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Microstructures significantly impact the performance of sensitively engineered components, such as wireless
impact detectors used in military vehicles or sensors used in aircrafts. These components can operate safely only
within a certain range of frequencies, and frequencies outside that range can lead to instability because of resonance.
This paper addresses optimization of the microstructure design to maximize the yield stress of a galfenol beam under
vibration tuning constraints defined for the first torsional and bending natural frequencies by using a data-driven
solution scheme. In this study, two carefully designed algorithms are used to sample the entire microstructure space.
Classical optimization techniques often lead to a unique microstructural solution rather than yielding the complete
space of optimal microstructures. Multiple optimal solutions are imperative for the practicality of design because
conventional low-cost manufacturing processes can generate only a limited set of microstructures. The current data
sampling-based methodology outperforms or is on par with other optimization techniques but also provides
numerous near-optimal solutions, which is two to three orders of magnitude more than previous methods.
Consequently, the proposed framework delivers a spectrum of optimal solutions in the microstructure space that can
accelerate material development and reduce manufacturing costs.

Nomenclature
A = orientation distribution function
C = spatial correlation matrix

Cs = effective stiffness vector
Young’s modulus along axis 1, GPa
shear modulus in 1-2 plane, GPa
moment of inertia along axis 1
torsion constant

beam length

mass of the beam

volume normalization vector
orientation

compliance, 1/GPa

time

null space vector
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= constant

= volume-averaged strain

= very small value

= volume-averaged stress, MPa

= orientation-dependent property
1» = first bending natural frequency, Hz
first torsional natural frequency, Hz
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I. Introduction

NE of the primary aims of materials science and engineering

research is to understand the association between materials’
processing, structure, properties, and performance [1-10]. It is
recognized that, even for a particular alloy system, variability in
microstructure leads to a wide range of materials properties; and it
substantially impacts the materials’ performance, especially under
extreme conditions. Thus, optimization of the microstructure can
significantly improve the materials’ performance. It is even more
pertinent for sensitively engineered components that use
magnetostrictive materials. Magnetostrictive materials undergo a
change in shape or dimensions in response to a magnetic field.
Furthermore, such materials can respond to external stresses by
altering their magnetic states. The state of the art of magnetostrictive
materials and their applications in a large variety of engineering
applications was discussed by Olabi and Grunwald [11]. The authors
also showed improvement in material features with the use of
magnetostrictive materials. The magnetostrictive properties of
different materials such as cubic Laves phases [such as Terbium-Iron
alloy (TbFe2), Terbium-Iron-Dysprosium alloy (Terfenol D), and
Samarium-Iron alloy (SmFe2)], as well as Fe-X alloys based on Fe-
Ga and Fe-Al, were presented by Grossinger et al. [12]. The design of
magnetostrictive actuators and transducers has been discussed in the
literature [11,13-15]; however, the design of microstructural
properties of magnetostrictive materials has not been studied
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extensively yet. Galfenol is one such example of a magnetostrictive
material [16,17]. It has been widely used in aerospace applications as
a sensor material in beam-shaped structures. Galfenol can be
processed using conventional rolling and wire drawing equipment; it
can be machined using conventional mills and lathes, as well as
welded to a wide array of materials. The potential of galfenol to
develop desired anisotropic properties and flexibility regarding
processing makes it a lucrative material. The single crystals of the
galfenol material can provide large magnetostriction; however, their
preparation is expensive. It is possible to develop comparable
polycrystalline textured galfenol material as expensive single crystals
by applying thermomechanical processes such as rolling and
extrusion [18-20]. However, the control and prediction of the large
changes in properties such as magnetostriction and yield strength
during thermomechanical processing can be difficult. For instance,
warm-rolled and annealed specimens retain high magnetostriction
but are quite brittle, whereas cold-rolled specimens have high yield
strength but lose their magnetostriction [21,22]. Experimental studies
suggest that internal inhomogeneous strains introduced by
microstructural changes play a major role in determining the final
magnetostriction in galfenol [23]. The computation of a
magnetostrictive strain of a polycrystalline galfenol material was
studied before by Kumar and Sundararaghavan [17].

