
A New Scalable Parallel DBSCAN Algorithm
Using the Disjoint-Set Data Structure

Md. Mostofa Ali Patwary1,†, Diana Palsetia1, Ankit Agrawal1,
Wei-keng Liao1, Fredrik Manne2, Alok Choudhary1

1Northwestern University, Evanston, IL 60208, USA 2University of Bergen, Norway
†Corresponding authors: mpatwary@eecs.northwestern.edu

Abstract—DBSCAN is a well-known density based clustering
algorithm capable of discovering arbitrary shaped clusters and
eliminating noise data. However, parallelization of DBSCAN is
challenging as it exhibits an inherent sequential data access order.
Moreover, existing parallel implementations adopt a master-slave
strategy which can easily cause an unbalanced workload and
hence result in low parallel efficiency.

We present a new parallel DBSCAN algorithm (PDSDBSCAN)
using graph algorithmic concepts. More specifically, we employ
the disjoint-set data structure to break the access sequentiality of
DBSCAN. In addition, we use a tree-based bottom-up approach
to construct the clusters. This yields a better-balanced workload
distribution. We implement the algorithm both for shared and
for distributed memory.

Using data sets containing up to several hundred million
high-dimensional points, we show that PDSDBSCAN significantly
outperforms the master-slave approach, achieving speedups up
to 25.97 using 40 cores on shared memory architecture, and
speedups up to 5,765 using 8,192 cores on distributed memory
architecture.

Index Terms—Density based clustering, Union-Find algorithm,
Disjoint-set data structure.

I. INTRODUCTION

Clustering is a data mining technique that groups data into
meaningful subclasses, known as clusters, such that it min-
imizes the intra-differences and maximizes inter-differences
of these subclasses [1]. Well-known algorithms include K-
means [2], K-medoids [3], BIRCH [4], DBSCAN [5], STING
[6], and WaveCluster [7]. These algorithms have been used in
various scientific areas such as satellite image segmentation
[8], noise filtering and outlier detection [9], unsupervised
document clustering [10], and clustering of bioinformatics data
[11]. Existing data clustering algorithms have been roughly
categorized into four classes: partitioning-based, hierarchy-
based, grid-based, and density-based [12], [13]. DBSCAN
(Density Based Spatial Clustering of Applications with Noise)
is a density based clustering algorithm [5]. The key idea of
the DBSCAN algorithm is that for each data point in a cluster,
the neighborhood within a given radius (eps) has to contain at
least a minimum number of points (minpts), i.e. the density
of the neighborhood has to exceed some threshold.

The DBSCAN algorithm is challenging to parallelize as its
data access pattern is inherently sequential. Many existing
parallelizations adopt the master-slave model. For example,
in [14], the data is equally partitioned and distributed among
the slaves, each of which computes the clusters locally and

sends back the results to the master in which the partially
clustered results are merged sequentially to obtain the final
result. This strategy incurs a high communication overhead
between the master and slaves, and a low parallel efficiency
during the merging process. Other parallelizations using a
similar master-slave model include [15], [16], [17], [18],
[19], [20]. Among these master-slave approaches, various
programming mechanisms have been used, for example, a
special parallel programming environment, named skeleton
based programming in [17] and parallel virtual machine in
[19]. A Hadoop-based approach is presented in [18].

To overcome the performance bottleneck due to the serial-
ized computation at the master process, we present a fully
distributed parallel algorithm that employs the disjoint-set
data structure [21], [22], [23], a mechanism to enable higher
concurrency for data access while maintaining a comparable
time complexity to the classical DBSCAN algorithm. The idea
of our approach is as follows. The algorithm initially creates a
singleton tree (single node tree) for each point of the dataset.
It then keeps merging those trees belonging to the same
cluster by using the disjoint-set data structure until it has
discovered all the clusters. The algorithm thus generates a
single tree for each cluster containing all points of the cluster.
Note that the merging can be performed in an arbitrary order.
This breaks the inherent data access order and achieves high
data parallelization resulting in the first truly scalable imple-
mentation of the DBSCAN algorithm. The parallel DBSCAN
algorithm is implemented in C++ both using OpenMP and MPI
to run on shared-memory machines and distributed-memory
machines, respectively. To perform the experiments, we used
a rich testbed consisting of instances from real and synthetic
datasets containing hundreds of millions of high dimensional
data points. The experiments conducted on a shared-memory
machine show scalable performance, achieving a speedup up
to a factor of 25.97 on 40 cores. Similar scalability results
have been obtained on a distributed-memory machine with
a speedup up to 5,765 using 8,192 cores. Our experiments
also show that PDSDBSCAN significantly outperforms previous
approaches to parallelize DBSCAN. Moreover, we observe
that the disjoint-set data structure based sequential DBSCAN
algorithm performs equally well compared to the existing
classical DBSCAN algorithm both when considering the time
complexity and also when comparing the actual performance
without sacrificing the quality of the solution.

SC12, November 10-16, 2012, Salt Lake City, Utah, USA
978-1-4673-0806-9/12/$31.00 c©2012 IEEE

The remainder of this paper is organized as follows. In
Section II, we describe the classical DBSCAN algorithm. In
Section III, we propose the new disjoint-set based DBSCAN
algorithm, and it’s parallel version along with correctness and
time complexities in Section IV. We present our experimental
methodology and results in Section V. We conclude our work
and propose future work in Section VI.

II. THE DBSCAN ALGORITHM

DBSCAN is a clustering algorithm that relies on a density-
based notion of clusters [5]. The basic concept of the algorithm
is that for each data point in a cluster, the neighborhood within
a given radius (eps) has to contain at least a minimum number
of points (minpts), i.e. the density of the neighborhood has
to exceed some threshold. A short and brief description based
on [5], [9], [20] is given below.

Let X be the set of data points to be clustered using
DBSCAN. The neighborhood of a point x ∈ X within a
given radius eps is called the eps-neighborhood of x, denoted
by Neps(x). More formally, Neps(x) = {y ∈ X|dist(x, y)
≤ eps}, where dist(x, y) is the distance function. A point
x ∈ X is referred to as a core point if its eps-neighborhood
contains at least a minimum number of points (minpts), i.e.,
|Neps(x)| ≥ minpts. A point y ∈ X is directly density-
reachable from x ∈ X if y is within the eps-neighborhood of
x and x is a core point. A point y ∈ X is density-reachable
from x ∈ X if there is a chain of points x1,x2,. . .,xn, with
x1 = x, xn = y such that xi+1 is directly density-reachable
from xi for all 1 ≤ i < n, xi ∈ X . A point y ∈ X is density-
connected to x ∈ X if there is a point z ∈ X such that both
x and y are density-reachable from z. A point x ∈ X is a
border point if it is not a core point, but is density reachable
from at least one other core point. A cluster C discovered by
DBSCAN is a non-empty subset of X satisfying the following
two conditions (conditions 2.1 and 2.2).

Condition 2.1 (Maximality): For all pairs (x, y) ∈ X , if
x ∈ C and y is a core point that is density-reachable from
x, then y ∈ C. If y is a border point then y is in exactly one
C ′ such that x ∈ C ′ and y is density-reachable from x.

Condition 2.2 (Connectivity): For all pairs (x, y) ∈ C, x is
density-connected to y in X .

Condition 2.3 (Noise): A point x ∈ X is a noise point if x
is not directly density-reachable from any core point.

Note that we have extended the original definition of max-
imality since a border point can be density-reachable from
more than one cluster.

The pseudocode of the DBSCAN algorithm is given in
Algorithm 1. The algorithm starts with an arbitrary point
x ∈ X and retrieves its eps-neighborhood (Line 4). If the eps-
neighborhood contains at least minpts points, the procedure
yields a new cluster, C. The algorithm then retrieves all points
in X , which are density reachable from x and adds them
to the cluster C (Line 8-17). If the eps-neighborhood of x
has less than minpts, then x is marked as noise (Line 6).
However, x could still be added to a cluster if it is identified as
a border point while exploring other core points (Line 16-17).

Algorithm 1 The DBSCAN algorithm. Input: A set of points X ,
distance threshold eps, and the minimum number of points required
to form a cluster, minpts. Output: A set of clusters.

