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Figure 1: Components of the traditional analysis cy- 
cle. 

sets for restart, periodically writing snapshots of com- 
putations for subsequent visualization, and in many 
cases, data sets are so large that they reside on disk, 
so called, out-of-core applications. 

A large number of these applications are “irregular” 
applications, where accesses to data are performed 
through one or more level of indirections. Sparse ma- 
trix computations, particle codes, and many CFD ap- 
plications where geometries and meshes are described 
via indirections, exhibit these characteristics. In par- 
ticular, the predominantly unstructured-grid simula- 
tion applications on the ASCI (Accelerated Strategic 
Computing Initiative) platforms all need to read/write 
data according to some preset global ordering specified 
by the indirection. 

There are two reasons for supporting this “global 
sort” capability within an application: faster visual- 
ization and easier restart. In the tradition analysis 
cycle (Figure l), a simulation application reads in a 
mesh and decomposition map and outputs results for 
visualization. Although simulation applications have 
become massively parallel, mesh generation and visu- 
alization software have not. To circumvent their I/O 
problems, most applications currently simply output 
each processor-local mesh, corresponding to a data file 
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per processor, and rely on some sequential postpro- 
cessor to recombine the data files into a single data 
file corresponding to the global mesh. As the num- 
ber of processors scales (e.g., to more than 4500 on 
the ASCI/Red machine at Sandia National Labs), and 
the number of grid points being considered moves to 
the million-to-billion range, sequential recombination 
of the MBytes/Gbytes of data into the anticipated ter- 
abytes of data simply has to be abandoned. Thus, 
to accommodate the still-sequential nature of exist- 
ing mesh generation and visualization software, and 
to avoid the sequential data recombination bottleneck, 
we need to transfer data that logically correspond to 
the global mesh by performing the “global sort” within 
the simulation application. Additionally, even as the 
rest of the analysis cycle becomes more parallelized, 
we still need to address the issue of restart with a dif- 
ferent number of processors. By always maintaining 
the global-mesh data in some canonical ordering, we 
can avoid the explosive number of different file for- 
mats and share data among different platforms and 
processor configurations. 

For example, in many ASCI applications, we an- 
ticipate transferring between 1OOK to 2M bytes of 
data per processor(per variable) during the I/O phase 
of a 500- to 4000-processor job. To reach the de- 
sired, sustainable 1 GByte/second I/O bandwidth on 
ASCI/Red, the parallel file system requires transfer- 
ring of large blocks of data on the compute nodes, 
with stripe unit being 512 Kbyte. ASCI/Red provides 
18 I/O nodes to service the I/O requests of approxi- 
mately 4500 compute nodes. Clearly, we cannot sim- 
ply rely on the traditional method of “staging” the I/O 
requests whereby only a group of processors performs 
I/O while others idle, because the data for each proces- 
sor is in general noncontiguous within the global data 
file, and this will generate large amounts of small data 
requests. To enable large data block transfers, some 
more sophisticated form of collective I/O is needed. 

In this paper we present the design and implemen- 
tation of a high-performance runtime system for which 
can support all of the types of I/O listed above on 
large-scale systems. In particular, the system enables 
accessing irregular data sets; that is, data sets that 
are accessed via indirections. The data is reorganized 
(sorted) on the fly to eliminate postprocessing time. 
In this method, the requesting processors cooperate 
in reading or writing data-a process known as collec- 
tive I/O, first proposed in general [2, 4, 5, lo]. Specif- 
ically, processors cooperate to combine several I/O re- 
quests into fewer larger granularity requests, reorder 
requests so that the file is accessed in proper sequence, 

and eliminate simultaneous I/O requests for the same 
data. In addition, I/O workload is partitioned among 
processors dynamically in a balanced fashion. 

The rest of the paper is organized as follows. In 
Section 2, we present the problem description and de- 
sign considerations for parallel I/O library to support 
irregular computations and on-the-fly reorganization 
of data. Section 3 presents two collective I/O tech- 
niques. Section 4 presents performance results and 
various tradeoffs observed when evaluated on large 
systems; specifically on the Intel Paragon machine at 
Caltech and Sandia National Labs. Section 5 contains 
summary and conclusions. 

