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Abstract 

In this paper, we introduce a general purpose Ob- 
ject Oriented Simulation Environment which enables the 
study of different architectural configurations for servers. 
The simulation environment has been built on the top of 
AWESIMEI which provides a process oriented discrete 
event simulation environment. On the top of AWESIME, 
the simulator provides the base class definitions for major 
components required to build large scale high-performance 
computer systems, and more advanced model of anypartic- 
ular component can be derived from these base classes and 
easily replaced with old one. This feature enables rapid 
evaluation of alternatives in simulating different architec- 
tures. In addition, this design allows studying a compo- 
nent of interest in various degrees of detail while keeping 
the other components at a coarse-level for a faster simula- 
tion time. 

1. Introduction 

Over the last few years, scalability of high-performance 
system has been demonstrated in terms of processing power 
and communication technology (both in terms of bandwidth 
and latency). The debate on cost-effectiveness is still un- 
derway. The trend seems to be to use off-the-shelf tech- 
nology for processing nodes to leverage their availability at 
low cost. Similar debate is ongoing for using off-the-shelf 
interconnect technology (e.g., ATM) for high-performance 
server systems. 

In this paper, we introduce a general purpose Ob- 
ject Oriented Simulation Environment which enables the 

lA Widely Extensible SIMulation Environment by University of 
Colorado 

study of different architectural configurations for servers. 
The simulator has been built on the top of AWESIME which 
provides a process oriented discrete event simulation envi- 
ronment. On the top of AWESIME, the simulator provides 
the base class definitions for major components required to 
build large scale high-performance computer systems, and 
more advanced model of any particular component can be 
derived from these base classes and easily replaced with old 
one. This feature enables rapid evaluation of alternatives in 
simulating different architectures. In addition, This design 
allows studying a component of interest in various degrees 
of detail while keeping the other components at a coarse- 
level for a faster simulation time. 

The section 2 discusses the design and infrastructure of 
the simulator, and we try to reason the validity of the sim- 
ulator in the section 3. Then, we summarize the current 
status of the simulator and discuss the future work in the 
last section. 

2 A General Purpose Object Oriented Archi- 
tecture Simulator 

The main objectives of the simulator is to design and de- 
velop an object oriented simulation environment which is 
general enough to study different architectural configura- 
tions for server systems. Another objectives of the simula- 
tor is to develop and provide detailed workload models for 
various application domains such as frequently used scien- 
tific computing, on-line transaction processing, video-on- 
demand, decision support system, and world wide web. The 
simulation environment has been chosen to be object ori- 
entedparadigm, and the nature of this paradigm allows easy 
replacement of one module with another without affecting 
the other part of simulation environment enabling easy and 
rapid evaluation of alternatives. Another design principle is 
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to make it general enough to study any single component of 
the system independently. 

2.1 AWESIME Library 

AWESIME is a library of C++ classes. Objects pro- 
vided by AWESIME are building blocks for constructing 
process oriented discrete event simulation. AWESIME is 
intended to be extensible and its class hierarchy provides a 
set of functions common to all classes. Furthermore, the 
class hierarchy is broken into conceptual subclasses or con- 
tainer classes that provide a common set of functions for 
a particular concept in a simulation system. AWESIME 
is designed for architectures with a shared address space 
running some variant of the Unix operating system. A 
prime goal in the design of AWESIME is portability, ne- 
cessitating certain assumptions in the underlying memory 
architecture of the host machine. The AWESIME library 
creates multiple Unix processes that are ideally mapped 
into individual processors. The child processors inherit 
the memory and file configuration of the initial process. 
Within AWESIME, each Unix process is termed a CPU.[3] 
As a whole, AWESIME library provides a pseudo paral- 
lel programming environment on a single processor sys- 
tem. For more information on AWESIME, readers may 
refer to A User Guide to AWESIME found at the web site 
http:llesl.cs.colorado.edulAWEDUDElawedude.html. 