The orientation distribution function (ODF) is used to represent the
microstructure. The ODF represents the volume fractions of the
crystals of different orientations in the microstructure. The complete
range of properties obtainable from the space of ODFs is represented
using property closures, which are approximated by the space
defined with the either upper or lower bound of a given property [16].
Upper-bound closure of stiffness values represents the range of
properties obtainable by the upper-bound homogenization relation,
whereas a lower-bound closure of compliance values shows the
properties obtainable by the lower-bound homogenization equation.
An approach that is gaining popularity in new materials development
is selective optimization of certain properties of a material in a
particular direction or plane while sacrificing the properties across
other directions or planes that are not as important for the design
problem [24].

There have been few efforts to optimize the microstructure to
satisfy a given set of desired properties. Liu etal. [25] achieved this by
directly sampling the ODF space using a data mining methodology.
Some researchers have adopted sampling within the property hull and
used a Fourier basis for discretizing the ODF [26-28]. In [16,29],
Acar and Sundararaghavan derived an upper-bound solution
approach; they started with generating samples in the space of
macroelements (Young’s modulus and shear modulus parameters)
and then identified multiple optimal solutions through a linear solver.
Acar and Sundararaghavan in [24] formulated a linear programming
(LP) solution-based method for constructing property closures (for
the homogenization relations considered here) by establishing the
smallest convex region enveloping single crystal property points.

However, all these approaches used for constrained microstructure
optimization lead to only one or, in some cases, a handful of solutions.
Furthermore, the process for obtaining multiple solutions is often a
trial-and-error-based method. On the other hand, conventional and
economical manufacturing processes, such as metal forming and heat
treatment, can generate only a limited set of microstructures [21,23,30].
Moreover, it may not be economically feasible to manufacture a single
design solution [3]. Thus, there is a big incentive for developing
approaches that can conceive a spectrum of optimal structures.

The paper proposes a data sampling-based scheme to find
numerous near-optimal microstructures to maximize yield stress
given vibrational design constraints. The proposed framework
involves developing and executing sampling algorithms to generate
possible ODF solutions satisfying the process limitations. The
sampling algorithms developed in this work, partition and allocation
schemes, are complementary to one another and ensure sampling of
the entire feature space. Data points satistying both the bending and
torsional frequency constraints are generated. The proposed data
sampling methodology outperforms (or is on par with) other
optimization techniques and provides two to three orders of

magnitude more of near-optimal solutions. Furthermore, our
approach opens up additional opportunities for reducing the
dimensionality of microstructure space to accelerate the process of
achieving solutions that satisfy all the constraints by isolating ODF
dimensions that are nonzero across a majority of near-optimal ODF
solutions. The solution methodology presents an extensive approach;
thusm it can be applied to different ODF representations such as finite
element discretization and Fourier series expansion.

The rest of the paper is organized as follows. Section II provides a
brief background of the microstructure, orientation distribution
function, and galfenol alloy. Section III discusses some related works
on the optimization of microstructure design for polycrystalline
metals. Section IV describes the vibration tuning problem, and Sec. V
presents the proposed data sampling-based methodology for
optimization. In Sec. VI, the results are discussed and examined;
finally, Sec. VII presents the conclusion and offers some
recommendations for future studies.

II. Background
A. Property Representation in Rodrigues Space

The alloy microstructure consists of multiple crystals where each
crystal has its distinct orientation. The ODF represents the volume
fractions of the crystals of different orientations in the microstructure.
The microstructure of the galfenol alloy system in this work is
modeled using ODFs [31-34], which are represented by axis-angle
parameterization of the orientation space [35]. Angle-axis
representations elucidate an alternate way of representing
orientations compared to Euler angles. The Rodrigues’ parameter-
ization is created by scaling the axis of rotation n as r = ntan(6/2),
where 6 is the rotation angle.

The ODF, which is a primary concept in texture analysis and
anisotropy, is defined, based on a parameterization of the crystal
lattice rotation. Orientation distributions can be described
mathematically in any space appropriate to a continuous description
of rotations [31,32,35]. The orientation space can be reduced to a
subset called the fundamental region as a consequence of crystal
symmetries. Each crystal orientation is depicted uniquely inside the
fundamental region by a parameterization coordinate for the rotation
r. The ODF, represented by A(r), is the volume density of crystals of
orientation r. The fundamental region is discretized into N
independent nodes with N, finite elements and N, integration
points per element. A detailed explanation of the ODF discretization
and volume-averaged equations has been provided in [16,24,25,29].
A single particular orientation or texture component is represented by
each point in the orientation distribution. The orientation distribution
information can be used to determine the presence of components and
volume fractions, and it can predict the anisotropic properties of
polycrystals. Although the term distribution function is used for ODFs,
this is distinct from the “distribution function” used for the cumulative
frequency curve in statistics. The ODF is a probability density but is
constrained such that it is normalized to unity over the fundamental
region. Figure 1 represents the finite element discretization of the
orientation space of body centered cubic (BCC) galfenol.

