higher (maximum 26.92%, minimum 6.22%, average 14.46%) on
synthetic-cluster-extended datasets as each dataset is much denser,
thus the overlapping regions between the processors contain a sig-
nificant number of points which each processor needs to gather.
It is also to be noted that these values increase with the number
of processors and also with the ε parameter as the overlapping re-
gion among the processors is proportional to them. However, with
this scheme the local-computation stage in POPTICSD can per-
form the processing without any communication overhead similar
to POPTICSS. The alternative would be to perform communication
for each point to obtain its remote neighbors.

6. CONCLUSION AND FUTURE WORK
In this study we have revisited the well-known density based

clustering algorithm, OPTICS. This algorithm is known to be chal-
lenging to parallelize as the computation involves strongly inherent
sequential data access order. We present a scalable parallel OPTICS
(POPTICS) algorithm designed using graph algorithmic concepts.
More specifically, we exploit the similarities between OPTICS and
PRIM’s Minimum Spanning Tree (MST) algorithm. Additionally,
we use the disjoint-set data structure to extract the clusters in par-
allel from the MST for increasing concurrency. POPTICS is im-
plemented using both OpenMP and MPI. The performance evalua-
tion used a rich set of high dimensional data consisting of instances
from real-world and synthetic datasets containing up to a billion
floating point numbers. Our experimental results conducted on a
shared memory computer show scalable performance, achieving
speedups up to a factor of 27.5 when using 40 cores. Similar scala-
bility results have been obtained on a distributed-memory machine
with a speedup of 3,008 using 4,096 process cores. Our experi-
ments also show that while achieving the scalability, the quality of
the results given by POPTICS is comparable to those given by the
classical OPTICS algorithm. We intend to conduct further studies
to provide more extensive results on much larger number of cores
with datasets from different scientific domains. Finally, we note
that our algorithm also seems to be suitable for other parallel archi-
tectures such as GPU and heterogenous architectures.

7. ACKNOWLEDGMENTS
This work is supported in part by the following grants: NSF

awards CCF-0833131, CNS-0830927, IIS-0905205, CCF-0938000,
CCF-1029166, and OCI-1144061; DOE awards DE-FG02-08ER25
848, DE-SC0001283, DE-SC0005309, DESC0005340, and DESC0
007456; AFOSR award FA9550-12-1-0458. This research used
Hopper Cray XE6 computer of the National Energy Research Sci-
entific Computing Center, which is supported by the Office of Sci-
ence of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231.

8. REFERENCES
[1] Parallel K-means data clustering, 2005.

http://users.eecs.northwestern.edu/ wkliao/Kmeans/.
[2] CLUTO - clustering high-dimensional datasets, 2006.

http://glaros.dtc.umn.edu/gkhome/cluto/cluto/.
[3] Cliquemod, 2009.

http://www.cs.bris.ac.uk/ steve/networks/cliquemod/.
[4] R. Agrawal and R. Srikant. Quest synthetic data generator.

IBM Almaden Research Center, 1994.
[5] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander.

Optics: ordering points to identify the clustering structure. In
Proceedings of the 1999 ACM SIGMOD, pages 49–60, New
York, NY, USA, 1999. ACM.

[6] D. Arlia and M. Coppola. Experiments in parallel clustering
with DBSCAN. In Euro-Par 2001 Parallel Processing, pages
326–331. Springer, LNCS, 2001.

[7] H. Backlund, A. Hedblom, and N. Neijman. A density-based
spatial clustering of application with noise. 2011.
http://staffwww.itn.liu.se/ aidvi/courses/06/dm/Seminars2011.

[8] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The
r*-tree: an efficient and robust access method for points and
rectangles. Proceedings of the 1990 ACM SIGMOD,
19(2):322–331, 1990.

[9] J. Bentley. Multidimensional binary search trees used for
associative searching. Communications of the ACM,
18(9):509–517, 1975.

[10] S. Bertone, G. De Lucia, and P. Thomas. The recycling of
gas and metals in galaxy formation: predictions of a
dynamical feedback model. Monthly Notices of the Royal
Astronomical Society, 379(3):1143–1154, 2007.

[11] D. Birant and A. Kut. ST-DBSCAN: An algorithm for
clustering spatial-temporal data. Data & Knowledge
Engineering, 60(1):208–221, 2007.

[12] R. Bower, A. Benson, R. Malbon, J. Helly, C. Frenk,
C. Baugh, S. Cole, and C. Lacey. Breaking the hierarchy of
galaxy formation. Monthly Notices of the Royal
Astronomical Society, 370(2):645–655, 2006.