2.2 Parallel Architecture Simulator 

The simulator is a group of C++ class definitions pro- 
vided for general architecture simulation on the top of 
AWESIME library. Due to the nature of object oriented 
paradigm, it is relatively easy to evaluate different architec- 
tural configurations. One such example is evaluating differ- 
ent network topologies. While leaving nodes configurations 
as they are, users can simulate different topologies such as 
mesh, ring, hypercube, and so on simply by replacing differ- 
ent network models. This feature also allows users to study 
a component of interest in various degrees of details while 
keeping the other components at a coarse-level for a faster 
simulation time. For instance, users can choose to simulate 
mesh network topology using hop-by-hop transfer method- 
ology which naturally adopts the current traffic congestion 
and therefore produces more accurate results. This method 
may, then, take long simulation time since each packet of 
network traffic is an active thread which requires expen- 
sive context switching to simulate. Alternatively, users can 
choose to simulate the same network topology using ana- 
lytic model which computes network latency from the num- 
ber of hops and the given congestion parameter.[l]. This 
method gives faster simulation time, and therefore it might 

not be a bad choice to use this model when network is not 
the main component of interest. In the following, the major 
objects defined in the simulator are briefly introduced. For 
more details, refer to http:l/www.ece.nwu.edul5goh. 

System Object 
System object is basically a container class defini- 
tion. Its structure imitates a frame of typical MPP 
system with a number of different slots for CPUs, 
disks, buses, memories, and network ports. Due to 
the nature of software, then, the number of slots for 
each component is not limited to a certain fixed num- 
ber making this object scalable. With this infrastruc- 
ture, it is possible to build almost any type of existing 
stand-alone MPP systems onto it. 

Node Object 
Node object is another container class which is like a 
small version of System object in a sense that Node 
object itself can be a multiprocessor system. The ba- 
sic difference between System and Node objects is 
that Node object has been fixed to have its own bus 
system for interconnection method while System ob- 
ject can have a variety of different interconnection 
network topologies. In both objects, local memory, 
shared memory, and I/O subsystem are all optional 
depending on what kind of system to be built. 

IOSys Object 
As the role of I/O subsystem becomes more and more 
important, its architecture also becomes more and 
more complicated everyday, and so it is almost like a 
computing node with its own powerful processor and 
large buffer space or even big cache memory. In these 
days, it is common to dedicate a conventional com- 
puting processor as a separate I/O processor to han- 
dle incoming I/O requests for optimum performance. 
This object is designed to be able to model such a 
complicated I/O subsystem. 

Disk Object 
Disk object itself becomes very intelligent in a sense 
that it can perform various optimization tasks such as 
disk scheduling for minimum seek latency. The new 
trend in computer technology even allows peripheral 
devices such as disks to be directly connected to in- 
terconnection network without having controlled by 
a certain host node.[2] This disk object is designed so 
that it accommodates even this new technology. Raw 
disk system may be single disk environment or disk 
array. One of our disk mechanism objects is based on 
an analytic model described in [6, 71. The simulator 
also provide another disk mechanism object which is 
based on a set of empirical data obtained by tracing 
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actual system’s I/O request pattern for a long period 
of time. 

Network Object 
Network object consists of a number of interface 
units or switches and connections between them. The 
connection topology depends on each different mod- 
els. Every well-known network topologies are to be 
modeled within the simulator. The simulator cur- 
rently supports topologies such as mesh, ring, hyper- 
cube, and Ethernet connections. 

IU Object 
Interface Unit includes network interface units (or 
ports) in each node or disk and switches in network 
such as MRC. Each different subclass of IU object 
employs different communication protocols. 

OSKernel Object 
Due to the difficulty in modeling software behavior, 
the functionality of OSKernel object has been kept 
at minimum level; it currently handles the basic inter- 
processor communication such as send and recv. Col- 
lective interprocessor communications such as broad- 
cast and accumulate are separately provided by Li- 
brary object. 

FileSys Object 
FileSys Object handles file system related calls such 
as read and write. It currently implements a basic 
striping parallel file system and distributed file sys- 
tem. 