2 Design Considerations 
2.1 Preliminaries 

In this paper, computations in which data accesses 
are performed through a level of indirection are con- 
sidered irregular computations. Many scientific appli- 
cations make extensive use of indirection arrays. Ex- 
amples include Computational Fluid Dynamics Codes 
(CFD), Particle Codes, Finite Element Codes etc. 
The domain of these problems is normally irregular 
describing, for example, a physical structure, which is 
discretized. Figure 2 illustrates an irregular loop [3, 71. 
This example shows the code that sweeps over nedge 
mesh edges. Arrays x and y are data arrays. Loop it- 
eration i carries out a computation involving the edge 
that connects vertices edgel and edgeZ(i). Arrays 
such as edge1 and edge2 which are used to index data 
arrays are called indirection arrays. 

do n = 1, n-step 
. . . 

do i = 1, nedge 
x(edgel(i)) = x(edgel(i)) + y(edge2(i)) 
x(edge2(i)) = x(edge2(i)) + y(edgel(i)) 

end do 
. . . 
end do 

Figure 2: An Example with an Irregular Loop. 

2.2 Abstraction 
This problem can be abstracted into the one shown 

in Figure 3. We assume that data is distributed using 
some partitioning scheme (which may be application 
dependent). On each node, there is an indirection ar- 
ray which describes the location of the corresponding 
data element in a global array. For example, in Fig- 
ure 3, processor 0 accesses D(IO), D(L$), D(I5), D(IZ), 
processor 1 accesses D(I7), D(B), D(I6), D(I9), etc. 
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Figure 3: Local and Global View of Data and Indirec- 
tion Arrays 

The objective 01 the I/O library is to read data 
from files or write data into files using a high-level in- 
terface in the order j mposed by the global array. There 
are several characteristics to be considered to develop 
an I/O library to support irregular problems [S]. One 
characteristic of irrc gular problems is that it often gen- 
erates fine-grained data distribution requiring access 
to non-contiguous locations in global array. Therefore, 
appropriate collective I/O method is necessary to ob- 
tain high I/O performance. Another characteristic is 
that irregular problems often generate small messages. 
This communicaticn pattern results in poor perfor- 
mance on message-passing machines favoring large- 
sized messages. 

The design of the collective I/O library function is 
based on the two-phase I/O strategies [2, lo]. The 
basic idea behind i wo-phase collective I/O is at run- 
time to reorder th: access patterns seen by the I/O 
system such that the patterns are optimized. In other 
words, large numb6 r of small and disjoint I/O requests 
are converted into small number and large contiguous 
requests. This oplimization incurs costs in terms of 
additional communication and buffer space require- 
ments. However , since communication speed is nor- 
mally several orde: of magnitude faster than the I/O 
speeds, the additional cost is much smaller than the 
reduction in the I/i1 cost. Several factors must be con- 
sidered in the design of a library based on this tech- 
nique. These inchide buffer size used by the library, 
communication schedule construction and reorganiza- 
tion, the number cf processors participating in I/O at 
any time, and sckeduling of I/O requests. In addi- 
tion, for irregular computations, since data accesses 
are performed usir.g a level of indirection, the number 
of passes through the data sets to compute schedule 

Figure 4: Schedule construction 

and reorganize data also are important. In the fol- 
lowing sections, we present two design alternatives for 
collective I/O operations. 

3 Design of Collective I/O Operations 
In the following two subsections, we present the de- 

sign of two alternative schemes for collective I/O. The 
first scheme is called “Collective I/O” and the sec- 
ond scheme is called “Pipelined Collective I/O”. The 
rationale for the two designs and the differences will 
become clear in the following. 
3.1 Collective I/O 

This design involves three basic steps. 1) Sched- 
ule construction, 2) reading data from files; and 3) 
redistributing data into appropriate locations of each 
processor. In the write operation, redistribution step 
precedes the file write step. Each of these steps con- 
sists of several phases, which are described below. 

3.1.1 Schedule Construction 

Schedule describes the communication pattern and 
I/O required for each node participating in the system. 
For regular multidimensional arrays, the accesses can 
be described using regular section descriptors. Access 
and communication schedule can be built based upon 
just this information. On the other hand, when indi- 
rection arrays are involved to reference data array, the 
indirection arrays must be scanned to consider each el- 
ement of the array individually to determine its place 
in the global array as well as its destination processor 
for communication. 

