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Abstract

Many scientific applications have large I/O requirements, in terms of both the size of data and the number of files or data sets.

Management, storage, efficient access, and analysis of this data present an extremely challenging task. Traditionally, two different

solutions have been used for this task: file I/O or databases. File I/O can provide high performance but is tedious to use with large

numbers of files and large and complex data sets. Databases can be convenient, flexible, and powerful but do not perform and scale

well for parallel supercomputing applications. We have developed a software system, called Scientific Data Manager (SDM), that

combines the good features of both file I/O and databases. SDM provides a high-level application programming interface to the user

and, internally, uses a parallel file system to store real data (using various I/O optimizations available in MPI-IO) and a database to

store application-related metadata. In order to support I/O in irregular applications, SDM makes extensive use of MPI-IO’s

noncontiguous collective I/O functions. Moreover, SDM uses the concept of a history file to optimize the cost of the index

distribution using the metadata stored in database. We describe the design and implementation of SDM and present performance

results with two regular applications, ASTRO3D and an Euler solver, and with two irregular applications, a CFD code called

FUN3D and a Rayleigh–Taylor instability code.

r 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Many large-scale scientific experiments and simula-
tions generate very large amounts of data [2,9] (on the
order of several hundred giga- to terabytes), spanning
thousands of files or data sets. Moreover, such applica-
tions have different patterns of accessing data from files.
Some applications access data in regular block or cyclic
access patterns. Others have more complex irregular
access patterns that cannot be detected at compile time.
These different ways of accessing data in applications,
along with the large number of files and large size of
data being generated, make high-performance access,

management, storage, and analysis of the data an
extremely challenging task.
Current techniques for data management are either

raw file–I/O interfaces, such as MPI-IO [12,24], or full-
fledged databases. File–I/O interfaces provide high
performance but are too cumbersome to use with large,
complex data sets and large numbers of files. For
example, the user must remember file names and the
organization of data in a file and must specify the exact
location in the file from which the data must be
accessed. Databases, on the other hand, provide a
convenient, high-level interface and powerful data-
retrieval capability, but they do not measure up to the
performance requirements of large-scale scientific appli-
cations running on supercomputers.
We have developed a software system, called Scientific

Data Manager (SDM), that combines the good features
of both file I/O and databases [28,29]. SDM provides a
high-level, user-friendly interface. Internally, SDM
interacts with a database to store application-related
metadata and uses MPI-IO to store the real data on a
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high-performance parallel file system. SDM takes
advantage of various I/O optimizations available in
MPI-IO, such as collective I/O and noncontiguous
requests, in a manner that is transparent to the user.
SDM provides efficient I/O support for irregular

applications, while maintaining a high-level unified
application programming interface (API) for both
regular and irregular applications. In irregular applica-
tions, the data accesses make extensive use of arrays,
called indirection arrays [8] or map arrays [12], in which
each value of the array denotes the corresponding data
position in memory or in the file. The data distribution
in irregular applications can be done either by using
compiler directives with the support of runtime pre-
processing [14,15] or by using a runtime library [8]. Most
of the previous work in the area of unstructured-grid
applications focuses mainly on computation and com-
munication in such applications, not on I/O. SDM takes
advantage of MPI-IO’s support for noncontiguous data
accesses and, therefore, can efficiently handle the read-
ing and writing of data in an irregular mesh, as well as
the distribution of index values.
The rest of this paper is organized as follows. In

Section 2, we discuss our goals in developing SDM. In
Section 3, we present the design and implementation of
SDM. Performance results on the SGI Origin2000 and
on the IBM SP at Argonne National Laboratory are
presented in Section 4. We discuss related work in
Section 5 and conclude in Section 6.

2. Design objectives

Our main objectives in developing SDM were to
provide high-performance parallel I/O, to provide a
high-level API, to support a convenient data-retrieval
capability, and to optimize the execution time of both
regular and irregular applications.