The microstructure of an alloy comprises multiple crystals, and
each crystal has an orientation. The generalized Hooke’s law for the
agglomeration is expressed as follows:

(o) = C?;;E;(Skz) (D

where g, and o;; represent the volume-averaged strain and yield
stress of the agglomeration. C,?in, represents the tensor for effective
stiffness in the given coordinate system. C°' is the average over the
aggregate of the crystals [24,36], where (C) represents the stiffness

tensor for each crystal:
ct=(C) 2
The averaging is performed over an aggregate of the crystal in a

macroscale elementary volume. The crystal size and shape are
ignored, and homogeneous deformity is assumed. The ODF
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Fig. 1 Finite element discretization of the orientation space of BCC
galfenol.

represents the volume density of each orientation in the
microstructure. y(r) represents the orientation-dependent property
for single crystals, and (y) depicts the expected value:

) = [ 2(VAGr. 0 dv 3)

Using this parametrization, any polycrystal property can be
expressed in a linear form as follows, where A(r,,) is the value of the
ODF at the mth integration point with the global coordinate r,, of the
n' element, |J,,| is the Jacobian determinant of the nth element, w,,, is
the integration weight associated with the mth integration point, and
1/(1 + r,, - r,,)* represents the metric of the Rodrigues parameter-
ization:

() = x(NA(r, 1) dv
Nelem int

J 1
=3y / LG s

n=1 m=1

A (which symbolizes the ODF) is a function of orientation r and
time ¢ during processing that satisfies the following normalization
constraint:

/ A(r.fydv = 1 )
R

The complete range of properties obtainable from the space of
ODFs is represented using property closures, which are
approximated by the space between the upper and lower bounds of
the given property [16]:

(€) = [ CAdv (©6)
R

The upper-bound homogenization relation [in Eq. (6)] is based on
the assumption of a constant strain throughout the thickness of the
beam and is represented by the upper-bound closure of stiffness
values. The upper-bound average or the Voigt average [37] is
calculated by averaging the particular property (in this case, stiffness)
by multiplying the ODF vector with the property vector. However, the
lower-bound approach [in Eq. (7)] is based on the assumption of
constant stress throughout the plate thickness. For the lower-bound
average or the Reuss average [37], the inverse of the given property is
averaged. For instance, in the following equation, compliance (C~! or
S), which is the inverse of stiffness, is averaged by using the lower-
bound approach; and the equation is written for the compliance
matrix. (C) and (C~') represent the volume-averaged macroscopic
stiffness formulation in C and C~! space. C~! refers to compliance:

(ch = / C'Adv (7)
R

The yield stress is computed for the upper- and lower-bound
approaches in terms of single crystal yield strengths along the beam
axis as follows:

(o)) = /UyA dv ©))

(o7") = /a;lAdv 9)

B. Galfenol

Galfenol is a general name for an iron—gallium alloy, and the
name was first associated in 1998 when it was discovered that
adding gallium to iron increased its magnetostrictive effect [38,39].
A magnetostrictive material is used to harvest vibrational energy
because of its property to change shape in response to a magnetic
field. Galfenol also responds to external stresses by altering its
magnetic state [40]. Researchers have found galfenol to demonstrate
magnetostrictive strains of up to 400 ppm in single crystal form
(which is more than 10 times that of @ Fe [25]). Moreover, processing
galfenol does not need any customized equipment. It can be
processed using conventional rolling and wire drawing equipment,
and it can be machined using standard mills and lathes; it can also be
welded to a variety of materials [41]. Galfenol converts applied
mechanical energy with high efficiency (around 70%) into magnetic
energy, and vice versa [42]. Researchers have found that groups of
contorted cells respond to a magnetic field by rotating their magnetic
moments to align with the field that in turn, changes the exterior
dimensions of the crystal. This contortion from the a Fe structure is
responsible for galfenol’s superior performance [43]. Adding gallium
generates imperfections in iron’s otherwise orderly lattice, thus
improving the magnetostrictive property of the resultant alloy [44].
Single crystals of galfenol impart large magnetostriction, but the
preparation of monocrystal galfenol is expensive. Hence, there is an
impetus for the development of polycrystalline galfenol with
favorable properties for various design problems [21,23,30].
Figure 2a represents the polycrystalline microstructure of galfenol,
with different colors representing different crystal orientations. For
this BCC structure, the Rodrigues fundamental region includes 76
independent nodal points (ODF values), as shown in Fig. 2b. It is
noted that the red nodes in Fig. 2b are indicating the 76 independent
ODF values, and the ODF values of the blue nodes can be computed
using the crystallographic symmetries.