Figure 4 illustrates the information stored in sched- 
ule information. Several factors affect the schedule 
construction in particular, and overall I/O library de- 
sign and performance in general. These include the 
following. 1) Chunk Size, which is the amount of 
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buffer space available to the runtime library for the 
I/O operations. For example, if the total size of the 
data per processor to be read/written is 8 MB and the 
chunk size is 2MB, then the I/O operation will require 
four iterations to complete. A schedule must be built 
for each of these iterations. 2) Number of processors 
involved in I/O, which determines the communication 
among processors to redistribute data. Figure 4 briefly 
describes the steps involved in computing schedule in- 
formation. 

e Based upon the chunk size, each processor is as- 
signed a data domain for which it is responsi- 
ble for reading or writing. For example, if there 
are four processors and total 16 elements to be 
read/written with a buffer space of two elements 
on each processor, the chunk size(tota1) is 8 el- 
ements. Processor 0 will be responsible for ele- 
ments 0,l and 8,9, processor 1 will be responsi- 
ble for elements 2,3 and lO,ll, and so on. For a 
chunk, each processor computes its part to read or 
write data while balancing I/O workload. Next, 
with each index value in its local memory, proces- 
sor first decides from which chunk the appropriate 
data must be accessed and then determines which 
processor is responsible for reading the data from 
or writing the data to the chunk. 

l Index values in the local memory are rearranged 
into the reordered-indirection array based on the 
order of destination processors to receive them. 
Therefore, we can communicate consecutive el- 
ements between processors(communication coa- 
lescing) . 

Note that once it is constructed, the schedule informa- 
tion can be used repeatedly in the irregular problems 
whose access pattern does not change during compu- 
tation. 

3.1.2 Parallel Collective Read/Write Opera- 
tions 

A processor involved in the computation is also re- 
sponsible for reading data from files or writing data 
into files. Let D bytes be the total size of data and P 
be the number of processors. If the size of data chunk 
is the same as the total size of data, each processor 
then reads D/P bytes of data from the file and dis- 
tributes it among processors based on schedule infor- 
mation. In case of writing, each processor collects D/P 
bytes of data from other processors and then writes it 
to the file. By performing I/O this way, the workload 
can be evenly balanced across processors. Figure 5 

Figure 5: Parallel Collective Read Operation 

Figure 6: Parallel Collective Write Operation 

and Figure 6 represent the overall designs for Parallel 
Collective I/O. 

3.2 Pipelined Collective I/O 
In the previous approach, all processors issue I/O 

requests to the I/O system simultaneously. As a re- 
sult, contention at the I/O system may occur for a 
large number of compute nodes. This is particularly 
possible in a parallel machine where the number of 
I/O nodes and disks are unbalanced with respect to 
the number of compute nodes. In the pipelined collec- 
tive I/O, we divide processors into multiple processor 
groups. Only processors in a group issue I/O request 
simultaneously to reduce disk contention. The expec- 
tation is that while one group of processors is per- 
forming I/O operation, another group performs com- 
munication in order to collect(redistribute) data for 
write(read) operation. Thus, if there are G groups, 
then there will be G interleaved communication and 
I/O steps, where in step g, 0 _< g < G, group g is 
responsible for the I/O operation. 
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Figure 7: Parallel Pipelined Read Operation 

Figures 7 - 8 il ustrates the steps involved in the 
pipelined collective I/O operation. This also permits 
one group to perform asynchronous I/O while com- 
munication for ant ther group is taking place, thereby 
making it possible 50 overlap I/O and communication. 
Consider the illustl.ation shown in Figure 8. Note that 
schedule for a write operation is constructed as be- 
fore, except that I here is a schedule for each group. 
From Figure 8, it .s clear that there are four distinct 
steps. Communication is performed for the first group 
to collect data in i ;s data domain. Then processors in 
the first group issue write requests to the I/O system. 
While this write is being performed, communication 
for the second group takes place. This process contin- 
ues until all groups have performed their write oper- 
ation. This entire process repeats if the chunk size is 
less than the amount of the data to be read/written. 
For example, if tie amount of data to be written is 
1Mbyte per processor, and if the buffer space available 
$0 each processor is only 0.5Mbyte, then two iterations 
of the group write operation will be performed. We 
discuss these tradeoffs in the next section where we 
present performance results. 