* High-performance I/O. To achieve high-performance
I/O, we decided to use a parallel file–I/O system to
store real data and use MPI-IO to access this data.
MPI-IO, the I/O interface defined as part of the
MPI-2 standard [12,24], is rapidly emerging as the
standard, portable API for I/O in parallel applica-
tions. High-performance implementations of MPI-
IO, both vendor and public-domain implementations,
are available for most platforms [10,19,32,33,42].
MPI-IO is specifically designed to enable the optimi-
zations that are critical for high-performance parallel
I/O. Examples of these optimizations include collec-
tive I/O, the ability to access noncontiguous data sets,
and the ability to pass hints to the implementation
about access patterns, file-striping parameters, and so
forth.

* High-level API. Our goal was to provide a high-level
unified API for any kind of application (regular or
irregular) while encapsulating the details of either
MPI-IO or a database. The user can specify the data
with a high-level description, together with annota-
tions, and use a similar API for data retrieval. SDM
internally translates the user’s request into appro-
priate MPI-IO calls, including creating MPI-derived
datatypes for noncontiguous data [41]. SDM also
interacts with the database when necessary, by using
embedded SQL functions.

* Convenient data-retrieval capability. SDM allows the
user to specify names and other attributes to be
associated with a data set. SDM internally selects a
file name into which the data will be stored; the
mapping between data sets and file names is stored in
the database. The user can retrieve a data set by
specifying a unique set of attributes for the desired
data. SDM also allows the user to query the metadata
for a stored data set and then select data with specific
attributes.

* Optimization of irregular applications. In irregular
applications, the cost of an index distribution is
usually expensive, in terms of communication and
computation volumes. In SDM, after the index values
are partitioned among processes, the local index
subsets of all processes are asynchronously written to
a history file, and the associated metadata is stored in
the database. When the same index distribution is
needed in subsequent runs, the index values are read
from the history file by using the metadata stored in
the database, and thereby the user can avoid
repeating the communication and computation for
the same index distribution. SDM also uses MPI
datatypes and collective I/O functions to optimize
I/O for irregular access patterns.

3. Implementation

With the help of sample regular and irregular
problems, we describe the design and implementation
of SDM.

3.1. Regular applications

We present a sample regular problem and describe the
metadata storage in the database, the SDM API, and
the organization of data in files.

3.1.1. Problem description and SDM API

ASTRO3D is a three-dimensional astrophysics appli-
cation developed at the University of Chicago. For
simplicity of explanation, we consider the two-dimen-
sional version of this three-dimensional application.
(The performance results presented in this paper are for
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the full three-dimensional version.) In this application,
data are stored in several arrays that are block
distributed in each dimension. At various time steps,
several of these arrays are written to files for data
analysis, restart, and visualization. Six floating-point
arrays are written for data analysis and another
six for restart; seven character arrays are written for
visualization. The frequencies of the writes can be
varied.
We use the term data set to refer to each array being

written and data group to refer to all the arrays written
at a time step for a particular purpose such as data
analysis. For simplicity of explanation, let us assume
that three arrays are written for data analysis, another
three for restart, and four for visualization. (Note that
all arrays—six, six, and seven—were used in the
performance experiments reported in this paper.) Let
us further assume that the data analysis and restart
dumps are performed every six time steps and the
visualization dumps are performed every four time
steps. Let a0; a1; a2 be the three data sets for data
analysis and A ¼ ða0; a1; a2Þ be the data group for data
analysis. Similarly, we have B ¼ ðb0; b1; b2; b3Þ for
visualization and C ¼ ðc0; c1; c2Þ for restart.
Fig. 1 shows how the SDM API is used to perform (a)

write and (b) read operations for data analysis (data
group A) in a two-dimensional version of ASTRO3D.

3.1.2. Implementation details

SDM provides a high-level API and stores applica-
tion-related metadata in a database. For regular

applications where the data access pattern can be
predicted before runtime, SDM creates three database
tables: run table, access pattern table, and execution
table (see Fig. 2). These tables are made for each
application. Each time an application writes data sets,
SDM enters the problem size, dimension, current date,
and a unique identification number (runid) to the
run table. The access pattern table includes the proper-
ties of each data set, such as datatype, storage order,
data access pattern, and global size. SDM uses this
information to make appropriate MPI-IO calls to access
the real data. The execution table stores a globally
determined file offset denoting the starting offset in the
file of each data set.
In SDM, users can specify groups of data sets by

