
Techniql es to provide Run-Time Support for solving Irregular
t Problems *

1 Jaechun No

jno@ece.nwu.edu
Electrical Engineering and Computer Science

Syracuse University

resent a runtime library design
I/O technique for ir-

regular application. The design is motivated by the
requirements of a e number of ASCI (Accelerated
Strategic Computir iative) applications, although
the design and intc general enough to be used

ions. We present two de-
and “Pipelined Col-

lective I/O”. In tl scheme, all processors par-
ticipate in the I/O same time, making schedul-
ing of I/O requests r but creating a possibility of
contention at the 1 des. In the second approach,
processors are grou veral groups, so that only
one group perform: ltaneously, while the next
group performs co7 nication to rearrange data, and
this entire process pipelined. This reduces the con-

to 40 MBytes/set.
rmance on the Caltech’s Intel

Paragon (with 16 1 nodes, each containing one disk)

1 Introducti

tations in physics chemistry, biology, engineering,
medicine, and 0th sciences. Most of these applica-

plications involve different types

award AV-6193

Alok Choudhary

choudhar@ece.nwu.edu
Electrical and Computer Engineering

Northwestern University

Domain

Figure 1: Components of the traditional analysis cy-
cle.

sets for restart, periodically writing snapshots of com-
putations for subsequent visualization, and in many
cases, data sets are so large that they reside on disk,
so called, out-of-core applications.

A large number of these applications are “irregular”
applications, where accesses to data are performed
through one or more level of indirections. Sparse ma-
trix computations, particle codes, and many CFD ap-
plications where geometries and meshes are described
via indirections, exhibit these characteristics. In par-
ticular, the predominantly unstructured-grid simula-
tion applications on the ASCI (Accelerated Strategic
Computing Initiative) platforms all need to read/write
data according to some preset global ordering specified
by the indirection.

There are two reasons for supporting this “global
sort” capability within an application: faster visual-
ization and easier restart. In the tradition analysis
cycle (Figure l), a simulation application reads in a
mesh and decomposition map and outputs results for
visualization. Although simulation applications have
become massively parallel, mesh generation and visu-
alization software have not. To circumvent their I/O
problems, most applications currently simply output
each processor-local mesh, corresponding to a data file

73
O-8186-8227-2/97 $lOl.OO 0 1997 IEEE

Proceedings of the 1997 International Conference on Parallel and Distributed Systems (ICPADS '97)
0-8186-8227-2/97 $10.00 © 1997 IEEE

per processor, and rely on some sequential postpro-
cessor to recombine the data files into a single data
file corresponding to the global mesh. As the num-
ber of processors scales (e.g., to more than 4500 on
the ASCI/Red machine at Sandia National Labs), and
the number of grid points being considered moves to
the million-to-billion range, sequential recombination
of the MBytes/Gbytes of data into the anticipated ter-
abytes of data simply has to be abandoned. Thus,
to accommodate the still-sequential nature of exist-
ing mesh generation and visualization software, and
to avoid the sequential data recombination bottleneck,
we need to transfer data that logically correspond to
the global mesh by performing the “global sort” within
the simulation application. Additionally, even as the
rest of the analysis cycle becomes more parallelized,
we still need to address the issue of restart with a dif-
ferent number of processors. By always maintaining
the global-mesh data in some canonical ordering, we
can avoid the explosive number of different file for-
mats and share data among different platforms and
processor configurations.

For example, in many ASCI applications, we an-
ticipate transferring between 1OOK to 2M bytes of
data per processor(per variable) during the I/O phase
of a 500- to 4000-processor job. To reach the de-
sired, sustainable 1 GByte/second I/O bandwidth on
ASCI/Red, the parallel file system requires transfer-
ring of large blocks of data on the compute nodes,
with stripe unit being 512 Kbyte. ASCI/Red provides
18 I/O nodes to service the I/O requests of approxi-
mately 4500 compute nodes. Clearly, we cannot sim-
ply rely on the traditional method of “staging” the I/O
requests whereby only a group of processors performs
I/O while others idle, because the data for each proces-
sor is in general noncontiguous within the global data
file, and this will generate large amounts of small data
requests. To enable large data block transfers, some
more sophisticated form of collective I/O is needed.

