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Abstract The rapid evolution of modern social networks
motivates the design of networks based on users’ interests.

Using popular social media such as Facebook and Twitter,

we show that this new perspective can bring more mean-
ingful information about the networks. In this paper, we

model user-interest-based networks by deducing intent

from social media activities such as comments and tweets
of millions of users in Facebook and Twitter, respectively.

These interactive contents derive networks that are

dynamic in nature as the user interests can evolve due to
temporal and spatial activities occurring around the user.

To excavate social circles, we develop an approach that

iteratively removes the influence of the communities
identified in the previous steps by widely used Clauset,

Newman, and Moore (CNM) community detection algo-

rithm. Experimental results show that our approach can
detect communities at a much finer scale compared to the

CNM algorithm. Our user-interest-based model and com-

munity extraction methodology together can be used to
identify target communities in the context of business

requirements.

Keywords Community detection ! Extraction ! Analysis
clustering ! social network ! Graph partitioning

1 Introduction

Usually complex systems are represented by network
models (Strogatz 2001). There exists a wide range of such

systems, for example, acquaintance and collaboration net-

works in sociology (Amaral et al. 2000; Newman 2001),
metabolic and gene networks in biology (Fell and Wagner

2000; Jeong et al. 2000; Pons and Latapy 2004), cosmo-

logical simulation in physics (Liu et al. 2003; Skory et al.
2010), internet (Faloutsos et al. 1999), World Wide Web

(Albert et al. 1999; Broder et al. 2000), social networks

(Wasserman and Faust 1994), citation networks (Redner
1998; Price 1965), and food networks (Williams and

Martinez 2000). Understanding and analyzing the structure

of these systems has seen a surge of interest in recent years.
A fundamental problem in the study of networks is com-

munity detection (Newman 2006).
In this paper, we focus on finding communities in social

networks, also known as social circles. Due to the

increasing popularity of social media sites such as Face-
book1 and Twitter2, there is a vast amount of creation and

exchange of user-generated content. In the past, experi-

ments have been performed using traditional user networks
(Clauset et al. 2004; Wakita et al. 2007). For example, in

Twitter, user networks are given by follower & following

relationships. Instead of using the static user networks, in
this work we use users’ interests to determine the social

network structure. The users’ interests are deduced from
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user-generated content such as posts, comments, and likes

with respect to Facebook, and tweets (retweets and men-
tioned tweets) with respect to Twitter. According to

(Corallo 2013), on average, a Facebook user writes 25

comments and clicks the like button 9 times per month.
These interests build the network connections, and the

common content generators determine the strength of those

connections. Using interest-based modeling also makes
these networks much more dynamic in nature as user

interests can evolve due to temporal (e.g., current events)
or spatial (e.g., change in geographical locations) reasons.

Recent work (Kashoob and Caverlee 2012; Nair and Dua

2012; Tchuente et al. 2013) has used dynamic and static
social networks to propose recommender systems or per-

sonalized systems that can perform user profiling and

community detection. According to Amis (2007), social
network sites have as much influence on consumers as

television or newspapers. More importantly, social net-

works are formed between users of similar interests and are
peer-to-peer (Smith et al. 2005). Thus, one application of

our user-interest-based social circles would be in Market-

ing where marketers are always looking to learn how the
consumers are influenced by their environment.

Network models are often represented by graphs. The

set of nodes or vertices in the graphs represent, for
instance, people in social networks. The links or edges

between the vertices reflect the relationships between users.

These graphs are in general globally sparse, but locally
dense, that is, there exists groups of vertices, called com-

munities, with higher density of edges inside the groups

than between the groups. These communities often bring
out meaningful information about the networks.