Message Object 
Message object carries actual data through the net- 
work and each smallest communication unit is repre- 
sented as an active thread. This thread-based simu- 
lation is the main feature that enables the simulator 
to achieve pseudo-parallelism on a single processor 
environment. 

Workload Object 
Different application domains have different charac- 
teristics of workload from each others, and these dif- 
ferences may have a great deal of impact on server 
machine design in terms of both hardware and soft- 
ware architecture. The simulator provides workload 
models for each major application area which demon- 
strates a unique characteristics such as scientific ap- 
plication, OLTP, VOD, and WWW. 

e Processor and Memory Object 
Both Processor and Memory objects are currently 
primitive in terms of their functionalities; they just 
consume the given amount of simulation time. Their 

] Routing Technique Analytic Model Simulator 
Basic Switching 4543 4380.86 

Store-and-forward 2003 1958.53 

tl Cut-though 1625 1 1621.76 

Table 1. Basic Communication Operation 
(Time Unit : clock tick, Message Size : 500 bytes) 

(Note: These experiments were done to validate the simu- 
lator using a single message without any interference from 
any other messages.) 

]I Data Size 11 Analvtic Model ] Simulator fl 
J I 

1KB 1148269.70 1149119.18 
2KB 1172164.62 1173548.27 
4KB 1219954.47 1221408.40 II 

H 8KB II 
I 

II I 1169773.70 1 1168452.97 H I u 

Table 2. Local I/O Operation 
(Time Unit : clock tick) 

(Note: Like basic communication experiments, these exper- 
iments were also performed within an isolated environment 
for the purpose of validation.) 

major influence over simulation is implementing mu- 
tually exclusive access on shared critical sections. 

3 Validation 

In this section, we try to reason out the validity of the 
simulator. First, we isolated and analyzed two major lines 
of operations: basic interprocessor communication and lo- 
cal I/O. Then, we simulated these operations on our mod- 
eled system which consists of 16 nodes connected via 4 x 4 
mesh interconnection network. Due to the space restriction, 
however, we omit these sections and presents only their re- 
sults in the table 1 and 2. The analysis of these operations 
basically adopted techniques described in [5]. Assuming 
the soundness of these two basic lines of operation, then, 
we simulated more realistic workload, matrix multiplica- 
tion. We first asymptotically analyzed GAXPY algorithm 
for matrix multiplication and simulated matrix multiplica- 
tion workload based on GAXPY algorithm. The following 
sections present the analysis of the algorithm and the simu- 
lation result. We will try to clarify all the assumptions made 
for each operation in order to avoid possible misinterpreta- 
tion. 
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3.1 Simple Analysis of GAXPY Algorithm for 
Matrix Multiplication 

Let A, B, and C be n x n matrices such that C = A x B. 
Then, the GAXPY algorithm for computing C = A x B is 

n 
cj = c bkjak, j = 1 : n (1) 

/CA 

The algorithm indicates that, in order to compute the jth 
column of C, the jth column of B and all columns of A are 
needed. Then, assuming n be a multiple of p, equation 1 
can be rewritten as a sum of p partial sums as follows 

n at D D 

cj = Cbkjak + 2 bkjak + . . . 

k=l k=f+l 
n + c bkjak, j = 1 : n (4 

k=((p-1)x $)+l 

Each partial sum C kjak returns an intermediate vector, 
and each vector is a linear combination of E columns of A 
and F elements of a column j of B. These intermediate 
vectors are then added to produce the jth column of matrix 
C. The entire matrix C can be computed by repeating this 
process n times. Assuming that p processors be available, 
then, these p partial sums can be computed in parallel. The 
following pseudo code represents the partial sum process on 
each processor: 

doj=lton 
do i = 1 to ; 

do k = 1 to n 
temp(j,i) = temp(j,i) + a(k,i) x b(i, j) (a) 

end do 
end do 
global sum on temp(ti, j) 

end do 
@I 

Let F be the cost for one floating point operation and W 
be the cost for memory access of one word. Assuming no 
I/O operation(That is, incore computation), we can estimate 
the performance of the algorithm by approximating each 
operation. In step (a), the computation requires one floating 
point multiplication, one floating point addition, and seven 
one-word memory accesses. Hence, through out the com- 
putation, the step (a) costs n3@~~+7W) time units. In step 
(b), an interprocessor communication operation takes place 
during which a column of size n with partial sum is all- 
to-all broadcasted. Let the cost of this communication be 
the function of m and p where m is the size of matrix in 
number of bytes. After the all-to-all broadcast, there will be 

n x p floating point additions to produce a column of result- 
ing matrix C, and this step is repeated for each column of 
matrix C. Hence, this step costs nF(m, p) + pn2 (F + W) 
time units overall. 