4 Performance Evaluation 
We ran our experiments on the Intel Paragon ma- 

chine at Caltech called TREX. TREX is a 550 node 
Paragon XP/S with 448 GP (with 32MB memory), 86 
MP (with 64MB .nemory) nodes [I]. We performed 
our experiments cn 64 and 128 compute nodes. The 
partition uses 16 1/O servers, each with 64MB mem- 
ory and a 4GB Iseagate disk, with listed SMB/sec 
peak speed. The parameters considered for perfor- 
mance evaluation include a) number of processors, 
b) chunk size, which represents the amount of buffer 
space available to the runtime library, c) stripe unit, 
representing the :,mount of logically contiguous data 

Figure 8: Parallel Pipelined Write Operation 

Figure 9: Application B/W for Collective I/O Oper- 
ations. The first graph shows the application B/W 
with 128 compute nodes on 512MB of data size. The 
second graph shows the application B/W with 64 com- 
pute nodes on 256MB of data size. Each processor 
has 2MB of indirection array in its local memory. The 
stripe units (S.U.) are 64KB and 256KB respectively. 

read/written from each I/O node, and d) number of 
processor groups (for the pipelined collective I/O im- 
plementation). 
4.1 Overall I/O Bandwidth 

First set of results show the overall I/O bandwidth 
observed at the application level. In other words, it 
is a measure of the duration of time from the library 
function call until its completion. Note that when data 
is written, it is globally sorted before actually being 
stored, and when it is read, it is reordered and re- 
distributed according to the distribution specified by 
the indirection arrays. That is, the bandwidth mea- 
sure takes into account communication, computation 
overhead and the actual I/O operation. 

Figure 9 shows results by varying different param- 
eters for the collective I/O operations. Clearly, as ex- 
pected, the observed bandwidth increases as the chunk 
size is increased because larger buffers are used. Stripe 
size of 256K consistently produces better performance 
for write operations, and it performs better for read 
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Figure 10: Application B/W for Pipelined Collective 
I/O Operations. The first graph shows the applica- 
tion B/W of Pipelined Collective Read. The second 
graph shows the application B/W of Pipelined Col- 
lective Write. The total data size is 512MB with 128 
compute nodes. Each processor has 2MB of indirec- 
tion array in its local memory. The stripe units (S.U.) 
are 64KB and 256KB respectively. 

operations when the chunk size is large. This is ob- 
served for both 64 and 128 processor cases. Through 
various experiments we determined that 256K stripe 
unit provided better results than those for smaller and 
larger stripe units (of up to 1M) on this machine. In 
the latter case, concurrency in I/O is reduced and 
communication messages become too large. 

Figure 10 shows the corresponding results for the 
pipelined collective I/O implementation. It should be 
noted that in order to fairly compare two different 
group size’s performance, buffer space per node was 
kept constant so that the overall buffer space avail- 
able to the library function remains the same. Fig- 
ure 10 shows performance results for number of groups 
4 (group size 32 processors) and 8 (group size 16 pro- 
cessors). Comparing Figures 9 and 10, it is clear that 4 
groups with 256K stripe unit performance the best for 
write operations, giving almost 40 MB/set application 
level bandwidth. Furthermore, it can be observed that 
there exists a tradeoff in the number of processors per 
group. Figure 11 compares 2 and 4 processor groups 
for 64 processor configuration, and similar tradeoffs 
exist as before. 

Figure 12 shows that there is a tradeoff in vary- 
ing the number of processor groups and the number 
of processors per group. It also shows that optimal 
points may exist for best performance, but we believe 
more experiments need to be performed to determine 
them. 

4.2 Performance of the Components 
So far we considered the overall performance using 

the observed I/O bandwidth as the measure (which is 
the most important from a user’s perspective in addi- 
tion to the ease of use). From the design perspective, 

Figure 11: Application B/W for Pipelined Collective 
I/O Operations. The first graph shows the applica- 
tion B/W of Pipelined Collective Read. The second 
graph shows the application B/W of Pipelined Col- 
lective Write. The total data size is 256MB with 64 
compute nodes. Each processor has 2MB of indirec- 
tion array in its local memory. The stripe units (S.U.) 
are 64KB and 256KB, respectively. 

Figure 12: Application B/W for Pipelined Collective 
I/O Operations as a function of processor groups. The 
first group shows the application B/W of Pipelined 
Collective I/O with 128 compute nodes on the 512MB 
of data size. The second group shows the applica- 
tion B/W of Pipelined Collective I/O with 64 compute 
nodes on the 256MB of data size. Each processor has 
4MB of chunk size and 2MB of indirection array. The 
stripe units (S.U.) are 64KB and 256KB respectively. 

the behavior of the components, such as I/O opera- 
tions, communication overhead for sort and reorgani- 
zation, and computation overhead for reordering data 
and housekeeping operations are important. These 
provide insight into possible improvement in each com- 
ponent’s performance. 