1: procedure DBSCAN(X, eps,minpts)
2: for each unvisited point x ∈ X do
3: mark x as visited
4: N ← GETNEIGHBORS(x, eps)
5: if |N | < minpts then
6: mark x as noise
7: else
8: C ← {x}
9: for each point x′ ∈ N do

10: N ← N \ x′

11: if x′ is not visited then
12: mark x′ as visited
13: N ′ ← GETNEIGHBORS(x′, eps)
14: if |N ′| ≥ minpts then
15: N ← N ∪N ′

16: if x′ is not yet member of any cluster then
17: C ← C ∪ {x′}

The retrieval of the eps-neighborhood of a point (Line 4 and
Line 13, the GETNEIGHBORS function) is known as a region-
query and the retrieval of all the density-reachable points from
a core point in Lines 8 through 17 is known as region-growing.
Note that a cluster can be identified uniquely by starting
with any core point of the cluster [20]. The computational
complexity of Algorithm 1 is O(n2), where n is the number
of points in X . But, if spatial indexing (for example, using a
kd-tree [24] or an R*-tree [25]) is used for serving the region-
queries (GETNEIGHBORS functions), the complexity reduces
to O(n log n) [26].

However, DBSCAN has a few limitations. First, although
clustering can start with any core point, the process of region
growing for a core point is inherently sequential. Given a core
point x, the density reachable points from x are retrieved in
a breadth-first search (BFS) manner. The neighbors at depth
one (eps-neighbors of core point x) are explored and added to
C. In the next step, the neighbors at depth two (neighbors of
neighbors) are added and the process continues until the whole
cluster is explored. Note that any points at higher depth cannot
be explored until the lower depth points are exhausted. This
limitation can be an obstacle for parallelizing the DBSCAN
algorithm. One can also view the region growing in a depth-
first-search (DFS) manner, but it still suffers from the same
limitation. Secondly, during region growing when the eps-
neighborhood N ′ of a new core point x′ is retrieved (Line
13), N ′ is merged with the existing neighbor set N (Line 15),
which takes linear time with respect to |N ′| as each point in
N ′ is moved to N .

III. A NEW DBSCAN ALGORITHM

Our new DBSCAN algorithm exploits the similarities be-
tween the region growing and computing connected compo-
nents in a graph. The algorithm initially creates a singleton
tree for each point of the dataset. It then keeps merging those
trees which belong to the same cluster until it has discovered
all the clusters. The algorithm thus generates a single tree
for each cluster containing all points of the cluster. To break

the inherent data access order and to perform the merging
efficiently, we use the disjoint-set data structure.

A. The Disjoint-Set Data Structure

The disjoint-set data structure defines a mechanism to
maintain a dynamic collection of non-overlapping sets [21],
[27]. It comes with two main operations: FIND and UNION.
The FIND operation determines to which set a given element
belongs, while the UNION operation joins two existing sets
[22], [28].

(c) Intermediate trees

(a) Data points

(d) Final trees

(b) Singleton trees

20
621

617214

15

111619

13

18912

8

17

18

19

9
1

12

16

15

11

14

5 7

4

3

10

13

2

108

214 189126 1116193

5

7

21

14

20

5

3

21

7

20

14

1 32 4 5 6 7 9 108 11

12 13 14 15 16 17 18 19 20 21

108 17 13 15

Figure 1. An example showing the proposed DSDBSCAN algorithm at
different stages. (a) Sample data points with the circles denoting eps and
minpts = 4. (b) The singleton trees when the algorithm starts. (c) Interme-
diate trees after exploring the eps-neighborhood of three randomly selected
points 3, 7, and 14. (d) The resulting trees when the algorithm terminates
where the singleton trees (8, 10, and 13) are noise points and the two blue
colored large trees (rooted at 20 and 21) are clusters.

Each set is identified by a representative x, which is usually
some member of the set. The underlying data structure of each
set is typically a rooted tree represented by a parent pointer
p(x) for each element x ∈ X; the tree root satisfies p(x) = x
and is the representative of the set. Then, creating a new set
for each element x is achieved by setting p(x) to x.

The output of the FIND(x) operation is the root of the
tree obtained by following the path of parent pointers (also
known as the find-path) from x up to the root of x’s tree.
UNION(x, y) merges two trees containing x and y by changing
the parent pointer of one root to the other one. To do this,
the UNION(x, y) operation first calls two FIND operations,
FIND(x) and FIND(y). If they return the same root (x and y
belong to same set), no merging is required. But if the returned
roots are different, say rx and ry , then the UNION operation
sets p(rx) = ry or p(ry) = rx. Note that this definition of
the UNION operation is slightly different from its standard
definition which requires that x and y belong to two different
sets before calling UNION. We do this for ease of presentation.

There exists many different techniques to perform the
UNION and FIND operations [21]. For example, it is possible
to reduce the height of a tree during a FIND operation so that
subsequent FIND operations run faster. In this paper, we have
used the empirically best known UNION technique, known

as Rem’s algorithm (a lower indexed root points to a higher
indexed root) with the splicing compression technique. Details
on these can be found in [22].

B. The Disjoint-Set based DBSCAN Algorithm
The pseudocode of the disjoint-set data structure based

DBSCAN algorithm (DSDBSCAN) is given in Algorithm 2.
We will refer to the example in Figure 1 while presenting
the algorithm. Initially DSDBSCAN creates a new set for each
point x ∈ X by setting its parent pointer to point to itself
(Line 2-3 in Algorithm 2; Figure 1(b)). Then, for each point
x ∈ X , the algorithm does the following: Similar to DBSCAN,
it first computes x’s eps-neighborhood (Line 5). If the number
of neighbors is at least minpts, then x is marked as a core
point (Line 7). In this case, for each eps-neighbor x′ of x,
we merge the trees containing x and x′ depending on the
following two conditions. (i) If x′ is a core point, then x and
x′ are density-connected and therefore they should belong to
the same tree (cluster). The algorithm performs the merging of
the two trees containing x and x′ using a UNION operation as
discussed above. (ii) If x′ is not a core point, then it is a border
point as x′ is directly density reachable from x. Therefore, if
x′ has not already been added to another cluster as a border
point (one border point cannot belong to multiple clusters), x′

must be added to the cluster to which x belongs. This is done
using a UNION operation on the two trees containing x and x′

(the tree containing x′ must be a singleton tree in this case). If
x′ has already been added to another cluster (implying that it
is a border point of another core point, say z), we continue to
the next step of the algorithm. The algorithm terminates when
the eps-neighborhood of all the points have been explored.
Figure 1(c) shows the intermediate trees after exploring the
eps-neighborhood of points 3, 7, and 14. The final result in
Figure 1(d) contains three noise points (singleton trees 8, 10,
and 13) and two clusters (two blue colored large trees rooted
at 20 and 21, each representing a cluster).

Algorithm 2 The disjoint-set data structure based DBSCAN
Algorithm (DSDBSCAN). Input: A set of points X , distance eps, and
the minimum number of points required to form a cluster, minpts.
Output: A set of clusters.

1: procedure DSDBSCAN(X, eps,minpts)
2: for each point x ∈ X do
3: p(x)← x
4: for each point x ∈ X do
5: N ← GETNEIGHBORS(x, eps)
6: if |N | ≥ minpts then
7: mark x as core point
8: for each point x′ ∈ N do
9: if x′ is a core point then

10: UNION(x, x′)
11: else if x′ is not yet member of any cluster then
12: mark x′ as member of a cluster
13: UNION(x, x′)

It is worthwhile to mention that DSDBSCAN adds (merges)
points to its clusters (trees) without any specific ordering,
which allows for a highly parallel implementation as discussed
in the next section. The time complexity of DSDBSCAN (Algo-
rithm 2) is O(n log n), which is exactly the same as DBSCAN

(Algorithm 1). We now show that DSDBSCAN satisfies the
same conditions as DBSCAN, thereby proving the correctness
of DSDBSCAN.

Theorem 3.1: The solution given by DSDBSCAN satisfies
the following three conditions: Maximality, Connectivity, and
Noise.

