
Object Oriented Parallel Architecture Simulator

Sang Gue Oh Cheol Min Hwang
School of Computer and Information Science School of Computer and Information Science

Syracuse University Syracuse University
sgoh@top.cis.syr.edu cmhwang@top.cis.syr.edu

Alok Choudhary
Electrical and Computer Engineering

Northwestern University
choudhar@ece.nwu.edu

Abstract

In this paper, we introduce a general purpose Ob-
ject Oriented Simulation Environment which enables the
study of different architectural configurations for servers.
The simulation environment has been built on the top of
AWESIMEI which provides a process oriented discrete
event simulation environment. On the top of AWESIME,
the simulator provides the base class definitions for major
components required to build large scale high-performance
computer systems, and more advanced model of anypartic-
ular component can be derived from these base classes and
easily replaced with old one. This feature enables rapid
evaluation of alternatives in simulating different architec-
tures. In addition, this design allows studying a compo-
nent of interest in various degrees of detail while keeping
the other components at a coarse-level for a faster simula-
tion time.

1. Introduction

Over the last few years, scalability of high-performance
system has been demonstrated in terms of processing power
and communication technology (both in terms of bandwidth
and latency). The debate on cost-effectiveness is still un-
derway. The trend seems to be to use off-the-shelf tech-
nology for processing nodes to leverage their availability at
low cost. Similar debate is ongoing for using off-the-shelf
interconnect technology (e.g., ATM) for high-performance
server systems.

In this paper, we introduce a general purpose Ob-
ject Oriented Simulation Environment which enables the

lA Widely Extensible SIMulation Environment by University of
Colorado

study of different architectural configurations for servers.
The simulator has been built on the top of AWESIME which
provides a process oriented discrete event simulation envi-
ronment. On the top of AWESIME, the simulator provides
the base class definitions for major components required to
build large scale high-performance computer systems, and
more advanced model of any particular component can be
derived from these base classes and easily replaced with old
one. This feature enables rapid evaluation of alternatives in
simulating different architectures. In addition, This design
allows studying a component of interest in various degrees
of detail while keeping the other components at a coarse-
level for a faster simulation time.

The section 2 discusses the design and infrastructure of
the simulator, and we try to reason the validity of the sim-
ulator in the section 3. Then, we summarize the current
status of the simulator and discuss the future work in the
last section.

2 A General Purpose Object Oriented Archi-
tecture Simulator

The main objectives of the simulator is to design and de-
velop an object oriented simulation environment which is
general enough to study different architectural configura-
tions for server systems. Another objectives of the simula-
tor is to develop and provide detailed workload models for
various application domains such as frequently used scien-
tific computing, on-line transaction processing, video-on-
demand, decision support system, and world wide web. The
simulation environment has been chosen to be object ori-
entedparadigm, and the nature of this paradigm allows easy
replacement of one module with another without affecting
the other part of simulation environment enabling easy and
rapid evaluation of alternatives. Another design principle is

O-8186-7901-8/97 $10.00 0 1997 IEEE
337

Proceedings of the High-Performance Computing on the Information Superhighway, HPC-Asia '97
0-8186-7901-8/97 $10.00 © 1997 IEEE

to make it general enough to study any single component of
the system independently.

2.1 AWESIME Library

AWESIME is a library of C++ classes. Objects pro-
vided by AWESIME are building blocks for constructing
process oriented discrete event simulation. AWESIME is
intended to be extensible and its class hierarchy provides a
set of functions common to all classes. Furthermore, the
class hierarchy is broken into conceptual subclasses or con-
tainer classes that provide a common set of functions for
a particular concept in a simulation system. AWESIME
is designed for architectures with a shared address space
running some variant of the Unix operating system. A
prime goal in the design of AWESIME is portability, ne-
cessitating certain assumptions in the underlying memory
architecture of the host machine. The AWESIME library
creates multiple Unix processes that are ideally mapped
into individual processors. The child processors inherit
the memory and file configuration of the initial process.
Within AWESIME, each Unix process is termed a CPU.[3]
As a whole, AWESIME library provides a pseudo paral-
lel programming environment on a single processor sys-
tem. For more information on AWESIME, readers may
refer to A User Guide to AWESIME found at the web site
http:llesl.cs.colorado.edulAWEDUDElawedude.html.