In this paper we present the design and implemen-
tation of a high-performance runtime system for which
can support all of the types of I/O listed above on
large-scale systems. In particular, the system enables
accessing irregular data sets; that is, data sets that
are accessed via indirections. The data is reorganized
(sorted) on the fly to eliminate postprocessing time.
In this method, the requesting processors cooperate
in reading or writing data-a process known as collec-
tive I/O, first proposed in general [2, 4, 5, lo]. Specif-
ically, processors cooperate to combine several I/O re-
quests into fewer larger granularity requests, reorder
requests so that the file is accessed in proper sequence,

and eliminate simultaneous I/O requests for the same
data. In addition, I/O workload is partitioned among
processors dynamically in a balanced fashion.

The rest of the paper is organized as follows. In
Section 2, we present the problem description and de-
sign considerations for parallel I/O library to support
irregular computations and on-the-fly reorganization
of data. Section 3 presents two collective I/O tech-
niques. Section 4 presents performance results and
various tradeoffs observed when evaluated on large
systems; specifically on the Intel Paragon machine at
Caltech and Sandia National Labs. Section 5 contains
summary and conclusions.

2 Design Considerations
2.1 Preliminaries

In this paper, computations in which data accesses
are performed through a level of indirection are con-
sidered irregular computations. Many scientific appli-
cations make extensive use of indirection arrays. Ex-
amples include Computational Fluid Dynamics Codes
(CFD), Particle Codes, Finite Element Codes etc.
The domain of these problems is normally irregular
describing, for example, a physical structure, which is
discretized. Figure 2 illustrates an irregular loop [3, 71.
This example shows the code that sweeps over nedge
mesh edges. Arrays x and y are data arrays. Loop it-
eration i carries out a computation involving the edge
that connects vertices edgel and edgeZ(i). Arrays
such as edge1 and edge2 which are used to index data
arrays are called indirection arrays.

do n = 1, n-step
. . .

do i = 1, nedge
x(edgel(i)) = x(edgel(i)) + y(edge2(i))
x(edge2(i)) = x(edge2(i)) + y(edgel(i))

end do
. . .
end do

Figure 2: An Example with an Irregular Loop.

2.2 Abstraction
This problem can be abstracted into the one shown

in Figure 3. We assume that data is distributed using
some partitioning scheme (which may be application
dependent). On each node, there is an indirection ar-
ray which describes the location of the corresponding
data element in a global array. For example, in Fig-
ure 3, processor 0 accesses D(IO), D(L$), D(I5), D(IZ),
processor 1 accesses D(I7), D(B), D(I6), D(I9), etc.

74

Proceedings of the 1997 International Conference on Parallel and Distributed Systems (ICPADS '97)
0-8186-8227-2/97 $10.00 © 1997 IEEE

Figure 3: Local and Global View of Data and Indirec-
tion Arrays

The objective 01 the I/O library is to read data
from files or write data into files using a high-level in-
terface in the order j mposed by the global array. There
are several characteristics to be considered to develop
an I/O library to support irregular problems [S]. One
characteristic of irrc gular problems is that it often gen-
erates fine-grained data distribution requiring access
to non-contiguous locations in global array. Therefore,
appropriate collective I/O method is necessary to ob-
tain high I/O performance. Another characteristic is
that irregular problems often generate small messages.
This communicaticn pattern results in poor perfor-
mance on message-passing machines favoring large-
sized messages.

The design of the collective I/O library function is
based on the two-phase I/O strategies [2, lo]. The
basic idea behind i wo-phase collective I/O is at run-
time to reorder th: access patterns seen by the I/O
system such that the patterns are optimized. In other
words, large numb6 r of small and disjoint I/O requests
are converted into small number and large contiguous
requests. This oplimization incurs costs in terms of
additional communication and buffer space require-
ments. However , since communication speed is nor-
mally several orde: of magnitude faster than the I/O
speeds, the additional cost is much smaller than the
reduction in the I/i1 cost. Several factors must be con-
sidered in the design of a library based on this tech-
nique. These inchide buffer size used by the library,
communication schedule construction and reorganiza-
tion, the number cf processors participating in I/O at
any time, and sckeduling of I/O requests. In addi-
tion, for irregular computations, since data accesses
are performed usir.g a level of indirection, the number
of passes through the data sets to compute schedule

Figure 4: Schedule construction

and reorganize data also are important. In the fol-
lowing sections, we present two design alternatives for
collective I/O operations.