Proof: (i) We start with maximality, which is defined in
Condition 2.1: For any two points (x, y) ∈ X , if x ∈ C and
if y is a core point density-reachable from x, then y ∈ C. We
prove this by contradiction. Let us assume that ∃x ∈ C and
y is a core point density-reachable from x, but y 6∈ C. Then,
x and y must be in different trees (as the same tree means
they are in the same cluster) from the DSDBSCAN perspective.
DSDBSCAN ensures that neighboring core points belong to
the same tree (Line 9-10). Thus, there must exist a series
of neighboring core points x = x0, x1, . . . , xk = y. Since
DBSCAN will execute UNION(xi, xi+1) for each 0 ≤ i < k,
it follows that if x and y are not in the same tree, the series
of core points from y to x doesn’t exist, which contradicts the
assumption. Therefore, x and y are in the same tree. If y is a
border point then let S be the set containing each core point
x such that y is directly density reachable from x . Then it
follows that y will be put in the same cluster as the first core
point in S that is explored by the algorithm.
(ii) We now prove the connectivity condition. As defined by
Condition 2.2, for any pair of points (x, y) ∈ C, x must
be density-connected to y. With respect to DSDBSCAN, this
means for all pairs (x, y) in the same tree, x is density-
connected to y in X . We prove this by induction on the number
of points in C at any given time during the execution of the
algorithm. Let UNION(x,y) be the last operation performed on
C that resulted in an increase in the size of C, and let x ∈ C1

and y ∈ C2 be the two trees that x and y belonged to prior
to this operation. Then it follows that x is a core point. If
|C| = 2 then x and y are density-connected since both x and
y are density-reachable from x. Assume that |C| = k > 2
and that the proposition is true for any set of point smaller
than k. Then it is true for both C1 and C2. It follows that for
every v ∈ C1 there is a point z ∈ V1 such that both v and
x are density-reachable from z. Since x is a core point y is
density-reachable from z in C. Thus if |C2| = 1 the result
follows immediately. If |C2| > 1 then y must also be a core
point. For any point v′ ∈ C2 there is a point z′ ∈ V2 such that
both y and v′ are density reachable from z′. Thus there exists
a path from z′ to y consisting only of core points in C2. It
follows that z′ is also density-reachable from y and thus any
point in C2 is density-reachable from y and also from z in C.
(iii) The noise condition (Condition 2.3) says that if a point
x ∈ X is a noise point, it should not belong to any cluster.
In terms of DSDBSCAN this means x should belong to a
singleton tree when the algorithm terminates. We prove this
by contradiction. Let x be a noise point that belongs to a tree
having more points than x. In this case x is density-reachable
from at least one point of the tree (otherwise the algorithm
would not have merged the trees). This implies that x is not a
noise point, which contradicts with the assumption. Therefore,

x belongs to a singleton tree if and only if it is a noise point.
Thus, DSDBSCAN satisfies all three conditions similar to the
DBSCAN algorithm.

IV. THE PARALLEL DBSCAN ALGORITHM

As discussed above, the use of the disjoint-set data structure
in density based clustering works as a primary tool in breaking
the access order of points while computing the clusters. In
this section we present our disjoint-set based parallel DBSCAN
(PDSDBSCAN) algorithm. The key idea of the algorithm is that
each process core first runs a sequential DSDBSCAN algorithm
on its local data points to compute local clusters (trees) in
parallel without requiring any communication. After this we
merge the local clusters (trees) to obtain the final clusters. This
is also performed in parallel as opposed to the previous master-
slave approaches where the master performs the merging
sequentially. Moreover, the merging of two trees only requires
changing the parent pointer of one root to the other one. This
should be contrasted to the existing algorithms where the
master traverses the entire cluster when it relabels it. Since
the entire computation is performed in parallel, substantial
scalability and speedup have been obtained. Similar ideas used
in the setting of graph coloring and computing connected
components have been presented in [23], [29], [30].

Algorithm 3 The parallel DBSCAN algorithm on a shared memory
computer (PDSDBSCAN-S) using p threads. Input: A set of points X ,
distance eps, and the minimum number of points required to form
a cluster, minpts. Let X be divided into p equal disjoint partitions
{X1, X2, . . . , Xp}, each assigned to one of the p running threads.
For each thread t, Yt denotes a set of pairs of points (x, x′) such
that x ∈ Xt and x′ 6∈ Xt. Output: A set of clusters.

1: procedure PDSDBSCAN-S(X, eps,minpts)
2: for t = 1 to p in parallel do . Stage: Local comp. (Line 2-18)
3: for each point x ∈ Xt do
4: p(x)← x
5: Yt ← ∅
6: for each point x ∈ Xt do
7: N ← GETNEIGHBORS(x, eps)
8: if |N | ≥ minpts then
9: mark x as a core point

10: for each point x′ ∈ N do
11: if x′ ∈ Xt then
12: if x′ is a core point then
13: UNION(x, x′)
14: else if x′ 6∈ any cluster then
15: mark x′ as member of a cluster
16: UNION(x, x′)
17: else
18: Yt ← Yt ∪ {(x, x′)}
19: for t = 1 to p in parallel do . Stage: Merging (Line 19-25)
20: for each (x, x′) ∈ Yt do
21: if x′ is a core point then
22: UNIONUSINGLOCK(x, x′)
23: else if x′ 6∈ any cluster then . Line 23-24 are atomic
24: mark x′ as member of a cluster
25: UNIONUSINGLOCK(x, x′)

A. Parallel DBSCAN on Shared Memory Computers

The details of PDSDBSCAN on shared memory parallel
computers (denoted by PDSDBSCAN-S) are given in Algo-
rithm 3. The data points X are divided into p partitions
{X1, X2, . . . , Xp} (one for each of the p threads running in

parallel) and each thread t owns partition Xt. We divide the
algorithm into two segments, local computation (Line 2-18)
and merging (Line 19-25). Both steps run in parallel. Local
computation is similar to sequential DSDBSCAN except each
thread t identifies clusters using only its own data points Xt

instead of X . During the computation using a point x ∈ Xt

by thread t, if x is identified as a core point and x′ falls
within the eps-neighborhood of x, we need to merge the trees
containing x and x′. If t owns x′, that is, x′ ∈ Xt, then
we merge the trees immediately (Line 11-16) similar to the
DSDBSCAN algorithm. But if t does not own x′, x′ 6∈ Xt,
(note that the GETNEIGHBORS function returns both local and
non-local points as all points are in the commonly accessible
shared memory), the merging is postponed and resolved in the
ensuing merging step. To do this, the pair x and x′ is added to
the set Yt (Line 18), which is initially set to empty (Line 5).
The only non-local data access by any thread is the reading
to obtain the neighbors using the GETNEIGHBORS function.
Therefore, no explicit communication between threads or
locking of points is required during the local computation.
The merging step (Line 19-25) also runs in parallel. For each
pair (x, x′) ∈ Yt, if x′ is a core point or has not been added
to any cluster yet, the trees containing x and x′ are merged
by a UNION operation. This implicitly sets x and x′ to belong
to the same cluster. Since this could cause a thread to change
the parent pointer of a point owned by another thread, we use
locks to protect the parent pointers, similar to what was done
in [23].

Algorithm 4 Merging the trees containing x and x′ with UNION
using lock [23].

1: procedure UNIONUSINGLOCK(x, x′)
2: while p(x) 6= p(x′) do
3: if p(x) < p(y) then
4: if x = p(x) then
5: LOCK(p(x))
6: if x = p(x) then
7: p(x)← p(x′)
8: UNLOCK(p(x))
9: x = p(x)

10: else
11: if x′ = p(x′) then
12: LOCK(p(x′))
13: if x′ = p(x′) then
14: p(x′)← p(x)
15: UNLOCK(p(x′))
16: x′ = p(x′)

The idea behind the parallel UNION operation on a shared
memory computer is that the algorithm uses a separate lock
for each point. A thread wishing to set the parent pointer of
a root r1 to r2 during a UNION operation would then have
to acquire r1’s lock before doing so. Therefore, to perform
a UNION operation, a thread will first attempt to acquire the
necessary lock. Once this is achieved, the thread will test if
r1 is still a root. If this is the case, the thread will set the
parent pointer of r1 to r2 and release the lock. On the other
hand if some other thread has altered the parent pointer of r1
so that the point is no longer a root, the thread will release

the lock and continue executing the algorithm from its current
position. The pseudocode of UNIONUSINGLOCK is given in
Algorithm 4. More details on parallel UNION using locks can
be found in [23].

Although locks are used during the merging (Line 22 and
25 in Algorithm 3), one thread has to wait for another thread
only when both of them require the lock for the same point
at the same time. In our experiments, this did not happen
very often. We also noticed that only a few pairs of points
require parallel merging of trees (and thus eventually the use of
locks) during the UNION operation. In most cases, the points
in the pairs belong to the same trees after only a few UNION
operations and therefore no lock is needed because no merging
of trees is performed in UNIONUSINGLOCK (see Algorithm
4). Moreover, since multiple threads can lock different non-
shared points at the same time, multiple UNION operations
using locks can be performed in parallel.