Although there exist several community detection

algorithms (discussed in Sect. 3), several algorithms are
based on maximizing a metric, known as modularity

(Fortunato 2010). However, a maximum modularity does

not necessarily reflect that a network has a community
structure (Fortunato 2010; Fortunato and Barthelemy 2007;

Radicchi 2013). In particular, it remains true even if the

communities are cliques (Fortunato and Barthelemy 2007).
To facilitate the maximization of the modularity metric,

these algorithms end up producing several big communities

along with only few small communities.
We therefore propose an iterative approach for extracting

focused social circles. In our approach, the algorithm starts

with the entire network and outputs few small communities
in every round. It then removes these extracted communi-

ties from the network and runs the algorithm recursively for

each of the big communities. The algorithm continues until
it is not possible to further divide the communities into

smaller ones or until each of the communities reaches a

user-desired upper bound on the community size. The
proposed technique has been experimented using Facebook

and Twitter data. Experimental results show that our pro-

posed algorithm can excavate focused social circles that
conform with objectives, facts, and intuitions.

Preliminary results of this work have been earlier pre-

sented in Palsetia et al. (2012). In this paper, we provide
in-depth discussion of our algorithm including its com-

plexity, and experiments pertaining to both static and

dynamic datasets. The remainder of this paper is orga-
nized as follows. We describe our approach to model

social networks in Sect. 2. Section 3 presents a literature
review on community extraction algorithms followed by

our new approach to extract communities in Sect. 4. In

Sect. 5, we describe our experimental methodology, and
the results. We conclude our work and propose future

work in Sect. 6.

2 Data modeling

Our data is collected from two widely used social media

platforms: Facebook and Twitter. Both Facebook walls and

Twitter profiles are a medium for individuals, groups or
businesses to post content such as messages, promotions or

campaigns. These sites also provide the capability for other

users to interact and engage by allowing them to reply or
comment on the already posted content. To deduce users’

interests on Facebook, we therefore consider user com-

ments made for post on the Facebook walls and use them to
formulate the network for our experiments. In Fig. 1a, for

example, a post made by Bing on its wall and comments

made by interested users are shown. The user comments
and user information from specific walls are publicly

available and collected using Facebook API3.

Similarly, for Twitter the interest is deduced by tweets.
A tweet is a message with up to 140 characters pertaining

to a particular Twitter profile. We use two kinds of tweets.

First, retweet, which is a tweet made by a Twitter profile
that gets tweeted again by another interested user. Second,

mentioned tweet, which is a tweet made by an interested

user regarding the Twitter profile. In Fig. 1b, we provide an
example of a Twitter profile named @AmazonKindle, re-

tweet of @AmazonKindle tweet, and mentioned tweet

regarding @AmazonKindle. The publicly available user
mentioned tweets, retweets of a Twitter profile, and

information of users who tweeted on these profiles are

collected using Twitter API4.
We now present our technique to generate the user-

interest-based networks. From the gathered data we

assimilate information regarding unique users, who have
shown interest on, for example a Facebook wall. This is

3 http://developers.facebook.com/.
4 https://dev.twitter.com/docs/.
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done by extracting user identifiers from Facebook com-

ments made for specific walls. Further, we also determine
the common users between any two Facebook walls. We

represent this data as a symmetric square matrix, M, of

dimension equal to the number of walls. Each diagonal
entry of M, say, M[i, i] represents the number of unique

users of walli and any other entries M[i, j], where

i = j denote the number of common users between
walli and wallj. For a walli, high value of M[i, i] indicates

the popularity of i amongst the masses. Between two
wallsi and j, higher value of M[i, j] indicates that more

users are interested in both walls. Note that users (who

generate content) are not walls (for whom the content is
generated). The same procedure is carried out for Twitter

profiles. Table 1 shows a sample matrix representation for

Twitter profiles VanCanucks (h1), Versace (h2), Virgin-
America (h3), virginmobileus (h4), Walgreens (h5), and

Walmart (h6).

Since the usual community extraction algorithms take
graphs as input, we convert each such matrix to an undi-

rected graph G = (V, E), where V represents the walls or

profiles and E represents edges between them. We assign
an edge between two walls or profiles if the common user

count is greater than zero. Also, since we want to find

communities of similar interests, the edges contain weights
to indicate strength of the connection. The weight between

two vertices i and j, denoted by w[i, j], is computed by

Jaccard index or similarity coefficient (Guha et al. 2000;
Leydesdorff 2008) as shown in Eq. 1.

w½i; j# ¼ M½i; j#
M½i; i# þM½j; j# &M½i; j#

ð1Þ

The denominator represents the number of unique users
and the numerator represents the number of common users

in Eq. 1. The weight ranges between 0 and 1, with a value

closer to 1 indicating that the walls/profiles are more
similar in terms of user interests.