3 Design of Collective I/O Operations
In the following two subsections, we present the de-

sign of two alternative schemes for collective I/O. The
first scheme is called “Collective I/O” and the sec-
ond scheme is called “Pipelined Collective I/O”. The
rationale for the two designs and the differences will
become clear in the following.
3.1 Collective I/O

This design involves three basic steps. 1) Sched-
ule construction, 2) reading data from files; and 3)
redistributing data into appropriate locations of each
processor. In the write operation, redistribution step
precedes the file write step. Each of these steps con-
sists of several phases, which are described below.

3.1.1 Schedule Construction

Schedule describes the communication pattern and
I/O required for each node participating in the system.
For regular multidimensional arrays, the accesses can
be described using regular section descriptors. Access
and communication schedule can be built based upon
just this information. On the other hand, when indi-
rection arrays are involved to reference data array, the
indirection arrays must be scanned to consider each el-
ement of the array individually to determine its place
in the global array as well as its destination processor
for communication.

Figure 4 illustrates the information stored in sched-
ule information. Several factors affect the schedule
construction in particular, and overall I/O library de-
sign and performance in general. These include the
following. 1) Chunk Size, which is the amount of

75

Proceedings of the 1997 International Conference on Parallel and Distributed Systems (ICPADS '97)
0-8186-8227-2/97 $10.00 © 1997 IEEE

buffer space available to the runtime library for the
I/O operations. For example, if the total size of the
data per processor to be read/written is 8 MB and the
chunk size is 2MB, then the I/O operation will require
four iterations to complete. A schedule must be built
for each of these iterations. 2) Number of processors
involved in I/O, which determines the communication
among processors to redistribute data. Figure 4 briefly
describes the steps involved in computing schedule in-
formation.

e Based upon the chunk size, each processor is as-
signed a data domain for which it is responsi-
ble for reading or writing. For example, if there
are four processors and total 16 elements to be
read/written with a buffer space of two elements
on each processor, the chunk size(tota1) is 8 el-
ements. Processor 0 will be responsible for ele-
ments 0,l and 8,9, processor 1 will be responsi-
ble for elements 2,3 and lO,ll, and so on. For a
chunk, each processor computes its part to read or
write data while balancing I/O workload. Next,
with each index value in its local memory, proces-
sor first decides from which chunk the appropriate
data must be accessed and then determines which
processor is responsible for reading the data from
or writing the data to the chunk.

l Index values in the local memory are rearranged
into the reordered-indirection array based on the
order of destination processors to receive them.
Therefore, we can communicate consecutive el-
ements between processors(communication coa-
lescing) .

Note that once it is constructed, the schedule informa-
tion can be used repeatedly in the irregular problems
whose access pattern does not change during compu-
tation.

3.1.2 Parallel Collective Read/Write Opera-
tions

A processor involved in the computation is also re-
sponsible for reading data from files or writing data
into files. Let D bytes be the total size of data and P
be the number of processors. If the size of data chunk
is the same as the total size of data, each processor
then reads D/P bytes of data from the file and dis-
tributes it among processors based on schedule infor-
mation. In case of writing, each processor collects D/P
bytes of data from other processors and then writes it
to the file. By performing I/O this way, the workload
can be evenly balanced across processors. Figure 5

Figure 5: Parallel Collective Read Operation

Figure 6: Parallel Collective Write Operation

and Figure 6 represent the overall designs for Parallel
Collective I/O.

3.2 Pipelined Collective I/O
In the previous approach, all processors issue I/O

requests to the I/O system simultaneously. As a re-
sult, contention at the I/O system may occur for a
large number of compute nodes. This is particularly
possible in a parallel machine where the number of
I/O nodes and disks are unbalanced with respect to
the number of compute nodes. In the pipelined collec-
tive I/O, we divide processors into multiple processor
groups. Only processors in a group issue I/O request
simultaneously to reduce disk contention. The expec-
tation is that while one group of processors is per-
forming I/O operation, another group performs com-
munication in order to collect(redistribute) data for
write(read) operation. Thus, if there are G groups,
then there will be G interleaved communication and
I/O steps, where in step g, 0 _< g < G, group g is
responsible for the I/O operation.