Due to space considerations we only outline the proof that
PDSDBSCAN-S satisfies the same conditions as DBSCAN and
DSDBSCAN. The only difference being that border points
might be assigned to different clusters. First, we note that it
is sufficient to show that the parallel algorithm will perform
exactly the same set of operations as DSDBSCAN irrespec-
tive of the order in which these are performed. The local
computation stage in PDSDBSCAN-S will perform exactly the
same operations on local data that DSDBSCAN would also
have performed. During this stage PDSDBSCAN-S will also
discover any operation that DSDBSCAN would have performed
on two data points from different partitions. These operations
are then performed in the subsequent merge stage. Finally,
the correctness of the parallel merge stage follows from the
correctness of the UNION-FIND algorithm presented in [23].

B. Parallel DBSCAN on Distributed Memory Computers

The details of parallel DBSCAN on distributed memory
parallel computers (denoted by PDSDBSCAN-D) are given
in Algorithm 5. Similar to PDSDBSCAN-S and traditional
parallel algorithms, we assume that the data points X has
been equally partitioned into p partitions {X1, X2, . . . , Xp}
(one for each processor) and each processor t owns Xt only.
From the perspective of processor t, each x ∈ Xt is a
local point, other points not in Xt are referred to as remote
points. Since the memory is distributed, any other partition
Xi 6= Xt, 1 ≤ i ≤ p is not directly visible to processor
t (in contrast to PDSDBSCAN-S which uses a global shared
memory). We therefore need the GETLOCALNEIGHBORS
(Line 5) and GETREMOTENEIGHBORS (Line 6) functions
to get the local and remote points, respectively. Note that
retrieving the remote points requires communication with other
processors. Instead of calling GETREMOTENEIGHBORS for
each local point during the computation, we take advantage
of the eps parameter and gather all possible remote neighbors
in one step before we start the algorithm. In the DBSCAN
algorithm, for any given point x, we are only interested in the
neighbors that falls within the eps distance of x. Therefore,
we extend the bounding box of Xt by a distance of eps in

every direction in each dimension and query other processors
with the extended bounding box to return their local points that
falls within it. Thus, each processor t has a copy of the remote
points X ′

t that it requires for its computation. We consider this
step as a preprocessing step (named gather-neighbors). Our
experiments show that gather-neighbors takes only a fraction
of the total time compared to PDSDBSCAN-D. Thus, the
GETREMOTENEIGHBORS function returns the remote points
from the local copy, X ′

t without communication.

Algorithm 5 The parallel DBSCAN algorithm on a distributed
memory computer (PDSDBSCAN-D) using p processors. Input: A
set of points X , distance eps, and the minimum number of points
required to form a cluster, minpts. Let X be divided into p equal
disjoint partitions {X1, X2, . . . , Xp} for the p running processors.
Each processor t also has a set of remote points, X ′

t stored locally
to avoid communication. Each processor t runs PDSDBSCAN-D to
compute the clusters. Output: A set of clusters.

1: procedure PDSDBSCAN-D(X, eps,minpts)
2: for each point x ∈ Xt do . Stage: Local comp. (Line 2-16)
3: p(x)← x
4: for each point x ∈ Xt do
5: N ← GETLOCALNEIGHBORS(x, eps, Xt)
6: N ′ ← GETREMOTENEIGHBORS(x, eps, X ′

t)
7: if |N |+ |N ′| ≥ minpts then
8: mark x as a core point
9: for each point y ∈ N do

10: if y is a core point then
11: UNION(x, y)
12: else if y 6∈ any cluster then
13: mark y as member of a cluster
14: UNION(x, y)
15: for each point y′ ∈ N ′ do
16: Yt ← Yt ∪ UNIONQUERY(x, Px, y

′) . Px = Pt

17: Send UNIONQUERY(x, Px, y
′) ∈ Yt to Py′ . Stage: Merging (L 17-28)

18: Receive UNIONQUERY from other processors
19: for each received UNIONQUERY (x, Px, y′) do
20: if y′ is a core point then
21: PARALLELUNION(x, Px, y′)
22: else if y′ 6∈ any cluster then
23: mark y′ as member of a cluster
24: PARALLELUNION(x, Px, y′)
25: while (any processor has any UNIONQUERY) do
26: Receive UNIONQUERY from other processors
27: for each received UNIONQUERY (x, Px, y′) do
28: PARALLELUNION(x, Px, y′)

We divide PDSDBSCAN-D into two segments, local
computation (Line 2-16) and merging (17-28), similar to
PDSDBSCAN-S except each processor now needs to take
special measure getting the neighbors that belong to other pro-
cessors (as discussed above in the gather-neighbors step). The
parallel UNION operation is now performed using message
passing between processors. During the local computation,
we compute the local neighbors, N (Line 5) and remote
neighbors, N ′ (Line 6) for each point x. If x is a core point
(when |N |+ |N ′| ≥ minpts), we perform a UNION operation
on x and each local point y ∈ N similar to the PDSDBSCAN-S
algorithm and for each remote point y′ ∈ N ′, we send a
UNIONQUERY to processor Py′ (the owner of y′) asking to
perform a UNION operation of the tree containing x and y′,
if possible.

In the merging stage (17-28), we have two sub-

steps, merging-decision (Line 17-24) and propagate (Line
25-28). During the merging-decision, for each received
UNIONQUERY(x, Px, y′), we check whether y′ is a core point
or if it has been added to any other cluster yet (similar to
the merging stage in PDSDBSCAN-S). If we do not need to
UNION the trees containing x and y′, we continue to the next
UNIONQUERY. Otherwise, we call PARALLELUNION(x, Px,
y′) to perform a UNION of the trees containing x and y′ in
the distributed-memory architecture. For this we use similar
techniques as presented in [22] and [30].

Algorithm 6 Merging trees containing x and y′ on Py′ [30]

1: procedure PARALLELUNION(x, Px, y′)
2: r = FIND(y′)
3: if p(r) = r then . r is a global root at Pt = Pr = Py′

4: if r < x then
5: p(r) = x
6: else
7: Send UNIONQUERY(r, Pr, x) to Px

8: else . r is the last point on Pt on the find path towards the global root
9: if p(r) < x then

10: Send UNIONQUERY(x, Px, p(r)) to Pp(r)

11: else
12: Send UNIONQUERY(p(r), Pp(r), x) to Px

The details of PARALLELUNION are given in Algorithm 6.
During PARALLELUNION(x, Px, y′), Py′ (which is always the
owner of y′) calls the FIND operation to get the root of the tree
containing y′. As the trees might span among the processors
and the memory is distributed, Py′ may not able to access
the root (we use the term global root) if this belongs to other
processors. In this case the FIND operation returns a local
root (the boundary point on Py′ on the find-path of y′). If Py′

owns the global root, r and it satisfies the required criteria
of the UNION operation (in our case the lower indexed root
should point to a higher indexed point), we merge the trees
by setting p(r) to x (Line 5). Otherwise we need to send a
UNIONQUERY based on one of the following two conditions:
(i) r is a global root but r > x (Line 7): Although Pr owns
the global root r in this case, we cannot set p = x as it would
violate the required criteria that a lowered indexed root point
to a higher indexed one. We therefore send a UNIONQUERY to
Px to perform the UNION operation. (ii) r is a local root: We
send a UNIONQUERY either to Px in Line 12 (if p(r) > x) or
Pp(r) in Line 10 (otherwise) to reduce the search space. More
details can be found in [30].

An example of the PARALLELUNION operation to merge
the trees containing x and y′ is shown in Figure 2. Initially
Pr (the owner of x) sends a UNIONQUERY to Pr′ (the
owner of y′) to UNION the trees (Figure 2(a)). If Pr′ satisfies
the required criteria (as discussed above), then the trees are
merged by setting p(r′) = r on Pr′ as shown in Figure 2(b).
But, if the criteria is not satisfied, then Pr′ sends back a
UNIONQUERY to Pr (Figure 2(c)). Then Pr merges the trees
by setting p(r) = r′ (Figure 2(d)). In the general case the
UNIONQUERY might travel among several processors, but for
simplicity we consider only two processors in this example.