3 Community extraction

In this section, we provide a brief literature review of
existing community detection algorithms with the widely

used Clauset, Newman, and Moore (CNM) algorithm

(Clauset et al. 2004).
Throughout the paper, we consider an undirected graph

G = (V, E) with n = |V| and m = |E|, where V is the set of

vertices and E is the set of edges. We assume that the graph
is simple, meaning that there is no vertex linked to itself

and there are no multiple edges between two vertices. We

call Gi = (Vi, Ei), a subgraph of G if Vi ) V and Ei ) E:
We use V(G) and E(G) to denote the vertices and edges of

graph G, respectively.

The community detection problem is typically formu-
lated as finding a partition C ¼ fc1; . . .; ckg of G, where

8i; ci ) V and Vi,j, ci \ cj = [, which gives tight

Fig. 1 User interests deduced from user-generated content

Table 1 Common User Matrix for 6 Twitter profiles

h1 h2 h3 h4 h5 h6

h1 30,527 13 80 4 18 84

h2 13 1,324 30 0 6 11

h3 80 30 6,679 18 28 87

h4 4 0 18 358 7 20

h5 18 6 28 7 1,961 140

h6 84 11 87 20 140 7,951
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communities, i.e., we get many connections between the

members of the community and relatively few connections
among the communities. C is also known as a clustering of

G. We use k to denote the number of resulting communi-

ties, that is, |C| = k.

3.1 Related works

In recent years, many new algorithms for detecting com-

munities have been proposed, most of which belong to one
of the two broad categories, divisive and agglomerative.

One such divisive approach is proposed in (Girvan and

Newman 2002; Newman and Girvan 2004) where the
edges with largest betweenness (number of shortest paths

passing through an edge) are removed one by one to split

the graph into communities hierarchically. An alternative
formulation has been proposed in Pinney and Westhead

(2007), where the vertices with largest betweenness are

removed instead of edges. Pinney and Westhead (2007)
also presents a hybrid approach, where both vertices and

edges are removed to detect overlapping communities.

Several fast agglomerative algorithms (also, known as
hierarchical approach) have been developed in recent

years (Newman 2004; Radicchi et al. 2004; Wu and Hu-

berman 2004). Agglomerative algorithms iteratively group
the vertices into communities. Different methods exist

depending on the way of choosing communities to merge at

each step. A greedy algorithm of this type proposed in
Newman (2004) starts with n communities corresponding

to the vertices of G. The algorithm then merges commu-

nities to optimize a metric called modularity, which is a
goodness measure of a division. A division is good when

there are many edges within the communities and only a

few between them. This algorithm has been improved in
Clauset et al. (2004, Wakita et al. (2007). Several other

similarity metrics and techniques have been used in Donetti

and Munoz (2004), Pons and Latapy (2004), Zhou and
Lipowsky (2004).

Other than divisive and agglomerative approaches, a

totally different framework for extracting communities has
been recently proposed and experimented in Zhao et al.

(2011). This allows some vertices not to belong to any

community, whereas all the above discussed algorithms
require all vertices to belong to at least one community.

The approach we introduce in this paper works on top of

existing community extraction algorithms. We therefore
explain our approach from the viewpoint of one such

existing algorithm. Several open source software packages,

for example, SNAP Stanford (Leskovec 2009), SNAP
Berkeley (Madduri 2008), and iGraph (Csardi and Nepusz

2003) include the implementation of well known and

widely used community extraction algorithms, for exam-
ple, Girvan, Newman algorithm (Girvan and Newman

2002) and Clauset, Newman, and Moore (CNM) algorithm

(Clauset et al. 2004). iGraph has few more implementa-
tions such as Donetti and Munoz (2004) and Pons and

Latapy (2004). Since CNM algorithm (Clauset et al. 2004)

is quite efficient and widely used, we use this in our
algorithm. The source code for the CNM algorithm is

available with the above mentioned packages. Next, we

present a brief overview on CNM algorithm and then
present our proposed algorithm in Sect. 4.