76

Proceedings of the 1997 International Conference on Parallel and Distributed Systems (ICPADS '97)
0-8186-8227-2/97 $10.00 © 1997 IEEE

Figure 7: Parallel Pipelined Read Operation

Figures 7 - 8 il ustrates the steps involved in the
pipelined collective I/O operation. This also permits
one group to perform asynchronous I/O while com-
munication for ant ther group is taking place, thereby
making it possible 50 overlap I/O and communication.
Consider the illustl.ation shown in Figure 8. Note that
schedule for a write operation is constructed as be-
fore, except that I here is a schedule for each group.
From Figure 8, it .s clear that there are four distinct
steps. Communication is performed for the first group
to collect data in i ;s data domain. Then processors in
the first group issue write requests to the I/O system.
While this write is being performed, communication
for the second group takes place. This process contin-
ues until all groups have performed their write oper-
ation. This entire process repeats if the chunk size is
less than the amount of the data to be read/written.
For example, if tie amount of data to be written is
1Mbyte per processor, and if the buffer space available
$0 each processor is only 0.5Mbyte, then two iterations
of the group write operation will be performed. We
discuss these tradeoffs in the next section where we
present performance results.

4 Performance Evaluation
We ran our experiments on the Intel Paragon ma-

chine at Caltech called TREX. TREX is a 550 node
Paragon XP/S with 448 GP (with 32MB memory), 86
MP (with 64MB .nemory) nodes [I]. We performed
our experiments cn 64 and 128 compute nodes. The
partition uses 16 1/O servers, each with 64MB mem-
ory and a 4GB Iseagate disk, with listed SMB/sec
peak speed. The parameters considered for perfor-
mance evaluation include a) number of processors,
b) chunk size, which represents the amount of buffer
space available to the runtime library, c) stripe unit,
representing the :,mount of logically contiguous data

Figure 8: Parallel Pipelined Write Operation

Figure 9: Application B/W for Collective I/O Oper-
ations. The first graph shows the application B/W
with 128 compute nodes on 512MB of data size. The
second graph shows the application B/W with 64 com-
pute nodes on 256MB of data size. Each processor
has 2MB of indirection array in its local memory. The
stripe units (S.U.) are 64KB and 256KB respectively.

read/written from each I/O node, and d) number of
processor groups (for the pipelined collective I/O im-
plementation).
4.1 Overall I/O Bandwidth

First set of results show the overall I/O bandwidth
observed at the application level. In other words, it
is a measure of the duration of time from the library
function call until its completion. Note that when data
is written, it is globally sorted before actually being
stored, and when it is read, it is reordered and re-
distributed according to the distribution specified by
the indirection arrays. That is, the bandwidth mea-
sure takes into account communication, computation
overhead and the actual I/O operation.

Figure 9 shows results by varying different param-
eters for the collective I/O operations. Clearly, as ex-
pected, the observed bandwidth increases as the chunk
size is increased because larger buffers are used. Stripe
size of 256K consistently produces better performance
for write operations, and it performs better for read

, 77

Proceedings of the 1997 International Conference on Parallel and Distributed Systems (ICPADS '97)
0-8186-8227-2/97 $10.00 © 1997 IEEE

Figure 10: Application B/W for Pipelined Collective
I/O Operations. The first graph shows the applica-
tion B/W of Pipelined Collective Read. The second
graph shows the application B/W of Pipelined Col-
lective Write. The total data size is 512MB with 128
compute nodes. Each processor has 2MB of indirec-
tion array in its local memory. The stripe units (S.U.)
are 64KB and 256KB respectively.

operations when the chunk size is large. This is ob-
served for both 64 and 128 processor cases. Through
various experiments we determined that 256K stripe
unit provided better results than those for smaller and
larger stripe units (of up to 1M) on this machine. In
the latter case, concurrency in I/O is reduced and
communication messages become too large.

Figure 10 shows the corresponding results for the
pipelined collective I/O implementation. It should be
noted that in order to fairly compare two different
group size’s performance, buffer space per node was
kept constant so that the overall buffer space avail-
able to the library function remains the same. Fig-
ure 10 shows performance results for number of groups
4 (group size 32 processors) and 8 (group size 16 pro-
cessors). Comparing Figures 9 and 10, it is clear that 4
groups with 256K stripe unit performance the best for
write operations, giving almost 40 MB/set application
level bandwidth. Furthermore, it can be observed that
there exists a tradeoff in the number of processors per
group. Figure 11 compares 2 and 4 processor groups
for 64 processor configuration, and similar tradeoffs
exist as before.