Among potential applications, galfenol has a wide application area
in aerospace because it is usually used as a sensor material in beam-
shaped structures. Moreover, electromagnetic waves travel three
orders of magnitude faster than mechanical waves [42], with the
impact information transmitted ahead of the waves created by the
impact; and researchers have found that different configurations of
galfenol energy harvesters can provide power to operate remote
sensors and radios [45]. The presence of high stiffness [46],
magnetostrictive strains [47,48], and yield strength [49] together
makes galfenol ideal for many applications. Galfenol is used as
actuators [50] in cantilever beam devices to generate sonar waves, or
as sensors for measuring vibrations, or as energy-harvesting devices
to produce electricity [25].

III. Related Works

Liu et al. [25,51] used a combination of random sampling and
feature selection for the purpose of optimization of multiple design
objectives, using a guided and generalized pattern search. Pattern
search [52-55] finds a sequence of points (xy, xq, x,, ...) called a
mesh, which approaches an optimal point by computing a sequence
of points. The mesh is constructed by adding a starting point to a
scalar multiple of a set of vectors. Once the pattern search algorithm
identifies a point in the mesh that enhances the objective function at
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a) BCC galfenol microstructure
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b) ODF representation, indicating the location of 76

independent nodes in the orientation space in red

Fig. 2 Finite element discretization of the orientation space of BCC galfenol.

the new point, this point becomes the new optimal point for the next
step of the algorithm. The current problem is more convoluted as
compared to Liu et al.’s [25,51] due to additional constraints on the
first natural frequencies. These constraints make the problem much
more complex and difficult to optimize using feature selection-based
methods. It is because the neighborhood of a valid solution is often
rendered invalid due to not meeting the constraints.

The optimization of the microstructure design of the galfenol
vibration tuning problem with constraints has been studied earlier in
[16,24,29]. In [16,29], the optimization problem was defined to
maximize the yield stress of a cantilever beam under vibration tuning
constraints. The authors derived an upper-bound solution approach,
starting with generating samples in the space of macroelements
(Young’s modulus and shear modulus parameters), and then
identified the multiple optimal solutions through a genetic algorithm-
based solver. The linear solver scheme used a sampling technique
called the incremental space filler (ISF) [56]. The ODFs for every
global value were computed using the ISF; subsequently, the highest
value of the yield stress among the feasible solutions was searched.
Acar and Sundararaghavan in [24] formulated a linear programming
[57] solution approach method for constructing property closures (for
the homogenization relations considered here) by establishing the
smallest convex region enveloping single crystal property points. LP
is a rigorous and intuitive approach for the construction of property
closures because closures are obtained as a result of property
maximization or minimization. Connecting faces on the closure may
contain polycrystals explicitly identified by the LP approach, which
is well suited for other problems, such as identification of textures
with desired property combinations where several properties are
optimized simultaneously. The authors augmented the initial solution
with null space to attain multiple solutions. However, the LP
approach has few limitations. First, a LP method can be implemented
only when the original nonlinear problem can be adapted to a linear
problem. In addition, unlike the data sampling-based schemes
proposed in this work, there is a limited number of multiple solutions
possible. Furthermore, the procedure to obtain the multiplier to the
null space is determined by trial and error. The advantage of a data
sampling-based methodology is that it can explore the neighborhood
of the optimal solution and generate many near-optimal solutions.

IV. Problem Description

We aim to explore the microstructure design constraint of a
cantilevered galfenol beam for a vibration tuning problem with
yielding objective. The vibration tuning puts a restriction on the ODF
solutions to have a finite number of directions in the solution space.
The number of independent ODF values is 76 at this time because
galfenol has a BCC structure [25]. The design objective is determined
as the maximization of yield stress, whereas the first bending and
torsional frequencies are constrained for vibration tuning. The

primary goal of the problem is to find the best microstructure design
that maximizes the yield stress of the beam and satisfies the given
vibration constraints.