3.2 CNM algorithm

First, we formally define the modularity metric as it is the
basis of the CNM algorithm. Modularity is a quantitative

measure of the quality of a partition of a graph. It can be

used to compare the quality of different partitions of a
graph. As mentioned earlier, each community would have a

high number of intra-community edges and a few inter-

community edges. The formulation of modularity reflects
this idea as explained next.

Let eij denotes one-half of the fraction of edges in a

graph that connects vertices in community i to those in
community j. Therefore, eij ? eji is the total fraction of

such edges for communities i and j. Let eii be the fraction

of edges that fall within group i. Then
P

ieii is the total
fraction of edges that fall within groups and ai =

P
jeij be

the total fraction of all ends of edges that are attached to

vertices in group i. Given these parameters, the modularity
Q of a clustering C is defined as follows:

QðCÞ ¼
X

i

ðeii & a2i Þ ð2Þ

As can be seen in Eq. 2, to maximize modularity, the
first term should be high whereas the second term should

be low. This reflects the concept of community clearly. If

the number of intra-community edges is no better than
random, then Q = 0. The value of Q approaching 1, which

is maximum, indicates strong community structure (New-

man and Girvan 2004), although in practice, typical values
fall within the range of 0.3–0.7 and higher values are rare

(Fortunato and Barthelemy 2007).

CNM algorithm (Clauset et al. 2004) falls in the
general category of agglomerative hierarchical clustering.

The algorithm starts from a totally unclustered situation,

where each vertex in a graph forms a singleton com-
munity. The algorithm then repeatedly chooses a com-

munity pair based on modularity and merges them into a

new community. Since the number of community pairs
decreases monotonically, the algorithm eventually stops

when there remains no community pairs to merge. In this

way, the algorithm gives a dendrogram, a tree that
shows the order of the joins (Newman 2004). Cuts

through this dendrogram at different levels give division
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of the graph into larger or smaller number of commu-

nities. CNM algorithm selects the best cut by looking for
the maximal value of modularity as it represents the best

community structure. CNM algorithm also works with

weighted graphs, the only difference being that while
computing modularity, it uses edge weights instead of

degrees in Equation 2. More details on CNM algorithm

can be found in Clauset et al. (2004) and Newman and
Girvan (2004). In the rest of the paper, we use GREED-

YAGGLOMERATIVE(GA) (Madduri 2008), to refer to the
algorithm that first calls CNM algorithm for graph

G, then finds the maximum modularity, and outputs a

clustering C of graph G as the set of resulting
communities.

4 INC algorithm

Modularity has been widely used as a metric for extracting
communities in the last decade (Clauset et al. 2004; Le-

skovec 2009; Madduri 2008; Newman and Girvan 2004).

However, according to Fortunato (2010) and Fortunato and
Barthelemy (2007), maximum modularity does not neces-

sarily mean that a graph has community structure. It is

especially the case if the communities are cliques. There-
fore, using modularity to extract communities results in

large modules (communities), which in turn could com-

prise of smaller modules.
Visually analyzing the communities on several social

network datasets derived from our user-interest-based

model, we noticed that the social circles in general are
small in size even if the dataset is large. It could also

happen that if the edge densities between the social circles

are strong, the existing algorithms consider them as one
social circle. However, keeping them separate, we find

focused communities. For example, looking at the big

communities found by the GA algorithm, for Facebook and
Twitter dataset, we observe that one can easily identify the

focused communities related to sports, politics, news, and

so on within large communities.
In this section, we therefore present a new approach that

can further divide these big communities into small

focused communities. Note that while doing so, we con-
sider the subgraph that contains only those vertices that

belong to the big community. The reason behind this is that

the edges connecting a big community to other communi-
ties have already been considered while identifying the

previous communities, and presently we are only interested

in dividing the current big community into smaller ones.
Since our approach incrementally extracts several mean-

ingful communities in every round, we call the approach as

incremental community extraction algorithm, denoted by
INCRE-COMM-EXTRACTION(INC).