assigning properties to the first data set in a group and
by propagating them to the other data sets belonging to
the same group. The main reason for making groups of
data sets is that SDM can then use different ways of
organizing data in files, with different performance
implications. For example, each data set can be written
in a separate file, or the data sets of a group can be
written to a single file. For ASTRO3D, we created the
three data groups, A ¼ a0; a1; a2; B ¼ b0; b1; b2; b3; and
C ¼ c0; c1; c2; for data analysis, visualization, and
restart, respectively. The properties assigned to each
data set are stored in the database by calling
SDM set attributes.
In case of read operations, data from a specific run

can be retrieved by specifying attributes of the data,
such as the date of the run. Also, the properties of the
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data sets need not be specified because SDM retrieves
this information from the database.
The main SDM functions for writing and reading

data are SDM write and SDM read. Before calling these
functions, the user must provide the information
necessary for SDM to perform I/O, such as the starting
points and sizes of the subarray in each dimension in the
case of block distribution, or the size of process grids
and distribution arguments in each dimension in the
case of cyclic distribution. Also, SDM data view must be
called to perform the data mapping between memory
and file.
In order to perform I/O, the handle of a group,

position of a data set within the handle (group), current
time step, and pointer to the application buffer are
passed to the SDM I/O function. Note that the user does
not have to provide file names. SDM generates the file
name and records the name in the database. SDM calls
MPI-IO’s collective I/O functions to perform I/O
efficiently and in parallel from all processes.

3.1.3. File organization

SDM supports three different ways of organizing data
in files. In level 1, each data set generated at each time
step is written to a separate file, as shown in Fig. 3. This

file organization is simple, but it incurs the cost of a
file open and close at each time step, which on some file
systems can be quite high, as we shall see in the
performance results. For a large number of data sets and
time steps, this method can be expensive because of the
large number of file opens.
In level 2, each data set (within a group) is written to a

separate file, but different iterations of the same data set
are appended to the same file, as illustrated in Fig. 4.
This method results in a smaller number of files and
smaller file-open costs. The offset in the file where data
is appended is stored in the execution table.
In level 3, all iterations of all data sets belonging to a

group are stored in a single file, as shown in Fig. 5. As in
level 2, the file offset for each data set is stored in the
execution table by process 0 in the SDM write function.
If a file system has high open and close costs, SDM can
generate a very small number of files by choosing the
level-3 file organization. On the other hand, if an
application produces a large number of data sets of large
size, level 3 would result in very large files, which may
affect performance.
We study the performance implications of the

three file-organization levels in the performance
section.
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3.2. Irregular applications

We now describe the SDM architecture for support-
ing irregular applications.

3.2.1. Problem description and SDM API

Fig. 6 shows a typical irregular application that
sweeps over the edges of an irregular mesh. In this
problem, edge1 and edge2 are two arrays representing
nodes connected by an edge, and arrays x and y are the
actual data associated with each edge and node,
respectively. The partitioned arrays of edge1, edge2,
x, and y contain a single level of ‘‘ghost data’’ beyond
the boundaries to minimize remote accesses. After the
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Fig. 6. A sample irregular problem.

Fig. 7. Using SDM for index and data partitioning in the irregular application of Fig. 6.
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computation is completed, the results p and q are written
to a file in the order of global node numbers.
Fig. 7 shows how the data and index partitioning

can be specified in SDM. We use the term import to
distinguish it from a read operation. A read operation
reads the data created in SDM, whereas an import
operation reads the data created outside of SDM. Fig. 8
shows the use of SDM for writing the results of the
computation.

3.2.2. Implementation details

Besides providing a high-level API for convenient
data retrieval and I/O, SDM provides a capability to
partition the index and data arrays being used in
irregular applications. To use the SDM partitioning
scheme, users must provide a partitioning vector in which
each value of the vector denotes a processor rank where
the node should be assigned. The partitioning vector
should be replicated among processes. The current
implementation of SDM requires that the partition
vector fit in memory; an out-of-core partition vector is
not currently supported. For the application illustrated
in Fig. 6, we used the partitioning vector generated from
the graph-partitioning tool Metis [20,34].
The SDM partitioning phase generates map arrays

that specify the mapping of each element of the local
array to the global array. The map arrays are used in
I/O operations. This partitioning phase is optional;
users can instead provide their own map array, while
bypassing this phase.
For irregular applications, in order to partition index

and data arrays and to perform I/O, SDM creates
six database tables: run table, access pattern table,
execution table, import table, index table, and in-
dex history table. The first three tables are the same as
described in Section 3.1.2 for regular applications.