Figure 12 shows that there is a tradeoff in vary-
ing the number of processor groups and the number
of processors per group. It also shows that optimal
points may exist for best performance, but we believe
more experiments need to be performed to determine
them.

4.2 Performance of the Components
So far we considered the overall performance using

the observed I/O bandwidth as the measure (which is
the most important from a user’s perspective in addi-
tion to the ease of use). From the design perspective,

Figure 11: Application B/W for Pipelined Collective
I/O Operations. The first graph shows the applica-
tion B/W of Pipelined Collective Read. The second
graph shows the application B/W of Pipelined Col-
lective Write. The total data size is 256MB with 64
compute nodes. Each processor has 2MB of indirec-
tion array in its local memory. The stripe units (S.U.)
are 64KB and 256KB, respectively.

Figure 12: Application B/W for Pipelined Collective
I/O Operations as a function of processor groups. The
first group shows the application B/W of Pipelined
Collective I/O with 128 compute nodes on the 512MB
of data size. The second group shows the applica-
tion B/W of Pipelined Collective I/O with 64 compute
nodes on the 256MB of data size. Each processor has
4MB of chunk size and 2MB of indirection array. The
stripe units (S.U.) are 64KB and 256KB respectively.

the behavior of the components, such as I/O opera-
tions, communication overhead for sort and reorgani-
zation, and computation overhead for reordering data
and housekeeping operations are important. These
provide insight into possible improvement in each com-
ponent’s performance.

Figures 13 - 14 show a subset of performance re-
sults for different components for collective I/O and
pipelined collective I/O operations, respectively. From
Figure 9 we earlier observed that for a write opera-
tion, large chunk size always results in better I/O and
communication performance, where as for a read op-
eration that is true for the most part except for those
cases where the chunk size is large. Large chunk size
results in comparatively poorer performance for read
operations because messages become very large and

78

Proceedings of the 1997 International Conference on Parallel and Distributed Systems (ICPADS '97)
0-8186-8227-2/97 $10.00 © 1997 IEEE

Figure 13: Breakdow of total execution time (in sec.)
for Collective I/O 0 erations as a function of chunk
size. The first graph : hows the breakdown of execution
time of Collective Re d with 64KB of stripe unit. and

I

the second graph sh ws the breakdown of execution
time of Collective W rite with 256KB of stripe unit.
Total data size is 512 B and the number of processors
is 128.

Figure 14: Breakdown of total execution time (in sec.)
for Pipelined Collective I/O Operations as a function
of chunk size. The rrst graph shows the breakdown
of execution time o: Pipelined Collective Read with
4 processor groups (tnd and the second graph shows
the breakdown of execution time of Pipelined Collec-
tive Write with 4 processor groups. Total data size
is 512MB and the number of processors is 128. The
stripe unit is 256KB.

get blocked in the retwork. In the future, we plan
to strip-mine commmication to determine if commu-
nication overhead can be further reduced. Also, it
is easier to improve communication performance be-
cause networks are becoming faster (compared to the
corresponding improvement in the I/O systems). In
our experiments, tie data distribution did not have
locality, that is, the data was uniformly and randomly
distributed across p :ocessors. In general, applications
use mappers using vihich data is distributed such that
data locality is enhanced. That will reduce communi-
cation requirements because a processor will commu-
nicate only with a subset of other processors reducing
communication traf”lc. In both cases, it is clear that
performance impro\,ements can be obtained by reduc-
ing both communication and I/O times.

Figure 15: Application B/W for Pipelined Collec-
tive I/O Operations based on the processor groups
on ASCI/Red. The first graph shows the applica-
tion B/W of Pipelined Collective I/O with 64 compute
nodes on 256MB of data size. The second graph shows
the application B/W of Pipelined Collective I/O with
128 compute nodes on 512MB of data size. The stripe
unit (S.U.) is 512KB.

4.3 Performance on the ASCI/Red Ma-
chine

ASCI/Red machine is a Teraflop machine be-
ing deployed at Sandia National Labs (a descrip-
tion was provided earlier). Currently, only three
I/O nodes’ are available, but each I/O node employs
High-Performance RAID systems (unlike the Caltech
paragon system used for earlier experiments where
each I/O node has a disk).