4.1 Our approach

Our algorithm works in a recursive fashion. At the begin-
ning of every round, we call the GA algorithm and for each

community that GA algorithm outputs, our INC algorithm

either declares that as a final community or recalls our
algorithm recursively for that community to divide it fur-

ther. In this way, we keep dividing the input graph as long

as GA algorithm can divide it into multiple communities.
When GA algorithm fails to divide the input graph, our

algorithm outputs that graph as a resulting community. One

can also stop dividing a community when the community
size reaches s, an upper bound on the community size and

is an input parameter. However, this condition works as an

extra feature of our algorithm if one desires to bound the
communities by size s. Note that this condition does not

confirm that each resulting community would at most be of

size s, as there might exist communities for which GA
algorithm fails to divide into multiple communities because

of very high connectivity between the community mem-

bers. In our approach, we use CNM, which is one of the
GA algorithms, but any GA algorithm can be employed.

For example, CNM algorithm can be replaced by the

algorithm used in Girvan and Newman (2002).
The details of INC algorithm have been outlined in

Algorithm 1. The algorithm starts with graph G and clus-

tering C = [. Let, at every round of the algorithm, the
running graph be denoted by Gr. The algorithm first calls

GA(Gr) and gets a set of communities, C0: If jC0j ¼ 1 then

algorithm failed to divide the running graph Gr into more
than one community. Let c1 be that community. In this

case, c1 contains all vertices of Gr. It outputs c1 as a

resulting community by adding c1 to C and returns from
this round. If this is not the case, then it goes through each

community ci 2 C0 and checks which of the following

three cases is true. (1) If |ci| = 1, then ci is a singleton
community and therefore, it adds ci into c

0; which we use to
denote the set of all singleton communities found in every

round. c0 is set to [ before the algorithm starts traversing
the communities. At the end of the traversal, all the sin-

gleton communities are outputted by adding c0 to C given

that there exists at least one vertex in c0: In this way, we
output all the singleton communities found in every round

as one single community similar to Zhao et al. (2011). (2)

The algorithm then checks whether the community size is
less than or equal to s, that is, |ci| B s. If this is the case, it

adds ci to C as a resulting community and continues to

other communities. As mentioned previously, this case is
only applicable when one desires to have an upper bound

on the community size. (3) If none of the above two cases
are true, it means that, it might be possible to further divide

the subgraph Gi, containing the vertices in ci, V(ci) and the

edges in ci, E(ci). We therefore call INC algorithm with
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parameter Gi, which becomes the running graph Gr in the

following round. At the end of the algorithm, we thus
get all the resulting k communities in C. The flow of the

algorithm can be represented as a dendrogram, where each

internal node represents the running subgraph Gr and each
leaf node represents a community ci.

Note that the idea of INC algorithm is similar to Zhao
et al. (2011) (although they use a much different approach

called Tabu Search). However, the INC algorithm extracts

several small communities at every round instead of
extracting a single community per round as in Zhao et al.

(2011). Moreover, while extracting communities from a big

community, INC algorithm disregards the connections of a
big community with the outside world as they have already

been considered in earlier rounds. Another technique, called

HQcut, has been presented in Ruan and Zhang (2008),
which uses spectral partitioning in their approach. HQcut is

able to detect communities at a much finer scale by recur-

sively applying the algorithm on sub-networks that are
eligible for further partitioning. The eligibility is based on

(1) minimum threshold value of modularity and (2) esti-

mating the statistical significance of the modularity using a
Monte–Carlo method. Lastly, although our algorithm is

hierarchical in nature, this is not to be confused with (Guha

et al. 2000), which uses similarity metric as distance metric
and then applies agglomerative hierarchical clustering

algorithm to find clusters or communities.

4.2 Complexity analysis

We now analyze the running time of the INC algorithm. As

shown in Clauset et al. (2004), the running time of the GA

algorithm is O(mdlog n) for general graphs (d is the depth
of the dendrogram describing the community structure),

whereas for sparse graphs, the running time is O(nlog2n).

Let the complexity of the INCRE-COMM-EXTRACTION algo-
rithm be denoted by T(n).