TG = n2F(F +p) + n2W($ +p) + 

nF(m, p) (3) 

Now, the broadcasting algorithm depends on the under- 
lying network topology. For this analysis, we assume q x r 
2-D mesh interconnection network with end-around con- 
nection where p = q x r, and a simple dimensional broad- 
casting algorithm described in [5]. In this algorithm, all-to- 
all broadcasting takes place in two phases. In the first phase, 
each node broadcasts the message of size m along the X di- 
mension taking (q - l)(tmp + t,, + (th + m/bw) x 2 + ti) 
time units, and then the message of size qm along the Y 
dimension in the second phase taking (r - l)(tmp + t,, + 
(th + qm/bw) x 2 + ti) time units.[5] We now have: 

F(m, p) = (9 t r - 2) (tee -I- 2th) t 

(4r - I)(? + 5 + g) (4) 
mP 2 

and we can rewrite the equation 3 as follows: 

TG = n2F(: +p) + n2W($ +p) + 

n(q + r - 2)(&e + 2th) + 

n(qr - l)(F + F + 2) 
mp i 

(5) 

3.2 Simulation of GAXPY Algorithm for Matrix 
Multiplication 

We have developed a simple workload for matrix multi- 
plication based on GAXPY algorithm described in the pre- 
vious section and run simulations to see if the simulator be- 
haves as analyzed. In this simulation, we have simplified 
the cost of floating point operation and memory access so 
that these operations have constant costs.2 

We have varied the number of processors from 4 to 32 
nodes and the sizes of matrix that we have simulated are 
256 and 512 x 512. For matrix multiplication of size 256, 
the size of message broadcasted is 256 x 4 = 1024 bytes 
and 512 x 4 = 2048 bytes for matrix multiplication of size 
512 x 512. The result of these simulations and analysis are 

2Due to the space restriction, we have omitted some sections which 
include terms and parameter set. For the extended paper, send mail to 
sgoh@top.cimysedu. 
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Size 4 nodes 8 nodes 16 nodes 32 nodes 
256 x 256 1347.55 828.64 734.40 1017.78 
512 x 512 10423.11 5830.61 4195.10 4698.95 

Table 3. Matrix Multiplication Result 
(Analyzed Estimation, Time unit = msec) 

Size 4 nodes 8 nodes 16 nodes 32 nodes 
256 x 256 1772.21 1038.36 833.74 1056.10 
512 x 512 13799.20 7508.10 5011.63 5061.69 

Table 4. Matrix Multiplication Result 
(Simulation Result, Time unit = msec) 

shown in table 3 and corresponding analytic estimation in 
table 4. The graph representations of corresponding results 
are depicted in figure 1 and figure 2, respectively. 

There are differences between analyzed estimation and 
simulation result shown in the table 3 and table 4. This is 
mainly because the GAXPY algorithm for matrix multipli- 
cation is asymptotically analyzed considering the costs of 
computations within the inner most loop while other aux- 
iliary computations are also implemented in the simulation 
workload. The scale of this difference then depends upon 
the set of parameters fed into the simulator and, since the 
cost of floating point operation assumed is relatively small 
compared to that of other operations, the difference in this 
simulation is relatively large. 