PDSDBSCAN-D satisfies the same conditions: maximality,

(a)	 Ini(al	 	 (d)	 Pr	 sets	 p(r)	 =	 	 r’	

Pr	 sends	 	 Union	 Query	 (r,	 Pr	 ,	 y’)	 to	 Py’	 (=Pr’)	

(b)	 Pr’	 sets	 p(r’)	 =	 r	

If	 r’	 >	 r	

(c)	 Pr’	 sends	 back	 Union	 Query	 (r’,	 Pr’	 ,r)	 to	 Pr	

If	 r	 is	 root	 and	 r	 <	 r’	

If	 r’	 <	 r	 and	 r’	 is	 a	 root	 	

Pr	 	 Pr’	 	

r	

x

r'	

y'	
Pr	 	 Pr’	 	

r	

x

r'	

y'	

Pr	 	 Pr’	 	

r	

x

r'	

y'	
Pr	 	 Pr’	 	

r	

x

r'	

y'	

Figure 2. An example of the processing of a PARALLELUNION(x, Px, y′)
operation. (a) Initial condition of the trees on Pr and Pr′ containing x and
y′, respectively. (b) After the merging when p(r′) is set to r. (c) Pr′ sends a
UNIONQUERY(r′, Pr′ , Pr) to Pr . (d) After the merging when p(r) is set to
r′. The tree spans multiple processors after the PARALLELUNION operation.

connectivity, and noise properties (see Theorem 3.1), similar
to DBSCAN, DSDBSCAN, and PDSDBSCAN-S. We omit the
proof due to space considerations.

We performed several communication optimizations includ-
ing the bundling of all the UNIONQUERY messages in each
round of communication and the compression and decompres-
sion (Line 17 and 18 in Algorithm 5, respectively) of all the
UNIONQUERY messages during the first round of communi-
cation. We again omit the details due to space considerations.

V. EXPERIMENTAL RESULTS

We first present the experimental setup used for both the
sequential and the shared memory DBSCAN algorithms. The
setup for the distributed memory algorithm is presented later.

For the sequential and shared memory experiments we used
a Dell computer running GNU/Linux and equipped with four
2.00 GHz Intel Xeon E7-4850 processors with a total of 128
GB memory. Each processor has ten cores. Each of the 40
cores has 48 KB of L1 and 256 KB of L2 cache. Each
processor (10 cores) shares a 24 MB L3 cache. All algorithms
were implemented in C++ using OpenMP and compiled with
gcc (version 4.6.3) using the -O3 flag.

Our testbed consists of 18 datasets, which are divided into
three categories, each with six datasets. The first category,
called real, have been collected from Chameleon (t4.8k, t5.8k,
t7.10k, and t8.8k) [31] and CUCIS (edge and texture) [32]. The
other two categories, synthetic-random and synthetic-cluster,
have been generated synthetically using the IBM synthetic data
generator [33], [34]. In the synthetic-random datasets (r50k,
r100k, r500k, r1m, r1.5m, and r1.9m), points in each dataset
have been generated uniformly at random. In synthetic-cluster
datasets (c50k, c100k, c500k, c1m, c1.5m, and c1.9m), first
a specific number of random points are taken as different
clusters, points are then added randomly to these clusters.
The testbed contains up to 1.9 million data points and each
data point is a vector of up to 20 dimensions. Table I shows
structural properties of the dataset. In the experiments, the
two input parameters (eps and minpts) shown in the table
have been chosen carefully to obtain a fair number of clusters
and noise points in a reasonable time. Higher value of eps
increases the time taken for the experiments while the number

of clusters and noise points are reduced. Higher value of
minpts increases the noise counts.

Table I
STRUCTURAL PROPERTIES OF THE TESTBED (REAL,

SYNTHETIC-CLUSTER, AND SYNTHETIC-RANDOM) AND THE RESULTING
NUMBER OF CLUSTERS, NOISE, AND TIME TAKEN BY CLASSICAL DBSCAN

AND PDSDBSCAN-S ALGORITHMS USING ONE PROCESS CORE FOR
CAREFULLY SELECTED INPUT PARAMETERS eps AND minpts. d DENOTES

THE DIMENSION OF EACH POINT.

Time (sec.)
Name Points d eps minpts DBSCAN PDSDBSCAN-S(t1) Clusters Noise
t4.8k 8,000 2 10 20 0.04 0.04 15 278
t5.8k 8,000 2 8 21 0.05 0.04 15 886
t7.10k 10,000 2 10 12 0.04 0.04 9 692
t8.8k 8,000 2 10 10 0.03 0.03 23 459
edge 17,695 18 3 2 18.22 17.99 9 97
texture 17,695 20 3 2 18.80 18.93 47 1,443
c50k 50,000 10 25 5 3.19 2.97 51 3,086
c100k 100,000 10 25 5 5.94 6.62 103 6,077
c500k 500,000 10 25 5 31.51 34.30 512 36,095
c1m 1,000,000 10 25 5 66.14 73.93 1,025 64,525
c1.5m 1,500,000 10 25 5 100.25 114.73 1,545 102,394
c1.9m 1,900,000 10 25 5 126.68 144.87 1,959 135,451
r50k 50,000 10 100 4 4.60 4.55 1,748 34,352
r100k 100,000 10 100 4 11.90 12.26 740 23,003
r500k 500,000 10 90 5 165.55 158.73 161 25,143
r1m 1,000,000 10 75 5 451.99 405.00 312 45,614
r1.5m 1,500,000 10 65 10 768.54 694.57 968 257,204
r1.9m 1,900,000 10 65 10 1,077.84 958.68 987 278,788

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	
1.2	
1.4	
1.6	
1.8	
2.0	

c50k	 c100k	 c500k	 c1m	 c1.5m	 c1.9m	

kd
-‐t
re
e	
(m

e	
/	
DB

SC
AN

	 (
m
e	
(%

)	

(a) Timing distribution (syn.-clus.)

-‐10	

-‐5	

0	

5	

10	

15	

t4.
8k
	

t5.
8k
	

t7.
10
k	

t8.
8k
	

ed
ge
	

tex
tur
e	

Im
pr
ov
em

en
t	 o

f	 D
SD

BS
CA

N
	 o
ve
r	

DB
SC
AN

	 (%
)	

(b) Real testset

-‐10	

-‐5	

0	

5	

10	

15	

c50k	 c100k	 c500k	 c1m	 c1.5m	 c1.9m	

Im
pr
ov
em

en
t	 o

f	 D
SD

BS
CA

N
	 o
ve
r	

DB
SC
AN

	 (%
)	

(c) Synthetic-cluster testset

-‐10	

-‐5	

0	

5	

10	

15	

r50k	 r100k	 r500k	 r1m	 r1.5m	 r1.9m	

Im
pr
ov
em

en
t	 o

f	 D
SD

BS
CA

N
	 o
ve
r	

DB
SC
AN

	 (%
)	

(d) Synthetic-random testset

Figure 3. (a): Time taken by the construction of kd-tree and DBSCAN
algorithm for synthetic-cluster datasets. (b)-(d): Performance comparison
between DBSCAN and DSDBSCAN algorithms.

A. DBSCAN vs. DSDBSCAN

As discussed in Section II, to reduce the running time of
the DBSCAN algorithms from O(n2) to O(n log n), spatial
indexing (kd-tree [24] or R*-tree [25]) is commonly used
[26]. In all of our implementations, we used kd-trees [24]
and therefore obtain the reduced time complexities. Moreover,
kd-tree gives a geometric partitioning of the data points,
which we use to divide the data points equally among the
cores in the parallel DBSCAN algorithm. However, there is
an overhead in constructing the kd-tree before running the
DBSCAN algorithms. Figure 3(a) shows a comparison of the
time taken by the construction of the kd-tree over the DBSCAN
algorithm in percent for the synthetic-cluster datasets. As can
be seen, constructing the kd-tree takes only a fraction of

the time (0.91% to 1.88%) taken by the DBSCAN algorithm.
We found similar results for the synthetic-cluster datasets
(0.23% to 1.23%). However, these ranges are higher (0.06%
to 18.28%) for real dataset. This is because each real dataset
consists of a small number of points, and therefore, the
DBSCAN algorithms takes much less time compared to the
other two categories. It should be noted that we have not
parallelized the construction of the kd-tree in this paper, we
therefore do not consider the timing of the construction of the
kd-tree in the following discussion.

Figure 3(b), 3(c), and 3(d) compare the performance be-
tween the classical DBSCAN (Algorithm 1) and the sequential
disjoint-set data structure based DBSCAN (DSDBSCAN, Al-
gorithm 2). In each figure, the performance improvement of
DSDBSCAN over the classical DBSCAN has been shown in
percent. This is calculated by the equation [(time taken by
DBSCAN - time taken by DSDBSCAN) * 100 / time taken
by DBSCAN]. Therefore, any bar with a height greater than
zero (light blue color) or less than zero (black and white
color) means that DSDBSCAN is performing better or worse,
respectively, compared to the classical DBSCAN algorithm. As
can be seen, DSDBSCAN performs well on real (1.24% to
10.08%) and synthetic-random (-0.14% to 13.84%) datasets,
whereas for synthetic-cluster datasets, the performance varies
from -10% to 8.70%. We observe that the number of UNION
operations is significantly higher for synthetic-cluster datasets
compared to the other two categories and this number in-
creases with the size of the datasets (Figure 3(c)). The raw
runtime numbers of the classical DBSCAN algorithm are listed
in Table I.