In the worst case, the communities found at every round

may not be balanced. Since the running time of GA algo-
rithm is nlog2n for sparse graph, the recurrence becomes

TðnÞ ¼ n log2 nþ Tðn& 1Þ

The calls will be of the type T(n - 1), T(n - 2), T(n -
3), . . .; T(2), T(1). Therefore, the running time for INC

algorithm for sparse graphs is O(n2 log2 n). Using similar

analysis, one can show that for general graphs,
T(n) = O(mndlog n) for INC algorithm assuming the run-

ning time of GA algorithm is mdlog n (Clauset et al. 2004).

In the worst case scenario, the INC algorithm should call
the GA algorithm n times. However, our experiments show

that this number is much smaller than n.

In the case of balanced communities (most likely case),
say that atmost p communities are found by the algorithm

at every round and each of these communities has n/

p members. We can then bound recurrence to (log n/log p)
* n * log2n for sparse graphs. Without p and assuming

p C 2 we get: T(n) = O(n log3n). Similarly, for general

graphs, the recurrence then becomes T(n) = O(mndlog n).

4.3 Cluster quality metric

As mentioned previously, modularity might not reflect the

right community structure, we therefore use modularity

density, introduced in Zhang et al. (2009), as a metric to
compare the quality of the extracted communities in our

experiments. For a given subgraph Gi(Vi, Ei), let li and !li
denote the number of inner (both end in Gi) and outer (only
one end in Gi) edges respectively. Assuming ni = |Vi|, the

average inner degree of Gi is 2li/ni and the average outer

degree of Gi is !li=ni: Then the modularity density, D of a

partition C = {c1, …, ck} of a graph G is computed as the

sum of the average inner degree minus the average outer
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degree. This is shown in Equation 3. The larger the value of

D, the more accurate the partition is.

D ¼
XjCj

i¼1

2li & !li
ni

ð3Þ

5 Experiments and results

In this section, we analyze the communities extracted using

the proposed INC algorithm.

5.1 Experimental setup

In our experiments, we consider 2,000 Facebook walls
and 339 Twitter profiles. To serve as ground truth for

our community extraction algorithm, we chose known

walls and profiles from interests such as sports, news,
politics, business, travel, and entertainment. We therefore

have 2,000 9 2,000 matrix for Facebook and 339 9 339

matrix for Twitter. Overall we have 22, 795, 352 unique
Facebook users and 2, 215, 581 unique Twitter users.

The data (comments and tweets) are collected over

period of 2011 and 2012. Table 2 provides structural
information of the Facebook and Twitter matrices. For

the matrices, we denote the number of common users

and unique users by cu and uu, respectively.
Twitter provides follower and following networks

through their API; we therefore are able to generate

static network for the same 339 Twitter profiles. The
structural properties of the Twitter and Facebook net-

works are given in Table 3. The Twitter networks are

denoted by tw_stat (static) and tw_dyn (dynamic). The
Facebook network is denoted by fb_dyn (dynamic). Note

that the user’s friend and follower networks in Facebook

are not available publicly; we therefore do not have
static network for Facebook in our experiments.

For the experiments, we have used a server with

Intel(R) Xeon(R) E7540 processor running at 2 GHz
with total memory size of 256 GB. The operating system

is GNU/Linux. All our algorithms and the SNAP-

Berkeley package (Madduri 2008) that we used in our
experiments were implemented in C and compiled with

GCC version 4.4.5 using the -O3 optimization flag.