In order to optimize the cost of index distributions,
SDM provides a history file to store the local index
subsets of all processes. The associated metadata is
stored in the database. When the same index distribu-
tion is needed later, each process can retrieve the
partitioned index values from the history file by using
the metadata stored in the database. This saves the cost
of creating the partitions each time.
The disadvantage of the history file is that it cannot be

used if the problem runs on a different number of
processes from that when the file was created, because
the edges and nodes being assigned to each process
dynamically change among different numbers of pro-
cesses. One efficient use of the history file is to create it
in advance for the various numbers of processes of
interest. As long as the user runs the application with
any of those numbers of processes, an appropriate
history can be chosen to reduce communication and
computation costs.
Fig. 7 describes the steps in SDM to partition the

indexes and data. The four arrays, edge1, edge2, x, and
y, are imported by creating a data group. The function
SDM import first accesses the index table in the database
to see whether a history file exists with this problem size.
If so, the metadata, such as each process’s partitioned
index size and the name of the history file, is retrieved
from the index table and index history table. Otherwise,
the desired data are imported to the application. Since
edge1 and edge2 are being imported in a contiguous
way, there is no need to specify data mapping between
the file and processor memory.
In SDM partition table, the global partitioning

vector (partitioning vector in Fig. 7) is converted
to the local vector (vector in Fig. 7) to determine which
node should be assigned to which process.
If there is a history file for this problem size,

SDM partition index reads the already-partitioned
edge1 and edge2 from the history file and converts
them to localized edges by using the partitioning vector.
This approach avoids the communication cost to
exchange each process’s edges and the computation cost
to choose the edges to be assigned. If there is no history
file, the edges in each process are distributed by reading
all the data in parallel and by performing a ring-oriented
communication.
For storing the partitioned edges and nodes, including

the ghost ones, a certain amount of memory space is
initially allocated to each process. When the entire
memory space is occupied by the partitioned data, it is
automatically doubled by adjusting the memory size.
This prevents the system from looking through the
entire data in two steps, one step to decide the size of
memory space and the other step to actually store the
data in the memory space. After the edges and nodes are
distributed, the edges in each process are moved to the
next process in the virtual ring. As a result, two map
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arrays, partitioned edge and vector, are generated
that are used to distribute the physical data associated
with each edge and node, respectively.
SDM index registry creates a history file containing

the index distribution if no history file had been created
earlier for the index distribution. The information to
partition index arrays, such as the partition size for each
process, is stored in the database tables index table

and index history table. Also, the partitioned
index values (partitioned edge in our example)
are written asynchronously to a history file to be
retrieved in subsequent runs requiring the same edge
distribution.
Fig. 8 shows the steps to write two data sets, p and q,

after completing the computations at each checkpoint.
Before writing p and q, the data mapping is defined in
the SDM data view by using the map array (vector)
associated with the node partition. The data sets are
written to files according to one of the file organizations
described in Section 3.1.3. All the I/O is performed
by using MPI-IO’s collective I/O functions and
derived datatypes to describe noncontiguous access
patterns.
Fig. 9 depicts the metadata storage in the database

and the organization of data in files in SDM for the
example in Fig. 6.

4. Performance results

We used the IBM SP and SGI Origin2000 at Argonne
National Laboratory for all our performance tests. At
the time the experiments were run, these machines were
configured as follows. The IBM SP had 80 compute
nodes and 4 I/O nodes. Each I/O node controlled four
SSA disks, each of 9 Gbyte capacity. The parallel file
system on the machine was IBM’s PIOFS [18]. The SGI
Origin2000 had 128 processors and 10 Fibre Channel
controllers connected to a total of 110 disks, each of
9 Gbyte capacity. The file system on the Origin2000 was
SGI’s XFS [16,38].