B. Parallel DBSCAN on a Shared Memory Computer

Figure 4 shows the speedup obtained by PDSDBSCAN-S
(Algorithm 3) for various numbers of process cores (threads).
The raw run-times taken by one process core in case of
PDSDBSCAN-S (denoted by PDSDBSCAN-S(t1)) and classical
DBSCAN are provided in Table I. The one giving the smallest
running time of these two has been used to compute the
speedup. The left column in Figure 4 shows the speedup
results considering only the local computation stage whereas
the right column shows results using total time (local compu-
tation plus merging) for the three datasets. Clearly, the local
computation stage scales well across all the datasets as there
is no interaction between the threads. Since local computation
takes substantially more time than the merging, the speedup
behavior of just the local computation is nearly identical to that
of the overall execution. Note that the speedup for some real
datasets in Figure 4(a) and 4(b) saturate at eight process cores
as they are relatively small compared to the other datasets.

Figure 5(a) shows a comparison of the time taken by the
merging stage over the local computation stage in percent
for the PDSDBSCAN-S algorithm using dataset c1.9m for
various number of process cores. We observe that although
the merging time increases with the number of process cores,
this is still only a small fraction (less than 0.70%) of the
local computation time (eventually the total time). We observe

0	

10	

20	

30	

40	

0	 10	 20	 30	 40	

Sp
ee
du

p	

Cores	

t4.8k	
t5.8k	
t7.10k	
t8.8k	
edge	
texture	

(a) Local comp. (real)

0	

10	

20	

30	

40	

0	 10	 20	 30	 40	

Sp
ee
du

p	

Cores	

t4.8k	
t5.8k	
t7.10k	
t8.8k	
edge	
texture	

(b) Local comp. and merging (real)

0	

10	

20	

30	

40	

0	 10	 20	 30	 40	

Sp
ee
du

p	

Cores	

c50k	
c100k	
c500k	
c1m	
c1.5m	
c1.9m	

(c) Local comp. (syn.-clus.)

0	

10	

20	

30	

40	

0	 10	 20	 30	 40	

Sp
ee
du

p	

Cores	

c50k	
c100k	
c500k	
c1m	
c1.5m	
c1.9m	

(d) Local comp. and merging (syn.-clus.)

0	

10	

20	

30	

40	

0	 10	 20	 30	 40	

Sp
ee
du

p	

Cores	

r50k	
r100k	
r500k	
r1m	
r1.5m	
r1.9m	

(e) Local comp. (syn.-rand.)

0	

10	

20	

30	

40	

0	 10	 20	 30	 40	

Sp
ee
du

p	

Cores	

r50k	
r100k	
r500k	
r1m	
r1.5m	
r1.9m	

(f) Local comp. and merging (syn.-rand.)

Figure 4. Speedup of parallel DBSCAN (PDSDBSCAN-S). Left column: Local
computation in PDSDBSCAN-S. Right column: Total time (local computation
+ merging) of PDSDBSCAN-S.

similar performance on the synthetic-cluster (less than 2.82%,
on average 0.57%) and the synthetic-random datasets (less
than 0.31%, on average 0.06%). However, this fraction is
higher for real datasets (less than 8.16% with the exception
on instance edge, where the value is less than 17.37% and on
average 3.91%). As mentioned above, this happens since the
real datasets are fairly small and therefore multiple threads are
competing to lock only a limited number of points, which in
turn increases the merging time.

As discussed in the previous section, although locks are
used in the UNION operation during the parallel merging stage,
only a few pairs of points actually result in successful UNION
operations. In most cases, the points in the pairs already
belong to the same tree and therefore no lock is needed.
Our experimental results show that on average only 0.27%
and 0.09% of the pairs for the real and the synthetic-cluster
datasets, respectively, turn out to actually result in a successful
UNION operation. This is also true for the synthetic-random
datasets (4.25%) except for two cases, r50k and r100k, where
the average value is 39.38%.

We have selected one dataset from each of the three
categories (texture, c1.9m, and r500k from real, synthetic-
cluster, and synthetic-random, respectively) to present the
maximum speedup obtained in our experiments. The speedups
are plotted in Figure 5(b). As can be seen, we have been able
to obtain a maximum speedup of 21.20, 25.97, and 23.86 for

0.0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

1	 2	 4	 8	 16	 32	 40	

M
er
gi
ng
	 (
m
e	
/	
lo
ca
l	 c
om

pu
ta
(o

n	
(m

e	
(%

)	

Cores	

(a) Timing distribution (c1p9m)

0	

5	

10	

15	

20	

25	

30	

0	 10	 20	 30	 40	

Sp
ee
du

p	

Cores	

texture	
c1.9m	
r500k	
texture	
c1.9m	
r500k	
texture	

(b) Speedup of PDSDBSCAN-S

Figure 5. (a) Timing distribution for various number of threads (c1.9m).
(b) The maximum speedup of PDSDBSCAN-S algorithm (solid lines) from
each of the three test sets (real, synthetic-cluster, and synthetic-random) and
corresponding speedup obtained using the master-slave based classical parallel
DBSCAN algorithm (dashed lines).

texture, c1.9m, and r500k, respectively (as shown by the
solid lines). However, the ranges of the maximum speedup are
3.63 to 21.20 (average 9.53) for real, 12.02 to 25.97 (average
20.01) for synthetic-cluster, and 7.01 to 23.86 (average 13.96)
for synthetic-random datasets.

Finally, we have compared our parallel DBSCAN algorithm
with the previous master-slave approaches [14], [15], [16],
[17], [18], [19], [20]. As their source codes are not available,
we have implemented their ideas, where the master process
perform the cluster assignment while the slave processes
answer the neighborhood queries [15], [17]. As can be seen
in Figure 5(b) (the dashed lines), the master-slave approach
performs reasonably well up to 8 cores (maximum speedup
3.35) and then, with the increment of the number of cores,
speedup remains constant. The maximum speedup we obtained
using the master-slave based parallel DBSCAN algorithm is
4.12 using 40 cores, which is significantly lower than the
maximum speedup (25.97) we obtained using our disjoint-
set based parallel DBSCAN algorithm. In Figure 5(b), we
presented only three testsets (one from each category) as we
noticed similar results for other testsets.

C. Parallel DBSCAN on a Distributed Memory Computer

To perform the experiment for PDSDBSCAN-D, we use
Hopper, a Cray XE6 distributed memory parallel computer
where each node has two twelve-core AMD ‘MagnyCours’
2.1-GHz processors and shares 32 GB of memory. Each core
has its own 64 KB L1 and 512 KB L2 caches. Each six cores
on the MagnyCours processor share one 6 MB of L3 cache.
The algorithms have been implemented in C/C++ using the
MPI message-passing library and has been compiled with gcc
(4.6.2) and -O3 optimization level.

The datasets used in the previous experiments are relatively
small for massively parallel computing. We therefore consider
a different testbed of 10 data sets, which are again divided
into three categories, each with three, three, and four datasets,
respectively. The first two categories, called synthetic-cluster-
extended (c61m, c91.5m, and c115.9m) and synthetic-random-
extended (r61m, r91.5m, and r115.9m), have been generated
synthetically using the IBM synthetic data generator [33], [34].
As the generator is limited to generate at most 2 million high
dimensional points, we replicate the same data towards the left
and right three times (separating each dataset with a reasonable

distance) in each dimension to get datasets with hundreds
of million of points. The third category, called millennium-
run-simulation consists of four datasets from the database
[35], [36] on Millennium Run, the largest simulation of the
formation of structure with the ΛCDM cosmogony with a
factor of 1010 particles. The four datasets, MPAGalaxiesBer-
tone2007 (mb) [37], MPAGalaxiesDeLucia2006a (md) [38],
DGalaxiesBower2006a (db) [39], and MPAHaloTreesMhalo
(mm) [37] are taken from the Galaxy and Halo databases (as
the name specified). To be consistent with the size of the other
two categories we have randomly selected 10% of the points
from these datasets. However, since the dimension of each
dataset is high, we are eventually considering almost billions
of floating point numbers. Table II shows the structural prop-
erties of the datasets and related input parameters. To perform
the experiments, we use a parallel kd-tree representation as
presented in [40] to geometrically partition the data among
the processors. However, we do not include the partitioning
time while computing the speedup by the PDSDBSCAN-D.