Table 2 Matrix structural properties

Facebook Twitter

Max (uu) 766,700 173,100

Min (uu) 0 0

Avg (uu) 14,070 6,946

Max (cu) 30,443 11,907

Min (cu) 0 0

Avg (cu) 10 46

Total (uu) 22,795,352 2,215,581

Table 3 Structural properties of the social networks

fb_dyn tw_dyn tw_stat

Edges 965,605 33,418 3,703

Maximum degree 1,937 303 125

Minimum degree 0 0 0

Average degree 965 197 22

Singleton vertices 33 20 27

Connected components 34 21 29

Table 4 Frequencies of community and clique size in Twitter networks

tw_dyn tw_stat tw_dyn tw_stat

Size inc cnm cliq inc cnm cliq Size inc cnm cliq inc cnm cliq

1 20 20 50 27 27 101 15 0 0 1 – – –

2 16 1 12 23 2 37 21 – – – 1 0 0

3 13 2 1 29 0 13 26 – – – 0 0 1

4 14 0 3 19 1 5 31 0 0 1 – – –

5 11 0 2 7 0 5 32 0 0 1 – – –

6 4 0 0 3 0 3 37 – – – 0 1 0

7 5 1 1 3 0 2 71 – – – 0 1 0

8 2 0 1 1 0 0 73 0 1 0 – – –

9 2 0 0 – – – 103 0 1 0 – – –

10 2 0 0 – – – 128 0 1 0 – – –

11 1 0 0 0 0 1 147 0 0 1 – – –

12 – – – 0 1 1 184 – – – 0 1 0

13 1 0 0 – – – – – – – – – –
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5.2 Results and discussion

Table 4 shows the number of communities found by the

INC and the CNM algorithm (denoted by inc and cnm,

respectively) for Twitter networks. The table also shows
the number of disjoint cliques (denoted by cliq). As the

clique size increases, frequency of the number of cliques

decreases. Most of the cliques have size less than 5. The
table shows that the CNM algorithm generates large

communities and therefore is not capable to identify these

small cliques. This is because CNM algorithm merges most
of the cliques to form a large community (sizes of 73, 103,

and 128 for tw_dyn and sizes of 71 and 184 for tw_stat) to

maximize modularity. On the other hand, our INC algo-
rithm has been able to successfully extract the small size

cliques as the frequencies of the small size communities are

higher than large size communities. We observed similar
results for Facebook network.

Applying CNM algorithm on the Twitter dataset resul-

ted in three large communities. Figure 2a shows one of the
three communities. As can be seen, the large community

consists of several small communities from different

interest groups. Figure 2b is the result of applying our INC
algorithm. For example, the box comprising of expedia,

PricelineNegotiator. and Travelzoo represents the Travel

interest group. Other interest groups include technology,
fast food, beauty and cosmetics, and news agencies. Thus

the goal of our approach is to automatically discover small

vut meaningful social circles.
Next, we showcase the extracted communities using our

algorithm. Usually the communities found by community

extraction algorithms are represented as dendrograms

(Clauset et al. 2004; Girvan and Newman 2002; Newman

2004). Since the dendrograms are quite big in our case, we

present partial dendrograms both for Facebook (Fig. 4) and
Twitter (Fig. 3) drawn using D3, a javascript-based appli-

cation5. Each internal node in the dendrograms represents a

community whereas each leaf node is a wall/profile. Note
that we do not experiment with the optional feature s to

generate these dendrograms, i.e., the algorithm continues

until it is possible to divide sub-network. The full
dendrograms of all the above mentioned graphs can be

found at our website6. Since we used known 2,000 Face-

book walls and 339 Twitter profiles, we are able to verify
the category of each wall and label the wall/profile and

other affiliations in the group as well. Note that even

though we only look at small number of Facebook walls or
Twitter profiles, the number of users extracted to form the

user-interest-based network is 22,795,352 for Facebook

and 2,215,581 for Twitter.
Our approach has been able to extract focused com-

munities for both Twitter and Facebook networks. We first

showcase the social circles excavated from both static and
dynamic (as described in Sect. 2) Twitter networks. In

Fig. 3, partial dendrograms display communities from

categories NBA Basketball and Republican Politicians. For
both categories our user-interest-based approach is able to

closely model the explicit static network and finds more

affiliations based on the user interests. For example com-
munity c123 in Fig. 3a and c104 in Fig. 3b captures rela-

tionship between two basketball players Dwight Howard

Fig. 2 Community Extraction using CNM and INC

5 http://mbostock.github.com/d3/.
6 http://pulse.eecs.northwestern.edu/*drp925/inc/graph.php.
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Fig. 3 Partial dendrograms showing communities in Twitter
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(dwight_howard) and Stephon Marbury (StarburyMar-

bury). The community c104 does not caputure all affliations
comprised in c123 as user interest on these affliations may

be little to none. Also, in Fig. 3b, TMobile is captured in

community c96 because TMobile hosted many events at the
2011 NBA All-Star Game7. This is a very interesting result

because dynamic networks are constantly changing, and

these results demonstrate that we can capture affiliations
which are temporal in nature. Thus strengthening the case