Figures 13 - 14 show a subset of performance re- 
sults for different components for collective I/O and 
pipelined collective I/O operations, respectively. From 
Figure 9 we earlier observed that for a write opera- 
tion, large chunk size always results in better I/O and 
communication performance, where as for a read op- 
eration that is true for the most part except for those 
cases where the chunk size is large. Large chunk size 
results in comparatively poorer performance for read 
operations because messages become very large and 
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Figure 13: Breakdow of total execution time (in sec.) 
for Collective I/O 0 erations as a function of chunk 
size. The first graph : hows the breakdown of execution 
time of Collective Re d with 64KB of stripe unit. and 

I 

the second graph sh ws the breakdown of execution 
time of Collective W rite with 256KB of stripe unit. 
Total data size is 512 B and the number of processors 
is 128. 

Figure 14: Breakdown of total execution time (in sec.) 
for Pipelined Collective I/O Operations as a function 
of chunk size. The rrst graph shows the breakdown 
of execution time o: Pipelined Collective Read with 
4 processor groups (tnd and the second graph shows 
the breakdown of execution time of Pipelined Collec- 
tive Write with 4 processor groups. Total data size 
is 512MB and the number of processors is 128. The 
stripe unit is 256KB. 

get blocked in the retwork. In the future, we plan 
to strip-mine commmication to determine if commu- 
nication overhead can be further reduced. Also, it 
is easier to improve communication performance be- 
cause networks are becoming faster (compared to the 
corresponding improvement in the I/O systems). In 
our experiments, tie data distribution did not have 
locality, that is, the data was uniformly and randomly 
distributed across p :ocessors. In general, applications 
use mappers using vihich data is distributed such that 
data locality is enhanced. That will reduce communi- 
cation requirements because a processor will commu- 
nicate only with a subset of other processors reducing 
communication traf”lc. In both cases, it is clear that 
performance impro\,ements can be obtained by reduc- 
ing both communication and I/O times. 

Figure 15: Application B/W for Pipelined Collec- 
tive I/O Operations based on the processor groups 
on ASCI/Red. The first graph shows the applica- 
tion B/W of Pipelined Collective I/O with 64 compute 
nodes on 256MB of data size. The second graph shows 
the application B/W of Pipelined Collective I/O with 
128 compute nodes on 512MB of data size. The stripe 
unit (S.U.) is 512KB. 

4.3 Performance on the ASCI/Red Ma- 
chine 

ASCI/Red machine is a Teraflop machine be- 
ing deployed at Sandia National Labs (a descrip- 
tion was provided earlier). Currently, only three 
I/O nodes’ are available, but each I/O node employs 
High-Performance RAID systems (unlike the Caltech 
paragon system used for earlier experiments where 
each I/O node has a disk). 

Figure 15 summarizes the application level band- 
width observed for the pipelined collective I/O imple- 
mentation. Again, bandwidth of up to GOMBytes/sec 
on three I/O nodes is observed. Also, the figure clearly 
illustrates than an optimal range of processor groups 
exists which provides the best performance. As the 
machine is upgraded with larger number of I/O nodes, 
we plan to conduct more experiments and present 
those results in the final version. 

5 Summary and Conclusions 
In this paper we presented a design of a runtime 

I/O library for large-scale irregular problems, such as 
those found in ASCI and other applications. The main 
idea is to reorder data on the fly so that it, is sorted 
before it is stored and reorganized before it is provided 
to processors for read operations. This eliminates ex- 
pensive post processing for both visualization as well 
as enables restarts on different number of processors 
by eliminating dependence of the checkpointed data 
on the number of processors that create it. JVe pre- 

lIn the next several months, ASCI/Red machine will be fzl!y 
developed with improvements in the file system as well as the 
addition of new I/O nodes. We will evaluate the performances 
on a large configuration and present these results in the final 
version. 
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sented two designs for collective I/O for read/write 
operations. First design involves all processors simul- 
taneously in an I/O operation while in the second case, 
I/O is pipelined with communication. Preliminary re- 
sults show that good performance can be obtained on 
a large number of processors. Clear tradeoffs exist 
for different parameters including buffer space, num- 
ber of processor groups, stripe unit etc. We presented 
performance results on both Intel Paragon at Caltech 
and Sandia National Lab’s ASCI/Red machines. We 
were able to obtain application level bandwidth of up 
to GOMB/sec. There are many performance improve- 
ments possible, which we intend to develop in the fu- 
ture. 
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