2.2 Parallel Architecture Simulator

The simulator is a group of C++ class definitions pro-
vided for general architecture simulation on the top of
AWESIME library. Due to the nature of object oriented
paradigm, it is relatively easy to evaluate different architec-
tural configurations. One such example is evaluating differ-
ent network topologies. While leaving nodes configurations
as they are, users can simulate different topologies such as
mesh, ring, hypercube, and so on simply by replacing differ-
ent network models. This feature also allows users to study
a component of interest in various degrees of details while
keeping the other components at a coarse-level for a faster
simulation time. For instance, users can choose to simulate
mesh network topology using hop-by-hop transfer method-
ology which naturally adopts the current traffic congestion
and therefore produces more accurate results. This method
may, then, take long simulation time since each packet of
network traffic is an active thread which requires expen-
sive context switching to simulate. Alternatively, users can
choose to simulate the same network topology using ana-
lytic model which computes network latency from the num-
ber of hops and the given congestion parameter.[l]. This
method gives faster simulation time, and therefore it might

not be a bad choice to use this model when network is not
the main component of interest. In the following, the major
objects defined in the simulator are briefly introduced. For
more details, refer to http:l/www.ece.nwu.edul5goh.

System Object
System object is basically a container class defini-
tion. Its structure imitates a frame of typical MPP
system with a number of different slots for CPUs,
disks, buses, memories, and network ports. Due to
the nature of software, then, the number of slots for
each component is not limited to a certain fixed num-
ber making this object scalable. With this infrastruc-
ture, it is possible to build almost any type of existing
stand-alone MPP systems onto it.

Node Object
Node object is another container class which is like a
small version of System object in a sense that Node
object itself can be a multiprocessor system. The ba-
sic difference between System and Node objects is
that Node object has been fixed to have its own bus
system for interconnection method while System ob-
ject can have a variety of different interconnection
network topologies. In both objects, local memory,
shared memory, and I/O subsystem are all optional
depending on what kind of system to be built.

IOSys Object
As the role of I/O subsystem becomes more and more
important, its architecture also becomes more and
more complicated everyday, and so it is almost like a
computing node with its own powerful processor and
large buffer space or even big cache memory. In these
days, it is common to dedicate a conventional com-
puting processor as a separate I/O processor to han-
dle incoming I/O requests for optimum performance.
This object is designed to be able to model such a
complicated I/O subsystem.

Disk Object
Disk object itself becomes very intelligent in a sense
that it can perform various optimization tasks such as
disk scheduling for minimum seek latency. The new
trend in computer technology even allows peripheral
devices such as disks to be directly connected to in-
terconnection network without having controlled by
a certain host node.[2] This disk object is designed so
that it accommodates even this new technology. Raw
disk system may be single disk environment or disk
array. One of our disk mechanism objects is based on
an analytic model described in [6, 71. The simulator
also provide another disk mechanism object which is
based on a set of empirical data obtained by tracing

338

Proceedings of the High-Performance Computing on the Information Superhighway, HPC-Asia '97
0-8186-7901-8/97 $10.00 © 1997 IEEE

actual system’s I/O request pattern for a long period
of time.

Network Object
Network object consists of a number of interface
units or switches and connections between them. The
connection topology depends on each different mod-
els. Every well-known network topologies are to be
modeled within the simulator. The simulator cur-
rently supports topologies such as mesh, ring, hyper-
cube, and Ethernet connections.

IU Object
Interface Unit includes network interface units (or
ports) in each node or disk and switches in network
such as MRC. Each different subclass of IU object
employs different communication protocols.

OSKernel Object
Due to the difficulty in modeling software behavior,
the functionality of OSKernel object has been kept
at minimum level; it currently handles the basic inter-
processor communication such as send and recv. Col-
lective interprocessor communications such as broad-
cast and accumulate are separately provided by Li-
brary object.

FileSys Object
FileSys Object handles file system related calls such
as read and write. It currently implements a basic
striping parallel file system and distributed file sys-
tem.

Message Object
Message object carries actual data through the net-
work and each smallest communication unit is repre-
sented as an active thread. This thread-based simu-
lation is the main feature that enables the simulator
to achieve pseudo-parallelism on a single processor
environment.