4.1. Performance results for regular applications

For performance evaluation of regular applications,
we used an optimization called direct I/O on XFS. When
certain alignment restrictions are met, the user can
choose the direct-I/O option, in which the file system
moves data directly between the user’s buffer and the
storage device, bypassing the file-system cache. Direct
I/O thus eliminates an extra memory copy into the cache
and can perform well if the I/O size is large and the
machine has a high-bandwidth I/O system. Direct I/O
can be used from an MPI-IO program: the ROMIO
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implementation of MPI-IO that we used supports direct
I/O [43]. We present performance results with both
direct I/O and regular (buffered) I/O.
We used two regular application templates, AS-

TRO3D and a three-dimensional Euler solver, in our
performance experiments. For ASTRO3D, we used a
problem size of 256� 256� 256: We ran the program
for one time step and performed the data analysis,
restart, and visualization dumps at that time step. This
resulted in a total of around 880 Mbytes of data.
The second application is a three-dimensional Euler

solver for the problem of three-dimensional transonic
flow about an M6 wing [13]. This application is a mesh-
structured code that writes the physical values and
residual of each node at certain iterations. The structure
of these values is a distributed global vector, and each
value has five components (density, energy, and three
coordinates of momentum). In addition, the application
writes the physical coordinates and pressure at each
mesh point. In our experiments, we ran the code for 50
iterations and wrote data at every 5 iterations. The
problem size was 194� 34� 34:

4.1.1. Cost of database access

SDM uses TCP/IP to connect to the database servers.
We performed our experiments with two different
databases, MySQL [25] and PostgreSQL [31]. Fig. 10
shows the database-access cost in the SDM write
operation on the Origin2000. The connection to and
disconnection from the database server occur once in
SDM initialize and SDM finalize, respectively. In
SDM set attributes, process 0 accesses the run table

and access pattern table to store attributes. In the
write operation, process 0 stores the file offset in
the execution table. Access to the execution table

occurred 19 times in ASTRO3D versus 60 times in the

Euler solver. As can be seen in Fig. 10, the database-
access cost using either of the database servers was less
than 0:6 s: This cost, however, will change according to
the number of I/O operations occurring in the applica-
tions.
We observed that MySQL performs better than

PostgreSQL. Therefore, we used only MySQL for the
rest of the performance experiments.

4.1.2. Results for ASTRO3D

Fig. 11 shows the write and read bandwidths for
ASTRO3D on the IBM SP using 32 processors for the
three levels of file organization. Since we ran only one
iteration of the program, levels 1 and 2 resulted in the
same file organization. Level 3 achieved much higher
bandwidth because only three different files were
created, and, therefore, only three file opens occurred.
The high cost of file opens on the PIOFS file system [40]
resulted in lower performance for levels 1 and 2, where
19 separate files were created. The impact of file-open
time can indeed be quite large.
Figs. 12 and 13 show the write and read bandwidths

for ASTRO3D on the SGI using 16 processors. We
measured performance for both direct I/O and buffered
I/O. For writing data, direct I/O performed better than
buffered I/O. There are two reasons for this. First, with
buffered I/O, XFS serializes concurrent writes to the
same file, whereas with direct I/O, concurrent writes are
allowed to proceed in parallel. Second, direct I/O
eliminates a copy into the file-system cache. For reading
data, buffered I/O performed better. Again, there are
two reasons for this. One reason is that XFS does not
serialize buffered reads; therefore, direct reads do not
have any extra advantage in the area of parallelism. The
second reason is that XFS performs a read-ahead
(prefetch) in the case of buffered reads, but not in case
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of direct reads. The read-ahead policy works well for
this application, and buffered reads therefore perform
better. Since the cost of file opens is small on XFS, the
three levels of file organization performed nearly the
same.