[13] S. Brecheisen, H. Kriegel, and M. Pfeifle. Parallel
density-based clustering of complex objects. Adv. in Know.
Discovery and Data Mining, pages 179–188, 2006.

[14] M. Chen, X. Gao, and H. Li. Parallel DBSCAN with priority
r-tree. In Information Management and Engineering
(ICIME), 2010 The 2nd IEEE International Conference on,
pages 508–511. IEEE, 2010.

[15] S. Chung and A. Condon. Parallel implementation of
bouvka’s minimum spanning tree algorithm. In Parallel
Processing Symposium, 1996., Proceedings of IPPS’96, The
10th International, pages 302–308. IEEE, 1996.

[16] L. M. Collins and C. W. Dent. Omega: A general
formulation of the rand index of cluster recovery suitable for
non-disjoint solutions. Multivariate Behavioral Research,
23(2):231–242, 1988.

[17] M. Coppola and M. Vanneschi. High-performance data
mining with skeleton-based structured parallel programming.
Parallel Computing, 28(5):793–813, 2002.

[18] T. Cormen. Introduction to algorithms. The MIT press, 2001.
[19] G. De Lucia and J. Blaizot. The hierarchical formation of the

brightest cluster galaxies. Monthly Notices of the Royal
Astronomical Society, 375(1):2–14, 2007.

[20] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based
algorithm for discovering clusters in large spatial databases
with noise. In Proceedings of the 2nd International
Conference on Knowledge Discovery and Data mining,
volume 1996, pages 226–231. AAAI Press, 1996.

[21] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data
mining to knowledge discovery in databases. AI magazine,
17(3):37, 1996.

[22] M. Forina, M. C. Oliveros, C. Casolino, and M. Casale.
Minimum spanning tree: ordering edges to identify
clustering structure. Analytica Chimica Acta, 515(1):43 – 53,
2004.

[23] Y. Fu, W. Zhao, and H. Ma. Research on parallel DBSCAN
algorithm design based on mapreduce. Advanced Materials
Research, 301:1133–1138, 2011.

[24] B. Galler and M. Fisher. An improved equivalence
algorithm. Communications of the ACM, 7:301–303, 1964.

[25] J. C. Gower and G. J. S. Ross. Minimum spanning trees and
single linkage cluster analysis. Journal of the Royal
Statistical Society. Series C (Applied Statistics), 18(1):pp.
54–64, 1969.

[26] J. Han, M. Kamber, and J. Pei. Data mining: concepts and
techniques. Morgan Kaufmann, 2011.

[27] H. Kargupta and J. Han. Next generation of data mining,
volume 7. Chapman & Hall/CRC, 2009.

[28] M. B. Kennel. KDTREE 2: Fortran 95 and C++ software to
efficiently search for near neighbors in a multi-dimensional
Euclidean space, 2004. Institute for Nonlinear Science,
University of California.

[29] H.-P. Kriegel and M. Pfeifle. Hierarchical density-based
clustering of uncertain data. In Data Mining, Fifth IEEE
International Conference on, pages 4–pp. IEEE, 2005.

[30] J. B. Kruskal. On the Shortest Spanning Subtree of a Graph
and the Traveling Salesman Problem. Proceedings of the
American Mathematical Society, 7(1):48–50, Feb. 1956.

[31] L. Lelis and J. Sander. Semi-supervised density-based
clustering. In Data Mining, 2009. ICDM’09. Ninth IEEE
International Conference on, pages 842–847. IEEE, 2009.

[32] G. Lemson and the Virgo Consortium. Halo and galaxy
formation histories from the millennium simulation: Public
release of a VO-oriented and SQL-queryable database for
studying the evolution of galaxies in the LambdaCDM
cosmogony. Arxiv preprint astro-ph/0608019, 2006.

[33] Y. Liu, W.-k. Liao, and A. Choudhary. Design and evaluation
of a parallel HOP clustering algorithm for cosmological
simulation. In Proceedings of IPDPS 2003, page 82.1,
Washington, DC, USA, 2003. IEEE.

[34] Z. Lukić, D. Reed, S. Habib, and K. Heitmann. The structure
of halos: Implications for group and cluster cosmology. The
Astrophysical Journal, 692(1):217, 2009.

[35] J. MacQueen et al. Some methods for classification and
analysis of multivariate observations. In Proceedings of the
fifth Berkeley symposium on mathematical statistics and
probability, volume 1, pages 281–297. USA, 1967.

[36] S. Madeira and A. Oliveira. Biclustering algorithms for
biological data analysis: a survey. Computational Biology
and Bioinformatics, IEEE/ACM Transactions on,
1(1):24–45, 2004.