Workload Object
Different application domains have different charac-
teristics of workload from each others, and these dif-
ferences may have a great deal of impact on server
machine design in terms of both hardware and soft-
ware architecture. The simulator provides workload
models for each major application area which demon-
strates a unique characteristics such as scientific ap-
plication, OLTP, VOD, and WWW.

e Processor and Memory Object
Both Processor and Memory objects are currently
primitive in terms of their functionalities; they just
consume the given amount of simulation time. Their

] Routing Technique Analytic Model Simulator
Basic Switching 4543 4380.86

Store-and-forward 2003 1958.53

tl Cut-though 1625 1 1621.76

Table 1. Basic Communication Operation
(Time Unit : clock tick, Message Size : 500 bytes)

(Note: These experiments were done to validate the simu-
lator using a single message without any interference from
any other messages.)

]I Data Size 11 Analvtic Model] Simulator fl
J I

1KB 1148269.70 1149119.18
2KB 1172164.62 1173548.27
4KB 1219954.47 1221408.40 II

H 8KB II
I

II I 1169773.70 1 1168452.97 H I u

Table 2. Local I/O Operation
(Time Unit : clock tick)

(Note: Like basic communication experiments, these exper-
iments were also performed within an isolated environment
for the purpose of validation.)

major influence over simulation is implementing mu-
tually exclusive access on shared critical sections.

3 Validation

In this section, we try to reason out the validity of the
simulator. First, we isolated and analyzed two major lines
of operations: basic interprocessor communication and lo-
cal I/O. Then, we simulated these operations on our mod-
eled system which consists of 16 nodes connected via 4 x 4
mesh interconnection network. Due to the space restriction,
however, we omit these sections and presents only their re-
sults in the table 1 and 2. The analysis of these operations
basically adopted techniques described in [5]. Assuming
the soundness of these two basic lines of operation, then,
we simulated more realistic workload, matrix multiplica-
tion. We first asymptotically analyzed GAXPY algorithm
for matrix multiplication and simulated matrix multiplica-
tion workload based on GAXPY algorithm. The following
sections present the analysis of the algorithm and the simu-
lation result. We will try to clarify all the assumptions made
for each operation in order to avoid possible misinterpreta-
tion.

339

Proceedings of the High-Performance Computing on the Information Superhighway, HPC-Asia '97
0-8186-7901-8/97 $10.00 © 1997 IEEE

3.1 Simple Analysis of GAXPY Algorithm for
Matrix Multiplication

Let A, B, and C be n x n matrices such that C = A x B.
Then, the GAXPY algorithm for computing C = A x B is

n
cj = c bkjak, j = 1 : n (1)

/CA

The algorithm indicates that, in order to compute the jth
column of C, the jth column of B and all columns of A are
needed. Then, assuming n be a multiple of p, equation 1
can be rewritten as a sum of p partial sums as follows

n at D D

cj = Cbkjak + 2 bkjak + . . .

k=l k=f+l
n + c bkjak, j = 1 : n (4

k=((p-1)x $)+l

Each partial sum C kjak returns an intermediate vector,
and each vector is a linear combination of E columns of A
and F elements of a column j of B. These intermediate
vectors are then added to produce the jth column of matrix
C. The entire matrix C can be computed by repeating this
process n times. Assuming that p processors be available,
then, these p partial sums can be computed in parallel. The
following pseudo code represents the partial sum process on
each processor:

doj=lton
do i = 1 to ;

do k = 1 to n
temp(j,i) = temp(j,i) + a(k,i) x b(i, j) (a)

end do
end do
global sum on temp(ti, j)

end do
@I

Let F be the cost for one floating point operation and W
be the cost for memory access of one word. Assuming no
I/O operation(That is, incore computation), we can estimate
the performance of the algorithm by approximating each
operation. In step (a), the computation requires one floating
point multiplication, one floating point addition, and seven
one-word memory accesses. Hence, through out the com-
putation, the step (a) costs n3@~~+7W) time units. In step
(b), an interprocessor communication operation takes place
during which a column of size n with partial sum is all-
to-all broadcasted. Let the cost of this communication be
the function of m and p where m is the size of matrix in
number of bytes. After the all-to-all broadcast, there will be

n x p floating point additions to produce a column of result-
ing matrix C, and this step is repeated for each column of
matrix C. Hence, this step costs nF(m, p) + pn2 (F + W)
time units overall.