The rationale behind constraining the operating frequencies is to
eliminate possible dynamic instabilities: for instance, in sensor
materials in aircraft beams [58,59]. The main goal of the problem is to
find the best microstructure design that maximizes the yield stress of
the beam and satisfies the given vibration constraints.

The torsional and bending frequency constraints are given by the
following equations:

Wy = (10a)
Iy
E\I,
w1y = (aL)z W (IOb)
where
al = 1.87510 (11)

Here, G, = 1/S¢s, E; = 1/8S};, and S are the compliance elements
(S = C™1), E is the Young’s modulus along axis 1, and G, is the
shear modulus in the 1-2 plane. In these formulations, J is the torsion
constant, p is density, 7, is the polar inertia moment, m is the unit
mass, L is the length of the beam, and /; is the moment of inertia
along axis 1. The mathematical formulation of the optimization
problem is given as follows:

max o, (12)
A>0 (13)
/AM:I (14)

The optimization problem includes the unit volume constraint by
definition [Eq. (14)]. The other constraints are the first natural
frequencies to tune the beam vibration. In this problem, the length of
the beam is taken as L = 0.45 m, and the beam is considered to have
a rectangular cross section with dimensions of ¢ = 20 mm and
b = 3 mm. The values of the stiffness parameters for galfenol single
crystals are taken as Cj; = 213 GPa; C, = 174 GPa, and Cyy =
120 GPa [16,24,29]. Cy;, Cy,, Cy3, and Cy4 comprise the most
dominant elements in the stiffness matrix, which is a measure of the
durability of a given material. The stiffness values of the polycrystal
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Fig.4 Flow diagram of the proposed methodology. Upper- and lower-bound approaches for both sets of constraints are repeated for both problems.

are computed using the upper-bound averaging (C-space), whereas
the lower-bound (C~'-space) computation provides the compliance
parameters. Figure 3 depicts the geometric representation of galfenol
beam vibration problem. There are two sets of constraints presented
in the following. Each set of constraints has a lower bound and an
upper bound on the torsional and bending frequencies:

First set of constraints:

subjectto 19.5 Hz < wy, < 21.5 Hz (15a)

subjectto 120 Hz < w;;, < 122.5 Hz (15b)
Second set of constraints:

subjectto21.5 Hz < wy, < 23.5 Hz (16a)

subjectto 100 Hz < @, < 114 Hz (16b)

It is important to note that both sets of constraints are specimens,
and factual constraints may differ based on the real material design.
Nonetheless, they are representative of a real-world design problem
for magnetostrictive materials where there are bounds on the first
natural frequencies.

V. Methodology

An overview of the proposed system is first presented, and then the
algorithms proposed for sampling the ODF space for the given
problem are explained.

A. Overview of the System

The paper proposes a two-step data-driven solution scheme to find
optimal microstructure-satisfying performance requirements, as well
as design and manufacturing constraints. The first phase of the
approach involves developing and executing sampling algorithms to
generate possible ODF solutions meeting the process limitations.
The sampling algorithms (i.e., partition and allocation schemes)
complement one another and ensure sampling of the entire feature
space. Partition warrants that different permutations of nonzero ODF
dimensions are explored for a given set of ODF dimensions.
Allocation guarantees that all the ODF dimensions are explored
sufficiently.

In the second step, data points are generated by satistying both the
bending and torsional frequency constraints. A future direction for
reducing the dimensionality of microstructure space is highlighted
that can accelerate the process of achieving solutions satisfying all the

constraints by isolating ODF dimensions that are mostly nonzero
across a majority of near-optimal ODF solutions. Figure 4 illustrates
the steps in the proposed framework in a flow diagram.

B. Algorithms

Two sampling techniques, the partition and allocation algorithms,
developed in the proposed work are presented. The algorithms
address the problem of sufficiently sampling the problem space and
generate ODFs fulfilling the constraints in the problem objective.

1. Partition Method

In this method, the unit length is divided into k small segments, and
k is decided by a limit set as D. D is the number of dimensions and, in
the case of galfenol, D is equal to 76. Note that k — 1 random cuts
between the interval [0,1] (Fig. 5) are made, where k is the number of
nonzero ODF dimensions in the ODF vector. It is iterated from 1 to
D — 1 with an increasing number of samples generated with regard to
k, and then it is downsampled to 1000 for each iteration; except when
k =1, D samples exist (corresponding to D single crystals) and are
all used. The steps of the partition algorithm (pseudocode) are
outlined in Algorithm 1.