4.1.3. Results for the Euler solver

Fig. 14 shows the write and read bandwidths for the
Euler solver on the IBM SP using 32 processors. The
total data written was around 240 Mbytes: In level 3,
only two files were generated, one for writing the
coordinates and pressure at each mesh node and the
other for writing the physical values and residual at each
node. In level 2, six vectors (that is, the three
coordinates, pressure, physical values of each node,
and nodal residual) were written separately, resulting in
a total of six files. In level 1, the six vectors generated
every five iterations were written separately, resulting in

a total of 60 files. As Fig. 14 shows, level 3 performed
the best because of the high open cost on PIOFS.
In level 1, the file-open cost took around 80% of the
total execution time; in level 2, it took around 30%; and
in level 3, it took around 20% of the total execution
time.
Fig. 15 shows the write and read bandwidths for the

Euler solver using 16 processors on the SGI. For this
application, we used only buffered I/O. We could not
use direct I/O because the memory allocation for
distributed vectors was done inside the numerical library
(PETSc [30]) that the application uses, and thus we
could not align the buffers to the cache line as required
for direct I/O. For the write operation, levels 2 and 3
performed slightly better than level 1. For the read
operation, however, level 1 performed the best. The
reason is that the read-ahead policy of XFS for buffered
reads operates on a per-file basis and therefore works to
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the application’s advantage when it has a greater
number of files.

4.2. Performance results for irregular applications

We obtained performance results for irregular appli-
cations on the SGI Origin2000 at Argonne National
Laboratory. The first application template that we
benchmarked was a tetrahedral vertex-centered unstruc-
tured grid code called FUN3D developed by Anderson
of the NASA Langley Research Center [1]. This
application uses a partitioning vector generated from
METIS to partition the nodes and edges in a mesh. The
mesh we used had about 18 million edges and 2 million
nodes. At the initial stage, the application imports edges,
four data arrays associated with edges, and another four
data arrays associated with nodes. The total imported
data size was about 807 Mbytes: As a result of
computations, the application wrote about 21 Mbytes
of four data sets each and 105 Mbytes of a single data
set. Using 64 processors, we iterated the application
template for two time steps; at each time step, five data
sets were written to files.
The second application template that we ran was a

Rayleigh–Taylor instability application [11] that is
motivated by a joint project between the University of
Chicago and Argonne to study thermonuclear flashes on
astrophysical objects. Whenever the simulation time
reaches a certain point, the application writes two data
sets: a single node data set associated with vertices in a
mesh, and a triangle data set associated with triangles on
tetrahedral faces. In the application template, we wrote
about 36 Mbytes of the node data set and about
74 Mbytes of the triangle data set at each time step.
Since we iterated the template five times, the total data
size written was approximately 550 Mbytes:

4.2.1. Results for FUN3D

Fig. 16 shows the bandwidth to import and partition
18 million edges, four data sets each of 144 Mbytes of
data associated with edges, and another four data sets
each of 21 Mbytes of data associated with nodes. The
original version of the application—without using
SDM—performs all the I/O operations by a single
process (process 0), which then broadcasts data to other
processes. SDM performs I/O in parallel from all
processes using MPI-IO. The bar labeled index distri

in Fig. 16 shows the communication and computation
costs to partition the edges after importing them to the
application. The bar labeled import shows the cost of
reading the edges and eight data arrays.
The original application reads the edges in two steps:

one step to determine the amount of memory to store
the partitioned edges and the other step to actually read
the edges. SDM, however, extends the allocated memory
dynamically as needed (using C function realloc) and

is therefore able to read the partitioned edges in a single
step. This contributes to the reduced cost of index

distri when using SDM. When partitioning the edges
with a history file, the cost of index distri is nothing
but reading the history file of the edges in a contiguous
way, including the database cost to access the metadata.
Since the history file contains the already partitioned
edges, there is no need to import the edges; hence, the
read cost in import is reduced.
Fig. 17 shows the I/O bandwidth for writing and then

reading back the data generated from the application
using 64 processors. The total data size was approxi-
mately 379 Mbytes: In level 1, each data array is written
to separate files, resulting in the creation of 10 different
files. Each time the data array is written to files, level 1
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requires the cost for opening a file and defining an MPI-
IO file view to access the data from the portion of the file
pointed by the global file offset. In level 2, however, each
data array generated at each time step is appended in
five files, generating five file-open and file-view costs.
This reduced number of files improves the I/O perfor-
mance slightly. In level 3, only two files are generated,
resulting in the best I/O performance among the three
file organizations. The difference between three file
organizations is not significant because the file-open cost
is small on the SGI Origin2000.