[37] F. Manne and M. Patwary. A scalable parallel union-find
algorithm for distributed memory computers. In Parallel
Processing and Applied Mathematics, pages 186–195.
Springer, LNCS, 2010.

[38] A. Mukhopadhyay and U. Maulik. Unsupervised satellite
image segmentation by combining SA based fuzzy clustering
with support vector machine. In Proceedings of 7th
ICAPR’09, pages 381–384. IEEE, 2009.

[39] G. Murray, G. Carenini, and R. Ng. Using the omega index
for evaluating abstractive community detection. In
Proceedings of Workshop on Evaluation Metrics and System
Comparison for Automatic Summarization, pages 10–18,
Stroudsburg, PA, USA, 2012.

[40] S. Nobari, T.-T. Cao, P. Karras, and S. Bressan. Scalable
parallel minimum spanning forest computation. In
Proceedings of the 17th ACM SIGPLAN symposium on
Principles and Practice of Parallel Programming, pages
205–214. ACM, 2012.

[41] H. Park and C. Jun. A simple and fast algorithm for
K-medoids clustering. Expert Systems with Applications,
36(2):3336–3341, 2009.

[42] M. Patwary, M. Ali, P. Refsnes, and F. Manne. Multi-core
spanning forest algorithms using the disjoint-set data
structure. In Parallel & Distributed Processing Symposium
(IPDPS), 2012 IEEE 26th International, pages 827–835.
IEEE, 2012.

[43] M. Patwary, J. Blair, and F. Manne. Experiments on
union-find algorithms for the disjoint-set data structure. In
Proceedings of the 9th International Symposium on
Experimental Algorithms (SEA 2010), pages 411–423.
Springer, LNCS 6049, 2010.

[44] M. A. Patwary, D. Palsetia, A. Agrawal, W.-k. Liao,
F. Manne, and A. Choudhary. A new scalable parallel dbscan
algorithm using the disjoint-set data structure. In
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis,
SC ’12, pages 62:1–62:11, Los Alamitos, CA, USA, 2012.
IEEE Computer Society Press.

[45] J. Pisharath, Y. Liu, W. Liao, A. Choudhary, G. Memik, and
J. Parhi. NU-MineBench 3.0. Technical report, Technical
Report CUCIS-2005-08-01, Northwestern University, 2010.

[46] R. C. Prim. Shortest connection networks and some
generalizations. Bell System Technology Journal,
36:1389–1401, 1957.

[47] R. Setia, A. Nedunchezhian, and S. Balachandran. A new
parallel algorithm for minimum spanning tree problem. In
Proc. International Conference on High Performance
Computing (HiPC), pages 1–5, 2009.

[48] G. Sheikholeslami, S. Chatterjee, and A. Zhang.
WaveCluster: a wavelet-based clustering approach for spatial
data in very large databases. The VLDB Journal,
8(3):289–304, 2000.

[49] V. Springel, S. White, A. Jenkins, C. Frenk, N. Yoshida,
L. Gao, J. Navarro, R. Thacker, D. Croton, J. Helly, et al.
Simulations of the formation, evolution and clustering of
galaxies and quasars. Nature, 435(7042):629–636, 2005.

[50] M. Surdeanu, J. Turmo, and A. Ageno. A hybrid
unsupervised approach for document clustering. In
Proceedings of the 11th ACM SIGKDD, pages 685–690.
ACM, 2005.

[51] R. Tarjan. A class of algorithms which require nonlinear time
to maintain disjoint sets. Journal of computer and system
sciences, 18(2):110–127, 1979.

[52] W. Wang, J. Yang, and R. Muntz. STING: A statistical
information grid approach to spatial data mining. In
Proceedings of the International Conference on Very Large
Data Bases, pages 186–195. IEEE, 1997.

[53] J. Xie, S. Kelley, and B. K. Szymanski. Overlapping
community detection in networks: the state of the art and
comparative study. ACM Computing Surveys, 45(4), 2013.

[54] X. Xu, J. Jäger, and H. Kriegel. A fast parallel clustering
algorithm for large spatial databases. High Performance
Data Mining, pages 263–290, 2002.

[55] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an
efficient data clustering method for very large databases. In
ACM SIGMOD Record, volume 25(2), pages 103–114.
ACM, 1996.

[56] A. Zhou, S. Zhou, J. Cao, Y. Fan, and Y. Hu. Approaches for
scaling DBSCAN algorithm to large spatial databases.
Computer science and technology, 15(6):509–526, 2000.