for viewing dynamic networks compared to static net-

works. Figure 3a, b also provides some more static and
dynamic associations. In the case of Republican Politi-

cians, couple of news agencies (e.g., foxnews, CNNPoli-

tics, USABreakingNews) actively following the politicians
also get captured (see Fig. 3d). Also the dynamic network

is able to capture more affiliations that may not be labeled

similar but indirectly affiliated, if looked at closely.
Therefore, we believe this study will help businesses to

identify target communities for marketing purposes. For

example, in social ads targeting, excavated social circles

would enable marketers to reach customer lookalikes, their

networks, thereby providing a way to acquire, retain and
grow customers, fans, and followers.

In Fig. 4, we look at a partial branch of the dendrogram

of Facebook network represented by node c230. Our
approach was successfully able to extract several social

circles that belong to categories such as Technology(c231),

Retail(c243), Travel & Leisure(c244), Baby Products(c251),
and Food (c248). We got many more interesting focused

communities, which can be found at our project website6.

Note that most of these focused communities found by our
INC algorithm belonged to one large community using

CNM algorithm, and their identification has been made

possible using the proposed work in this paper.
To compare the quality between CNM and INC algo-

rithm we use modularity density (described in Sect. 4.3).

Table 5 shows the modularity (Q) and modularity density
(mod_den) for the Twitter and Facebook networks. Higher

values of Q and mod_den mean better community struc-

ture. As can be seen, Q is always higher for the CNM
algorithm compared to the INC algorithm, whereas

mod_den, which is a better quality metric, is always higher

for the INC algorithm than the CNM algorithm.

Fig. 4 Partial dendrogram showing communities in Facebook

7 http://newsroom.t-mobile.com/articles/t-mobile-nba-all-star-wade-
barkley-basketball.
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We have further compared the HQcut8 algorithm (Ruan
and Zhang 2008) to the CNM and INC algorithms. Since

the source code is limited to unweighted graphs, we were

only able to produce results for the tw_stat dataset. For this
dataset, HQcut has Q value of 0.47, which is higher than

both CNM (0.31) and INC (0.10). The mod_den value for

HQcut is 178.16, which is better than CNM (136.04) but is
still lower compared to INC (505.53). Since higher value of

modularity density means better the quality of clustering,

therefore, INC performs better than HQcut. Note that the
value of Q and mod_den may vary for the same dataset as

HQcut estimates the statistical significance of modularity

using Monte–Carlo method to further divide the sub-net-
work recursively. Finally, even though HQcut is recursive

in nature, it does not give hierarchical information about

the sub-networks. As modularity density delivers better
results than modularity (Fortunato 2010), INC algorithm

recovers natural communities from the social networks

compared to the CNM and HQcut algorithms.
Finally, we compare the timing results between the GA

and INC algorithms. In the case of Facebook dataset, the

INC algorithm takes 4 times longer to run. With respect to
Twitter datasets, the INC algorithm takes 3.7 times for

dynamic network and 18.3 times for the static network. As

expected, the INC algorithm takes longer time because of
its iterative nature, with each iteration running CNM

algorithm on different subgraphs, but the tradeoff is the

ability to discover more focused and meaningful commu-
nities, which can provide actionable insights for various

business and marketing applications.

6 Conclusion and future work

In this paper, we model social networks from user-gener-

ated content. Instead of using the traditional user networks
of Facebook and Twitter, we deduce user-interest-based

networks using posts, comments, and tweets of millions of

users. We show that this model closely captures relations
found in static networks and can also finds affiliations that

are constantly evolving either due to temporal or spatial

activities. Further, we develop a new approach for mining

communities to understand and analyze the structure of

social networks.
To overcome the limitations of the widely used modu-

larity-based algorithm (CNM), our approach incrementally

extracts communities disregarding the influence of the
communities identified in the previous steps. Our user-

interest-based model and community extraction algorithm

together can be used to identify social circles in the context
of business requirements.

In future, we intend to experiment with time-based user-
interest modeling to study effects of temporal events on the

community structure. Further we are interested in devel-

oping clique-based community extraction algorithm that
allows single user to belong to multiple communities and

parallelize these algorithms for big data.
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