Figure 15 summarizes the application level band-
width observed for the pipelined collective I/O imple-
mentation. Again, bandwidth of up to GOMBytes/sec
on three I/O nodes is observed. Also, the figure clearly
illustrates than an optimal range of processor groups
exists which provides the best performance. As the
machine is upgraded with larger number of I/O nodes,
we plan to conduct more experiments and present
those results in the final version.

5 Summary and Conclusions
In this paper we presented a design of a runtime

I/O library for large-scale irregular problems, such as
those found in ASCI and other applications. The main
idea is to reorder data on the fly so that it, is sorted
before it is stored and reorganized before it is provided
to processors for read operations. This eliminates ex-
pensive post processing for both visualization as well
as enables restarts on different number of processors
by eliminating dependence of the checkpointed data
on the number of processors that create it. JVe pre-

lIn the next several months, ASCI/Red machine will be fzl!y
developed with improvements in the file system as well as the
addition of new I/O nodes. We will evaluate the performances
on a large configuration and present these results in the final
version.

19

Proceedings of the 1997 International Conference on Parallel and Distributed Systems (ICPADS '97)
0-8186-8227-2/97 $10.00 © 1997 IEEE

sented two designs for collective I/O for read/write
operations. First design involves all processors simul-
taneously in an I/O operation while in the second case,
I/O is pipelined with communication. Preliminary re-
sults show that good performance can be obtained on
a large number of processors. Clear tradeoffs exist
for different parameters including buffer space, num-
ber of processor groups, stripe unit etc. We presented
performance results on both Intel Paragon at Caltech
and Sandia National Lab’s ASCI/Red machines. We
were able to obtain application level bandwidth of up
to GOMB/sec. There are many performance improve-
ments possible, which we intend to develop in the fu-
ture.

References
[I] Rajesh Bordawekar. Implementation and evalua-

tion of collective i/o in the intel paragon parallel
file system. Technical report, California Institute
of Technology, November 1996.

[2] Rajesh Bordawekar, Juan Miguel de1 Rosario,
and Alok Choudhary. Design and evaluation of
primitives for parallel I/O. In Proceedings of Su-
percomputing ‘93, pages 452-461, 1993.

[3] Peter Brezany and Alok Choudhary. Techniques
and optimizations for developing irregular out-of-
core applications on distributed-memory systems.
Technical report, Institute for Software Technol-
ogy and Parallel Systems, University of Vienna,
November 1996.

[4] Alok Choudhary, Rajesh Bordawekar, Michael
Harry, Rakesh Krishnaiyer, Ravi Ponnusamy,
Tarvinder Singh, and Rajeev Thakur. PASSION:
parallel and scalable software for input-output.
Technical Report SCCS-636, ECE Dept., NPAC
and CASE Center, Syracuse University, Septem-
ber 1994.

[5] Alok Choudhary, Rajesh Bordawekar, Sachin
More, K. Sivaram, and Rajeev Thakur. PASSION
runtime library for the Intel Paragon. In Pro-
ceedings of the Intel Supercomputer User’s Group
Conference, June 1995.

[6] Juan Miguel de1 Rosario and Alok Choud-
hary. High performance I/O for parallel comput-
ers: Problems and prospects. IEEE Computer,
27(3):59-68, March 1994.

[7] R. Ponnusamy, Y.-S. Hwang, R. Das, J. Saltz,
A. Choudhary, and G. Fox. Supporting irregular
distributions in FORTRAN SOD/HPF compliers.

Technical report, University of Maryland, Syra-
cuse University, Spring 1995.

[8] R. Ponnusamy, J. Saltz, A. Choudhary, Y.-S.
Hwang, and G. Fox. Runtime-compilation tech-
niques for data partitioning and communication
schedule reuse. In Proc. of Supercomputing’93,
Portland, OR., November 1993.

[9] James T. Poole. Preliminary survey of I/O in-
tensive applications. Technical Report CCSF-38,
Scalable I/O Initiative, Caltech Concurrent Su-
percomputing Facilities, Caltech, 1994.

[lo] R. Thakur, A. Choudhary, R. Bordawekar,
S. More, and S. Kudatipidi. Passion: Optimized
i/o for parallel systems. IEEE Computer, June
1996.

80

Proceedings of the 1997 International Conference on Parallel and Distributed Systems (ICPADS '97)
0-8186-8227-2/97 $10.00 © 1997 IEEE