Table II
STRUCTURAL PROPERTIES OF THE TESTBED (SYNTHETIC-

CLUSTER-EXTENDED, SYNTHETIC-RANDOM-EXTENDED, AND
MILLENNIUM-RUN-SIMULATION) AND THE TIME TAKEN BY

PDSDBSCAN-D USING ONE PROCESS CORE.

Name Points d eps minpts Time(sec.)
c61m 61,000,000 10 25 5 4,121.75
c91.5m 91,500,000 10 25 5 5,738.29
c115.9m 115,900,000 10 25 5 8,511.87
r61m 61,000,000 10 25 2 1,112.94
r91.5m 91,500,000 10 25 2 2,991.38
r115.9m 115,900,000 10 25 2 4,121.75
DGalaxiesBower2006a (db) 96,446,861 8 5 3 219.33
MPAHaloTreesMhalo (mm) 72,322,888 9 5 3 806.56
MPAGalaxiesBertone2007 (mb) 100,446,132 8 5 3 240.17
MPAGalaxiesDeLucia2006a (md) 100,446,132 8 5 3 248.53

0	

500	

1,000	

1,500	

2,000	

0	 500	 1,000	 1,500	 2,000	

Sp
ee
du

p	

Cores	

c61m	

c91.5m	

c115.9m	

(a) Synthetic-cluster-extended dataset

0	

1,000	

2,000	

3,000	

4,000	

0	 1,000	 2,000	 3,000	 4,000	

Sp
ee
du

p	

Cores	

r61m	
r91.5m	
r115.9m	

(b) Synthetic-random-extended dataset

0	

500	

1,000	

1,500	

2,000	

0	 500	 1,000	 1,500	 2,000	

Sp
ee
du

p	

Cores	

db	
mb	
md	

(c) Millennium-run-simulation dataset

0	

2,000	

4,000	

6,000	

8,000	

0	 2,000	 4,000	 6,000	 8,000	

Sp
ee
du

p	

Cores	

mm	

(d) Millennium-run-simulation dataset

Figure 6. Speedup of PDSDBSCAN-D on Hopper at NERSC, a CRAY XE6
distributed memory computer, on three different categories of datasets.

Figure 6(a), 6(b), and 6(c) show the speedup obtained
by PDSDBSCAN-D algorithm using synthetic-cluster-extended,
synthetic-random-extended, and millennium-simulation-run
datasets (except mm), respectively. We use a maximum of
4,096 process cores for these datasets as the speedup de-

0	

20	

40	

60	

80	

100	

0	 5,000	 10,000	 15,000	

Pe
rc
en

ta
ge
	 o
f	 t
ak
en

	 -
m
e	

Cores	

Local	 computa3on	
Merging	

(a) Local comp. vs. Merging on mm

0.0	

0.2	

0.4	

0.6	

0.8	

c61m	 c91.5m	 c115.9m	

Ga
th
er
	 n
ei
gh
bo

rs
	 	 .

m
e	
/	

PD
SD

BS
CA

N
-‐D
	 .
m
e	
(%

)	

64	 128	 256	 512	

(b) Synthetic-cluster-extended dataset

0	

2	

4	

6	

8	

10	

12	

r61m	 r91.5m	 r115.9m	

Ga
th
er
	 n
ei
gh
bo

rs
	 	 .

m
e	
/	

PD
SD

BS
CA

N
-‐D
	 .
m
e	
(%

)	

64	 128	 256	 512	

(c) Synthetic-random-extended dataset

0	

2	

4	

6	

8	

10	

12	

db	 mm	 mb	 md	

Ga
th
er
-‐n
ei
gh
bo

rs
	 /
m
e	
/	

PD
SD

BS
CA

N
-‐D
	 /
m
e	
(%

)	

64	 128	 256	 512	

(d) Millennium-run-simulation dataset

Figure 7. (a) Trade-off between local computation and merging w.r.t the
number of processors on mm, a millennium-run-simulation dataset. (b)-(d)
Time taken by the preprocessing step, gather-neighbors, compared to the total
time taken by PDSDBSCAN-D using 64, 128, 256, and 512 process cores.

creases on larger number of process cores. As can be seen,
the speedups on synthetic-cluster-extended and millennium-
simulation-run (db, mb, md) datasets (Figure 6(a) and 6(c),
respectively) are significantly lower than synthetic-random-
extended datasets (Figure 6(b)). We observed that the number
of UNION operations and the number of local neighbors on
synthetic-cluster-extended and millennium-simulation-run (db,
mb, md) datasets are significantly higher than the synthetic-
random-extended dataset. However, on the dataset mm in
millennium-simulation-run (Figure 6(d)), we get a speedup of
5,765 using 8,192 process cores.

Figure 7(a) shows the trade-off between the local compu-
tation and the merging stage by comparing them with the
total time (local computation time + merging time) in percent.
We use mm, the millennium-run-simulation dataset for this
purpose and continue up to 16,384 process cores to understand
the behavior clearly. As can be seen, the communication
time increases while the computation time decreases with the
number of processors. When using more than 10,000 process
cores, communication time starts dominating the computation
time and therefore, the speedup starts decreasing. For example,
we achieved a speedup of 5,765 using 8,192 process cores
whereas the speedup is 5,124 using 16,384 process cores. We
observe similar behaviors for other datasets.

Figure 7(b), 7(c), and 7(d) show a comparison of the
time taken by the gather-neighbors preprocessing step over
the total time taken by PDSDBSCAN-D in percent on all
datasets using 64, 128, 256, and 512 process cores. As can be
seen, the gather-neighbors step adds an overhead of maximum
0.59% (minimum 0.10% and average 0.27%) of the total
time on synthetic-cluster-extended datasets. Similar results
are found on millennium-simulation-run datasets (maximum
4.82%, minimum 0.21%, and average 1.25%). However, these
numbers are relatively higher (maximum 9.82%, minimum

1.01%, and average 3.76%) for synthetic-random-extended
datasets as the points are uniformly distributed in the space
and therefore the number of points gathered in each processor
is higher compared to the other two test sets. It is also
to be noted that these values increase with the number of
processors and also with the eps parameter as the overlapping
region among the processors is proportional to the number of
processors. We observe that on 64 process cores the memory
space taken by the remote points in each processor is on
average 0.68 times, 1.57 times, and 1.02 times on synthetic-
cluster-extended, synthetic-random-extended, and millennium-
simulation-run datasets, respectively, compared to the memory
space taken by the local points. These values changes to 1.27
times, 2.94 times, and 3.18 times, respectively on 512 pro-
cess cores. However, with this scheme the local-computation
stage in PDSDBSCAN-D can perform the clustering without
any communication overhead similar to PDSDBSCAN-S. The
alternative would be to perform communication for each point
to obtain its remote neighbors.

VI. CONCLUSION AND FUTURE WORK

In this study we have revisited the well-known density based
clustering algorithm, DBSCAN. This algorithm is known to
be challenging to parallelize as the computation involves an
inherent data access order. We present a new parallel DBSCAN
(PDSDBSCAN) algorithm based on the disjoint-set data struc-
ture. The use of this data structure works as a mechanism
for increasing concurrency, which again leads to scalable
performance. The algorithm uses a bottom-up approach to
construct the clusters as a collection of hierarchical trees. This
approach achieves a better-balanced work-load distribution.
PDSDBSCAN is implemented using both OpenMP and MPI.
Our experimental results conducted on a shared memory
computer show scalable performance, achieving speedups up
to a factor of 25.97 when using 40 cores on data sets contain-
ing several hundred million high-dimensional points. Similar
scalability results have been obtained on a distributed-memory
machine with a speedup of 5,765 using 8,192 process cores.
Our experiments also show that PDSDBSCAN significantly
outperforms existing parallel DBSCAN algorithms. We intend
to conduct further studies to provide more extensive results
on much larger number of cores with datasets from different
scientific domains. Finally, we note that our algorithm also
seems to be suitable for other parallel architectures, such as
GPU and heterogenous architectures.