4.2.2. Results of RT application

Fig. 18 shows the I/O bandwidth in the RT
application for writing approximately 550 Mbytes of
data. In the original application, the write operation is
performed sequentially. In other words, after seeking to
the starting position in a file, processes write their local
portion of data one by one. When we ported the
application to SDM, the I/O performance increased
significantly because of the parallel I/O optimizations of
MPI-IO.
In SDM, we wrote the node data set according to the

global node number of the partitioned nodes and wrote
the triangle data set contiguously. Since two data sets
are written to files separately, SDM supports two
different ways of file organization: level 1 and level 2/3
(levels 2 and 3 are identical in this case). When the
number of processors was increased from 32 to 64, but
the total data size remained constant, the I/O perfor-
mance declined. With 32 processors, the data size being
written at each time step was about 1 Mbyte for the
node data set and 2 Mbytes for the triangle data set.
When the number of processors was increased to 64, the
size of each I/O operation became smaller, reducing
performance.

5. Related work

Related work in this area falls into the categories of
I/O libraries and parallel file systems for high-perfor-
mance I/O and other libraries that aim to provide data-
management capabilities.
Several efforts have sought to optimize I/O in parallel

file systems and runtime libraries [4,6,7,17,21,23,27,
35,39]. SDM uses MPI-IO and parallel file systems to
access real data, and therefore SDM is a consumer of
the results of such research efforts as they become
available through MPI-IO implementations.
Other efforts provide data-management capability.

For example, HDF [44] and NetCDF [26] are popular
libraries for data management in scientific applications,
and they provide a self-describing data format. Storage
Resource Broker (SRB) [3] provides uniform interface to
access various storage systems, such as file systems,
Unitree, HPSS and database objects. Shoshani et al.
[36,37] describe an architecture to store large volumes of
scientific data on tertiary storage systems in a way that
the cost of data retrieval is minimized. The Active Data
Repository [22] and DataCutter [5] optimize storage,
retrieval, and processing of very large multidimensional
data sets.
The main differences between our work and the above

efforts are that we strive for performance in addition to
flexibility and that we aim to be general purpose, not
tied to a particular application or particular class of
applications. The technique we use of separating data
and metadata and storing the data in a parallel file
system and metadata in a database could be used to
implement other libraries, such as HDF and NetCDF,
and we plan to investigate that in the future.

6. Conclusions

We have presented the design and implementation of
an environment for high-performance scientific data
management, called Scientific Data Manager (SDM),
that is built on top of MPI-IO and also interacts with a
database for storing metadata. SDM provides a simple,
high-level interface and performs all necessary I/O
optimizations transparently to the user. We also
experimented with different ways of organizing data in
files, called level 1–level 3. In general, when file-open
cost on a particular file system is high, level 3 performs
well because it minimizes the number of files created. If
the file-open cost is small, the performance of the three
levels depends on how the number and size of files affect
performance on the particular file system. An appro-
priate file-organization policy can thereby be chosen for
a particular file system.
On the XFS file system, we found that the file-open

cost was so small that it did not significantly affect I/O
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performance. Instead, our experiment focused on the
use of direct I/O and buffered I/O in the ASTRO3D
template. For writing data, we found that direct I/O
performed much better than buffered I/O by avoiding
the overhead of copying the data into the XFS buffer
cache and also because XFS allows direct writes to
proceed concurrently. For reading data, however,
buffered I/O performed better because of its read-ahead
policy.
We have also presented the SDM API and architec-

ture for I/O in irregular applications. Besides providing
an easy-to-use user interface for managing large data
sets, SDM uses the concept of a history file to optimize
the cost of the index distribution. We studied the
performance of SDM using two irregular applications:
FUN3D and RT. When we used SDM in both
applications, there was a significant improvement in
I/O performance compared with that of the original
applications. Also, we observed that using a history file
for the index distribution helped to reduce the computa-
tion and communication costs.
In the future, we plan to use SDM with more

applications and evaluate both the usability and
performance. We plan to refine the SDM API so that
it can be used on a wide range of applications. We plan
to study and improve the scalability of the system,
particularly the scalability of the metadata. We also plan
to investigate how our implementation approach could
be used to implement HDF and NetCDF and whether
such an approach would improve performance and
flexibility of those libraries.
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