2. Allocation Method

In this method, k values are randomly generated at a time. It
continues only when the sum S is less than the whole (in this case,
one). As mentioned previously, the sum of the product of the volume
fraction vf and density functions df across each dimension must add
up to one. The threshold is updated to the remainder 1 — S and
continues until this remainder is sufficiently small. Note thatk = 11is
the trivial case where the product of vf and df equals to one. The
steps of the allocation algorithm (pseudocode) are presented in
Algorithm 2.

k segments

Fig. 5 Partition algorithm: The unit length is divided into k£ small
segments.
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Algorithm 1  Partition algorithm
1:  procedure PARTITION
2: DeZz
3: forke{l,...,D—1},do
4: fori e {1, ...,1000}, do
5: forcut e {1, ..., k—1},do
6: Make an arbitrary cut
7 end for > Sample with & cuts generated
8: end for > 1000 samples with different cuts
9: end for
10: return
11:  end procedure
Algorithm 2 Allocation algorithm
1:  procedure ALLOCATION
2: Generate a randomk € {1, ...,76}
3: Sum<«0
4: forie{l, ... k},do
5: Sum<Sum + vf(i)*df (i)
6: remainder<—1 — Sum
7: if remainder <e, then > e: very small value
8: break
9: else
10: continue
11: end if
12: end for
13: return

14:  end procedure

Both the partition and allocation methods are based on the heuristic
that, in a valid microstructure obeying all the constraints, only a few
of all the dimensions of the ODF vector are nonzero. However, these
two methods are complementary or reciprocal to each other and
ensure that the entire feature space is sampled sufficiently. Although
the allocation method attempts to find a minimal subset of ODF
dimensions that would be nonzero, generating a polycrystal solution,
the partition method seeks to widen the search across all 76
dimensions.

VI. Results

In this section, we evaluate the proposed data-driven approach in
yielding optimal and near-optimal solutions, and we find that it
outperforms or matches previous state-of-the-art methods and
produces numerous near-optimal solutions, which is one of the most
significant contributions of this study. Table 1 presents the total
number of near-optimal solutions or, in other words, solutions that are
proximal to the optimal solutions. The near-optimal solutions of this
problem correspond to different designs having the same or similar
values for yield stress. The algorithms were executed to produce
around 5 million valid (which obey all the constraints) solutions. It
took averages of 112.21 and 303.45 ms to generate a valid sample for
the partition and the allocation scheme, respectively.

Optimization techniques including the methods used by Acar and
Sundararaghavan such as a genetic algorithm [16] or linear
programming-based [24] scheme, lead to a unique microstructural

Table 1 Number of solutions within 0.01, 0.1, and 0.5% of
the optimal solutions®

Constraint Bound Within 0.01% Within 0.1% Within 0.5%

1 Upper 3 89 147
1 Lower 9 92 222
2 Upper 7 402 2015
2 Lower 3 116 1579

“For each set of constraints [Eqs. (15a) and (16a)], 5 million valid data points
were generated.

solution, or sometimes a few microstructural solutions. Acar and
Sundararaghavan found multiple solutions by augmenting the
original solution with null space [24]. Acar and Sundararaghavan
[24] previously studied an LP approach to identify the optimal
processing routes, which can produce the optimum microstructure
designs of the same galfenol vibration tuning problem. One of the
limitations of their approach for vetting equivalent solutions was that
it only searched for identical optimal values. However, for practical
design applications, a near-optimal solution is adequate as long as the
constraints are strictly obeyed and the near-optimal solutions are
proximal to the optimal solution. For all four problems (upper- and
lower-bound approaches for two sets of constraints), three to nine
near-optimal solutions with a neighborhood of 10~* (from the
optimal solution) are discovered. Furthermore, between 89 and 402
solutions in a neighborhood of 10~ and between 147 and 1579
solutions in a neighborhood of 5 * 1073, across all the categories, are
identified. As described before, obtaining multiple optimal solutions
is critical because traditional low-cost manufacturing processes can
only generate a limited set of microstructures. Although a single
solution may not be economically feasible to manufacture, hundreds
or thousands of near-optimal solutions can accelerate the speed of
materials development. Therefore, it provides flexibility to produce
solutions that are selectively cost effective and improve the overall
efficiency of manufacturing immensely.