TG = n2F(F +p) + n2W($ +p) +

nF(m, p) (3)

Now, the broadcasting algorithm depends on the under-
lying network topology. For this analysis, we assume q x r
2-D mesh interconnection network with end-around con-
nection where p = q x r, and a simple dimensional broad-
casting algorithm described in [5]. In this algorithm, all-to-
all broadcasting takes place in two phases. In the first phase,
each node broadcasts the message of size m along the X di-
mension taking (q - l)(tmp + t,, + (th + m/bw) x 2 + ti)
time units, and then the message of size qm along the Y
dimension in the second phase taking (r - l)(tmp + t,, +
(th + qm/bw) x 2 + ti) time units.[5] We now have:

F(m, p) = (9 t r - 2) (tee -I- 2th) t

(4r - I)(? + 5 + g) (4)
mP 2

and we can rewrite the equation 3 as follows:

TG = n2F(: +p) + n2W($ +p) +

n(q + r - 2)(&e + 2th) +

n(qr - l)(F + F + 2)
mp i

(5)

3.2 Simulation of GAXPY Algorithm for Matrix
Multiplication

We have developed a simple workload for matrix multi-
plication based on GAXPY algorithm described in the pre-
vious section and run simulations to see if the simulator be-
haves as analyzed. In this simulation, we have simplified
the cost of floating point operation and memory access so
that these operations have constant costs.2

We have varied the number of processors from 4 to 32
nodes and the sizes of matrix that we have simulated are
256 and 512 x 512. For matrix multiplication of size 256,
the size of message broadcasted is 256 x 4 = 1024 bytes
and 512 x 4 = 2048 bytes for matrix multiplication of size
512 x 512. The result of these simulations and analysis are

2Due to the space restriction, we have omitted some sections which
include terms and parameter set. For the extended paper, send mail to
sgoh@top.cimysedu.

340

Proceedings of the High-Performance Computing on the Information Superhighway, HPC-Asia '97
0-8186-7901-8/97 $10.00 © 1997 IEEE

Size 4 nodes 8 nodes 16 nodes 32 nodes
256 x 256 1347.55 828.64 734.40 1017.78
512 x 512 10423.11 5830.61 4195.10 4698.95

Table 3. Matrix Multiplication Result
(Analyzed Estimation, Time unit = msec)

Size 4 nodes 8 nodes 16 nodes 32 nodes
256 x 256 1772.21 1038.36 833.74 1056.10
512 x 512 13799.20 7508.10 5011.63 5061.69

Table 4. Matrix Multiplication Result
(Simulation Result, Time unit = msec)

shown in table 3 and corresponding analytic estimation in
table 4. The graph representations of corresponding results
are depicted in figure 1 and figure 2, respectively.

There are differences between analyzed estimation and
simulation result shown in the table 3 and table 4. This is
mainly because the GAXPY algorithm for matrix multipli-
cation is asymptotically analyzed considering the costs of
computations within the inner most loop while other aux-
iliary computations are also implemented in the simulation
workload. The scale of this difference then depends upon
the set of parameters fed into the simulator and, since the
cost of floating point operation assumed is relatively small
compared to that of other operations, the difference in this
simulation is relatively large.

Up to 16 processors, the turnaround time of matrix mul-
tiplication decreases as the number of processors increases;
the cost of matrix multiplication with 32 processors is then

(ms)

I

4 8 16 32 4 16 32

(256 X 256) (512 x 512)

Figure 1. Matrix Multiplication Result
(Analyzed Estimation, Time unit = msec)

(ms)

(ms)

15w

1ooll

sm

(ms)
15m]

4 16 32

(512 X 512)

Figure 2. Matrix Multiplication Result
(Simulation Result, Time unit = msec)

Figure 3. Comparison between Computation
and Communication Time

(Matrix Size = 256 x 256, Time unit = msec)

higher than that with 16 processors. This is because the
cost of interprocessor communication increases as the num-
ber of processors increases and there is a saturation point
somewhere in between 16 processor configuration and 32
processor. The costs of separate computation and commu-
nication are shown in the table 5 and table 6.