ACKNOWLEDGMENT

This work is supported in part by NSF award numbers CCF-
0621443, OCI-0724599, CCF-0833131, CNS-0830927, IIS-
0905205, OCI-0956311, CCF-0938000, CCF-1043085, CCF-
1029166, and OCI-1144061, and in part by DOE grants
DE-FG02-08ER25848, DE-SC0001283, DE-SC0005309, DE-
SC0005340, and DE-SC0007456. This research used Hopper
Cray XE6 computer of the National Energy Research Scien-
tific Computing Center, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.

REFERENCES

[1] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From data mining to
knowledge discovery in databases,” AI magazine, vol. 17, no. 3, p. 37,
1996.

[2] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the fifth Berkeley sympo-
sium on mathematical statistics and probability, vol. 1. USA, 1967,
pp. 281–297.

[3] H. Park and C. Jun, “A simple and fast algorithm for K-medoids
clustering,” Expert Systems with Applications, vol. 36, no. 2, pp. 3336–
3341, 2009.

[4] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: an efficient data
clustering method for very large databases,” in ACM SIGMOD Record,
vol. 25(2). ACM, 1996, pp. 103–114.

[5] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in Pro-
ceedings of the 2nd International Conference on Knowledge Discovery
and Data mining, vol. 1996. AAAI Press, 1996, pp. 226–231.

[6] W. Wang, J. Yang, and R. Muntz, “STING: A statistical information grid
approach to spatial data mining,” in Proceedings of the International
Conference on Very Large Data Bases. IEEE, 1997, pp. 186–195.

[7] G. Sheikholeslami, S. Chatterjee, and A. Zhang, “WaveCluster: a
wavelet-based clustering approach for spatial data in very large
databases,” The VLDB Journal, vol. 8, no. 3, pp. 289–304, 2000.

[8] A. Mukhopadhyay and U. Maulik, “Unsupervised satellite image seg-
mentation by combining SA based fuzzy clustering with support vector
machine,” in Proceedings of 7th ICAPR’09. IEEE, 2009, pp. 381–384.

[9] D. Birant and A. Kut, “ST-DBSCAN: An algorithm for clustering
spatial-temporal data,” Data & Knowledge Engineering, vol. 60, no. 1,
pp. 208–221, 2007.

[10] M. Surdeanu, J. Turmo, and A. Ageno, “A hybrid unsupervised approach
for document clustering,” in Proceedings of the 11th ACM SIGKDD.
ACM, 2005, pp. 685–690.

[11] S. Madeira and A. Oliveira, “Biclustering algorithms for biological
data analysis: a survey,” Computational Biology and Bioinformatics,
IEEE/ACM Transactions on, vol. 1, no. 1, pp. 24–45, 2004.

[12] J. Han, M. Kamber, and J. Pei, Data mining: concepts and techniques.
Morgan Kaufmann, 2011.

[13] H. Kargupta and J. Han, Next generation of data mining. Chapman &
Hall/CRC, 2009, vol. 7.

[14] S. Brecheisen, H. Kriegel, and M. Pfeifle, “Parallel density-based
clustering of complex objects,” Advances in Knowledge Discovery and
Data Mining, pp. 179–188, 2006.

[15] D. Arlia and M. Coppola, “Experiments in parallel clustering with
DBSCAN,” in Euro-Par 2001 Parallel Processing. Springer, LNCS,
2001, pp. 326–331.

[16] M. Chen, X. Gao, and H. Li, “Parallel DBSCAN with priority r-tree,”
in Information Management and Engineering (ICIME), 2010 The 2nd
IEEE International Conference on. IEEE, 2010, pp. 508–511.

[17] M. Coppola and M. Vanneschi, “High-performance data mining with
skeleton-based structured parallel programming,” Parallel Computing,
vol. 28, no. 5, pp. 793–813, 2002.

[18] Y. Fu, W. Zhao, and H. Ma, “Research on parallel DBSCAN algorithm
design based on mapreduce,” Advanced Materials Research, vol. 301,
pp. 1133–1138, 2011.

[19] X. Xu, J. Jäger, and H. Kriegel, “A fast parallel clustering algorithm for
large spatial databases,” High Performance Data Mining, pp. 263–290,
2002.

[20] A. Zhou, S. Zhou, J. Cao, Y. Fan, and Y. Hu, “Approaches for scaling
DBSCAN algorithm to large spatial databases,” Journal of computer
science and technology, vol. 15, no. 6, pp. 509–526, 2000.

[21] T. Cormen, Introduction to algorithms. The MIT press, 2001.
[22] M. Patwary, J. Blair, and F. Manne, “Experiments on union-find al-

gorithms for the disjoint-set data structure,” in Proceedings of the
9th International Symposium on Experimental Algorithms (SEA 2010).
Springer, LNCS 6049, 2010, pp. 411–423.

[23] M. M. A. Patwary, P. Refsnes, and F. Manne, “Multi-core spanning forest
algorithms using the disjoint-set data structure,” in Proceedings of the
26th IEEE International Parallel & Distributed Processing Symposium
(IPDPS 2012). IEEE, 2012, to appear.

[24] M. B. Kennel, “KDTREE 2: Fortran 95 and C++ software to efficiently
search for near neighbors in a multi-dimensional Euclidean space,” 2004,
institute for Nonlinear Science, University of California.

[25] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, “The r*-
tree: an efficient and robust access method for points and rectangles,”
Proceedings of the 1990 ACM SIGMOD international conference on
Management of data, vol. 19, no. 2, pp. 322–331, 1990.

[26] J. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517,
1975.

[27] R. Tarjan, “A class of algorithms which require nonlinear time to
maintain disjoint sets,” Journal of computer and system sciences, vol. 18,
no. 2, pp. 110–127, 1979.

[28] B. Galler and M. Fisher, “An improved equivalence algorithm,” Com-
munications of the ACM, vol. 7, pp. 301–303, 1964.

[29] M. Patwary, A. Gebremedhin, and A. Pothen, “New multithreaded order-
ing and coloring algorithms for multicore architectures,” in Proceedings
of 17th International European Conference on Parallel and Distributed
Computing (Euro-Par 2011). Springer, LNCS 6853, 2011, pp. 250–262.

[30] F. Manne and M. Patwary, “A scalable parallel union-find algorithm
for distributed memory computers,” in Parallel Processing and Applied
Mathematics. Springer, LNCS, 2010, pp. 186–195.

[31] “CLUTO - clustering high-dimensional datasets,” 2006,
http://glaros.dtc.umn.edu/gkhome/cluto/cluto/.

[32] “Parallel K-means data clustering,” 2005,
http://users.eecs.northwestern.edu/ wkliao/Kmeans/.

[33] R. Agrawal and R. Srikant, “Quest synthetic data generator,” IBM
Almaden Research Center, 1994.

[34] J. Pisharath, Y. Liu, W. Liao, A. Choudhary, G. Memik, and J. Parhi,
“NU-MineBench 3.0,” Technical Report CUCIS-2005-08-01, Northwest-
ern University, Tech. Rep., 2010.

[35] G. Lemson and the Virgo Consortium, “Halo and galaxy formation his-
tories from the millennium simulation: Public release of a VO-oriented
and SQL-queryable database for studying the evolution of galaxies in
the LambdaCDM cosmogony,” Arxiv preprint astro-ph/0608019, 2006.

[36] V. Springel, S. White, A. Jenkins, C. Frenk, N. Yoshida, L. Gao,
J. Navarro, R. Thacker, D. Croton, J. Helly et al., “Simulations of the
formation, evolution and clustering of galaxies and quasars,” Nature,
vol. 435, no. 7042, pp. 629–636, 2005.

[37] S. Bertone, G. De Lucia, and P. Thomas, “The recycling of gas and
metals in galaxy formation: predictions of a dynamical feedback model,”
Monthly Notices of the Royal Astronomical Society, vol. 379, no. 3, pp.
1143–1154, 2007.

[38] G. De Lucia and J. Blaizot, “The hierarchical formation of the brightest
cluster galaxies,” Monthly Notices of the Royal Astronomical Society,
vol. 375, no. 1, pp. 2–14, 2007.

[39] R. Bower, A. Benson, R. Malbon, J. Helly, C. Frenk, C. Baugh, S. Cole,
and C. Lacey, “Breaking the hierarchy of galaxy formation,” Monthly
Notices of the Royal Astronomical Society, vol. 370, no. 2, pp. 645–655,
2006.

[40] Y. Liu, W.-k. Liao, and A. Choudhary, “Design and evaluation of
a parallel HOP clustering algorithm for cosmological simulation,” in
Proceedings of the 17th International Symposium on Parallel and
Distributed Processing (IPDPS 2003). Washington, DC, USA: IEEE,
2003, p. 82.1.