Up to 16 processors, the turnaround time of matrix mul- 
tiplication decreases as the number of processors increases; 
the cost of matrix multiplication with 32 processors is then 

(ms) 

I 

4 8 16 32 4 16 32 

(256 X 256) (512 x 512) 

Figure 1. Matrix Multiplication Result 
(Analyzed Estimation, Time unit = msec) 

(ms) 

(ms) 

15w 

1ooll 

sm 

(ms) 
15m ] 

4 16 32 

(512 X 512) 

Figure 2. Matrix Multiplication Result 
(Simulation Result, Time unit = msec) 

Figure 3. Comparison between Computation 
and Communication Time 

(Matrix Size = 256 x 256, Time unit = msec) 

higher than that with 16 processors. This is because the 
cost of interprocessor communication increases as the num- 
ber of processors increases and there is a saturation point 
somewhere in between 16 processor configuration and 32 
processor. The costs of separate computation and commu- 
nication are shown in the table 5 and table 6. 

Except for the differences in absolute figures, then, we 
can observe the matching patterns between analyzed esti- 
mation and simulation result in terms of their ratios. The 
graph in the figure 4 takes the computation time on 4 proces- 
sor configuration as the unit time and shows the reduction 
ratios in computation time as the number of processors in- 
creases. According to analyzed estimation, 46.9% of reduc- 
tion in computation time is expected on 8 processor configu- 
ration, 67.4% on 16 processors, and 71.4% on 32 processors 
for matrix of size 256 x 256, and 48.5%, 71.1%, and 79.4% 
for matrix of size 512 x 512. The reason why the reduction 
ratio is not 50% when the number of processors is doubled 
is of course due to the portion of computation which can not 
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Figure 4. Reduction Ratio in Computation 
Time 

Size 4 nodes 8 nodes 
CPU COM CPU COM 

256 x 256 1284.51 63.05 681.57 147.07 
512 x 512 10171.19 251.92 5242.88 587.73 

16 nodes 32 nodes 
256 x 256 419.43 314.97 367.00 / 650.78 
512 x 512 2936.01 1259.09 2097.15 1 2601.80 

Table 5. Matrix Multiplication Result 
(Analyzed Estimation, Time unit = msec 

CPU = CPU Time, COM = Communication Time) 

be parallelized, and this sequential portion of computation 
becomes proportionally larger in its ratio as the number of 
processors increases. The corresponding reduction ratios in 
simulation are 47.7%, 69.3%, and 75.4% for the matrix of 
size 256 x 256 and 48.8%, 72.1%, and 81.4% for the matrix 
of size 512 x 512. Hence, in terms of parallelization ratio, 
simulation results demonstrate better performance. This is 
because, in simulated workload model, there is more com- 
putation which has not been considered into analytic model, 
and most of this additional computation has also been par- 
allelized. The degree of parallelization of course is not the 
issue at this point. With comparisons shown in figure 4, 
then, we claims that the simulator behaves as intended and 
its functionality is asymptotically sound. Provided that a 
proper set of parameters be fed into it, therefore, we believe 
that the simulator produces the output as expected with an 
acceptable deviation. 

4 Conclusion and Future Work 

Size 4 nodes 8 nodes 
CPU 1 COM 1 CPU 1 COM 

256 x 256 1710.62 61.59 894.70 143.67 
512 x 512 13553.11 246.09 6933.97 547.13 

16 nodes 32 nodes 
256 x 256 526.06 307.69 420.38 635.72 
512 x 512 3781.69 1229.94 2520.12 2541.57 

Table 6. Matrix Multiplication Result 
(Simulation Result, Time unit = msec 

CPU = CPU Time, COM = Communication Time) 

it still needs finer tuning. Above all, the granularity of most 
models is relatively coarse; finer-grain models are to be pro- 
vided as the project moves onto its next phase. During the 
second phase of the project, then, we will focus on the study 
of the architectural configuration for the server machines 
based on the simulator that we have built while keeping on 
turning it. Especially, we will develop more workload mod- 
els such as OLTP, VOD, and WWW and study the impact 
of these workloads on the server machines with different 
architectural configurations. In order to do these studies, 
collecting and providing empirical parameter sets are the 
most fundamental and important step. As the consequence 
of these studies, we do hope that we will be able to address 
a feasible and concrete solution for the design of the server 
machines. 
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