Except for the differences in absolute figures, then, we
can observe the matching patterns between analyzed esti-
mation and simulation result in terms of their ratios. The
graph in the figure 4 takes the computation time on 4 proces-
sor configuration as the unit time and shows the reduction
ratios in computation time as the number of processors in-
creases. According to analyzed estimation, 46.9% of reduc-
tion in computation time is expected on 8 processor configu-
ration, 67.4% on 16 processors, and 71.4% on 32 processors
for matrix of size 256 x 256, and 48.5%, 71.1%, and 79.4%
for matrix of size 512 x 512. The reason why the reduction
ratio is not 50% when the number of processors is doubled
is of course due to the portion of computation which can not

341

Proceedings of the High-Performance Computing on the Information Superhighway, HPC-Asia '97
0-8186-7901-8/97 $10.00 © 1997 IEEE

Figure 4. Reduction Ratio in Computation
Time

Size 4 nodes 8 nodes
CPU COM CPU COM

256 x 256 1284.51 63.05 681.57 147.07
512 x 512 10171.19 251.92 5242.88 587.73

16 nodes 32 nodes
256 x 256 419.43 314.97 367.00 / 650.78
512 x 512 2936.01 1259.09 2097.15 1 2601.80

Table 5. Matrix Multiplication Result
(Analyzed Estimation, Time unit = msec

CPU = CPU Time, COM = Communication Time)

be parallelized, and this sequential portion of computation
becomes proportionally larger in its ratio as the number of
processors increases. The corresponding reduction ratios in
simulation are 47.7%, 69.3%, and 75.4% for the matrix of
size 256 x 256 and 48.8%, 72.1%, and 81.4% for the matrix
of size 512 x 512. Hence, in terms of parallelization ratio,
simulation results demonstrate better performance. This is
because, in simulated workload model, there is more com-
putation which has not been considered into analytic model,
and most of this additional computation has also been par-
allelized. The degree of parallelization of course is not the
issue at this point. With comparisons shown in figure 4,
then, we claims that the simulator behaves as intended and
its functionality is asymptotically sound. Provided that a
proper set of parameters be fed into it, therefore, we believe
that the simulator produces the output as expected with an
acceptable deviation.

4 Conclusion and Future Work

Size 4 nodes 8 nodes
CPU 1 COM 1 CPU 1 COM

256 x 256 1710.62 61.59 894.70 143.67
512 x 512 13553.11 246.09 6933.97 547.13

16 nodes 32 nodes
256 x 256 526.06 307.69 420.38 635.72
512 x 512 3781.69 1229.94 2520.12 2541.57

Table 6. Matrix Multiplication Result
(Simulation Result, Time unit = msec

CPU = CPU Time, COM = Communication Time)

it still needs finer tuning. Above all, the granularity of most
models is relatively coarse; finer-grain models are to be pro-
vided as the project moves onto its next phase. During the
second phase of the project, then, we will focus on the study
of the architectural configuration for the server machines
based on the simulator that we have built while keeping on
turning it. Especially, we will develop more workload mod-
els such as OLTP, VOD, and WWW and study the impact
of these workloads on the server machines with different
architectural configurations. In order to do these studies,
collecting and providing empirical parameter sets are the
most fundamental and important step. As the consequence
of these studies, we do hope that we will be able to address
a feasible and concrete solution for the design of the server
machines.

References

PI

it;
[41

PI

[61

171

PI

A. Agarwal. Limits on interconnection network performance.
IEEE Transactions on Parallel and Distributed Systems, 2(4),
October 1991.
G. A. Gibson. A case for network-attached secure disks, 1996.
D. C. Grunwald. User’s Guide to AWESIME-II, 1991.
K. Hwang. Advanced Computer Architecture. McGraw-Hill,
Inc., 1993.
V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction
to Parallel Computing: Design and Analysis of Algorithms.
The Benjamin/Cummings Publishing Company, Inc., 1994.
E. K. Lee. Performance modeling and analysis of disk arrays.
PhD thesis, Univ. of California at Berkeley, 1993.
C. Ruemmler and J. Wilkes. An introduction to disk drive
modeling. IEEE Computer, March 1994.
H. J. Watson and J. H. Blackstonee, Jr. Computer Simulation.
John Wiley & Sons, Inc., 1989.

The framework of the simulator has been done so that
the simulator is now functional. In many aspects, however,

342

Proceedings of the High-Performance Computing on the Information Superhighway, HPC-Asia '97
0-8186-7901-8/97 $10.00 © 1997 IEEE