Liu et al’s [25,51] approach of using guided and generalized
pattern search methods was compared with the proposed data-driven
methodology for the current design problem. However, neither of

Table2 Summary of the results: The yield stress ¢,, Young’s
modulus E;, shear modulus G,, and bending w; and torsional @,
frequencies of the optimal solutions generated by the proposed method
for both sets of constraints [Egs. (15a) and (16a)]

Constraint Bound o,,MPa E,,GPa G,,GPa w,,Hz w;,Hz

1 Upper 385237 209.546 77313  120.006 21.341
1 Lower 385.113 235905 82316 121.272 21.344
2 Upper 388.089 153.160 93.723  102.649 23.497
2 Lower 387.134 184.679 92.772  112.661 23.377
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Table3 Comparison of the maximum yield stress achieved for the two sets of constraints with the proposed approach
and the previous state-of-the art genetic algorithm (GA) solver [16] approach for microstructure design with process
constraints (upper bound)*

Constraint Bound o, (current), MPa 5, (GA), MPa  w,;, (current), Hz  w,;, (GA), Hz ), (current), Hz w;, (GA), Hz

385.237 384.126 120.006 120.210 21.341 21.498
388.089 308.446 102.589 113.918 23.482 23.485

1 Upper
2 Upper

“The yield stress 6, and bending w;, and torsional w,, frequencies of the optimal solutions are generated by both methods.

Table4 Comparison of the maximum yield stress achieved for the two sets of constraints with the proposed approach
and the previous state-of-the-art LP [24] approach for the microstructure design with process constraints (lower bound)?

Constraint Bound o, (current), MPa o, (LP), MPa @), (current), Hz @, (LP), Hz )y, (current), Hz w,, (LP), Hz

385.113 385.650 121.272 120.020 21.344 21.500
387.134 387.259 106.519 100.000 23.477 23.499

1 Lower
2 Lower

“The yield stresses o, and bending @y, and torsional @, frequencies of the optimal solutions are generated by both methods.
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these approaches converged to an optimal solution for the current
problem. Although both problems had a yielding objective for a
cantilevered galfenol beam, the current problem is more convoluted
as compared to Liu et al.’s because of additional constraints on the
first natural frequencies. Pattern search finds a sequence of points to
approach an optimal point. Due to the added constraints in the current
problem, pattern search algorithms fail to converge to an optimal
solution [60]. For pattern search to successfully reach an optimal
solution, it requires a series of valid points at each iteration of the
optimization process.

Table 2 illustrates the optimal yield stress values and Young’s
modulus, shear modulus, and bending and torsional frequencies

25000 " " "
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Frequency
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Yield Stress
a) Upper-bound approach

obtained by the proposed method for both sets of constraints and
bounds.

In their previous works [16,29], Acar and Sundararaghavan used a
genetic algorithm-based scheme to solve the upper-bound approach.
In alater work, Acar and Sundararaghavan [24] converted the upper-
bound approach to a lower-bound approach that involved converting
the problem from stiffness domain to compliance (reciprocal of
stiffness) domain. Hence, by converting the original problem into a
linear problem, Acar and Sundararaghavan arrived at an LP solution
for the constrained microstructure design problem. The proposed
data-driven approach is compared with the methods advanced by
Acar and Sundararaghavan because their approach outperformed
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Fig. 6 Frequency distribution of yield stress values for first set of constraints.
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Fig.7 Frequency distribution of yield stress values for second set of constraints.
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b) Lower-bound approach

Fig. 8 Finite element microstructure of optimal ODF examples for the first set of frequency constraints.
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Fig. 9 Finite element microstructure of optimal ODF examples for the second set of frequency constraints.
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Fig. 10 Finite element plots for highest 1% yield values for the first set of constraints.
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Fig. 11 Finite element plots for highest 1% yield values for the second set of constraints.

other optimization methods. For the upper- and lower-bound
approaches, our solutions are compared against the genetic
algorithm-based scheme and LP-based methods, respectively. The
proposed data sampling approach based on the sampling algorithms
surpasses the yield stresses obtained from the genetic algorithm-
based solver for the upper-bound approach (as shown in Table 3). In
particular, we get an improvement of more than 25% for the upper-
bound approach on the first set of objectives against the previous
state-of-the art approach. Additionally, the results for the lower
bound are comparable to the optimal values achieved by the LP
method (Table 4). It is important to note that only the LP solution
(used for the lower-bound approach by Acar and Sundararaghavan
[24]) yields the theoretical maximum value, which is in contrast to the
genetic algorithm solver scheme used by them for the upper-bound
approach [16].

Figures 6 and 7 represent the frequency distribution of yield stress
values for upper and lower bounds for the first and second sets of
constraints, respectively. Figures 8 and 9 depict the optimal upper-
and lower-bound ODF solutions for the two constraints, respectively.
Figures Al and A2 in the appendix provide more examples of upper-
and lower-bound ODF solutions.

A sensitivity analysis is performed by representing the distribution
ODF and frequency plot (inset) of the top/highest 1% yield stress
values across the 76 ODF dimensions (Figs. 10 and 11). The figures
exhibit the fraction (or percentage) of nonzero ODFs in the ODF
vectors that yield high-stress values, in the case of both upper- and
lower-bound solutions for both sets of constraints. The peaks in the
frequency plots represent the ODF dimensions that are nonzero
across the majority of ODF vectors, yielding the highest objective
value (in this case, yield stress). The distribution ODFs in these
figures do not exhibit the actual values. Rather, they represent the
percentage of occurrence of the ODF dimensions in the top 1% of the
solutions. It is observed that the sensitivity of the near-optimum

solutions to the ODFs for the lower- and upper-bound approaches are
similar, especially for the first set of constraints. Although the
computation of intermediate properties in the case of upper- or lower-
bound solutions is different (stiffness and compliance, respectively),
this is admissible because the same objective function is being
solved. The figures signify that a small number of ODF dimensions
can predominantly influence the solution space proximal to the
optimal value. This can motivate the development of future sampling
approaches for ODF vectors to iteratively adapt to sample across only
afew ODF dimensions instead of all to accelerate the data-generation
process.

One weakness of the proposed data-driven method is its higher time
cost as compared to LP methods. However, traditional optimization
techniques using combinatorial search methods or evolutionary
algorithms are also time consuming. Our framework attempts to search
the entire sample space to attain the optimal or near-optimal solutions.
Besides, it should be emphasized that the proposed sampling
algorithms are designed to work, even for the more difficult problem
of nonlinear optimization. A heuristic search using data-driven
approaches is beneficial for solving problems in which the objective
function has a nonconvex relation to its set of constraints. Another
major advantage of the proposed sampling scheme is achieving
numerous optimal and near-optimal solutions that can, in turn, reduce
the time and effort for the transition between design and processing.

VII. Conclusions

The selection of materials and geometries to maximize or
minimize a given property has been a cardinal problem in materials
science. The potential of data-driven approaches for solving a
constrained microstructure design problem for both upper- and
lower-bound methods is expounded by the proposed strategy. The
current approach arrives at a higher (or, in few cases, equivalent)
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optimal value than the previous state-of-the-art methods. The data-
generation strategies attempt to explore the entire sample space and
generate numerous near-optimal solutions (about 100-1000; i.e.,
two to three orders of magnitude more than prior methods).
Previous approaches including LP techniques led to one or multiple
optimal solutions. Numerous near-optimal solutions give the
flexibility to use traditional low-cost manufacturing processes such
as forming and heat treatment. These processes can generate only a
limited set of microstructures; frequently, manufacturing from a
single optimal solution may not be feasible.

Leveraging data-driven techniques can play an essential role in the
expedition of a precise design of materials with process constraints.
This study has demonstrated the power of carefully designed
sampling approaches by identifying multiple near-optimal solutions
for a nonlinear optimization problem, and it is expected to inspire the
development of alternative sampling schemes, building upon the
ones proposed in this work, that can reach optimal solutions faster
and deliver numerous near-optimal solutions. Furthermore, with
parallel computing technologies becoming inexpensive, especially
graphical processing units computing, distributed implementations
of the current algorithm can significantly diminish the optimization
time. The proposed approach for maximizing the yield stress under
process constraints using data sampling algorithms can be extended
for property optimizations for other nonlinear design limitations and
other materials. The sampling schemes are generalizable and
independent of the problem domain, and they can be used in other
scientific domains as well.

The analysis for the constrained microstructure optimization
problem depicts that certain combinations of ODF dimensions are
nonzero more often in the ODF vector of the near-optimal solutions.
The proposed work provides a future direction for feedback-aware
sampling that can iteratively incentivize distinct ODF dimensions
that yield ODF vectors with higher objective values, which can be
investigated to accelerate the process of attaining optimal or near-
optimal solutions.

Appendix: More Optimal ODF Solutions

®.

a) Upper-bound solution
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