
1

Delegation-based I/O Mechanism for High
Performance Computing Systems

Arifa Nisar, Wei-keng Liao and Alok Choudhary
Electrical Engineering and Computer Science Department Northwestern University

Evanston, Illinois 60208-3118
Email: {ani662,wkliao,choudhar}@ece.northwestern.edu

Abstract—Massively parallel applications often require peri-

odic data checkpointing for program restart and post-run data

analysis. Although high performance computing systems provide

massive parallelism and computing power to fulfill the crucial

requirements of the scientific applications, the I/O tasks of high-

end applications do not scale. Strict data consistency semantics

adopted from traditional file systems are inadequate for homo-

geneous parallel computing platforms. For high performance

parallel applications independent I/O is critical, particularly

if checkpointing data is dynamically created or irregularly

partitioned. In particular, parallel programs generating a large

number of unrelated I/O accesses on large scale systems often

face serious I/O serializations introduced by lock contention and

conflicts at file system layer. As these applications may not be able

to utilize the I/O optimizations requiring process synchronization,

they pose a great challenge for parallel I/O architecture and

software designs. We propose an I/O mechanism to bridge the

gap between scientific applications and parallel storage systems.

A static file domain partitioning method is developed to align the

I/O requests and produce a client-server mapping that minimizes

the file lock acquisition costs and eliminates the lock contention.

Our performance evaluations of production application I/O

kernels demonstrate scalable performance and achieve high I/O

bandwidths.

Index Terms—Parallel I/O, I/O Delegation, MPI-IO, Non

Collective I/O, Collaborative Caching, Parallel File Systems, File

Locking

I. INTRODUCTION

I/O architectures in modern high performance systems[1],
[2], [3] have been contrived such that the compute nodes
and storage servers are separated in groups and connected
through high speed networking devices. Data generated by
applications must pass through many abstraction layers of I/O
stack before reaching the storage devices. Figure 1 shows a
common perception of I/O stack. The best I/O throughput can
only be guaranteed if all of these layers are utilized to the
best of their capacities. Incidentally, most of these layers have
been designed independently, and hence certain information
that describes the I/O intention at one layer may not have
adequate interfaces to pass to another.

Modern parallel file systems are configured with multiple
I/O servers in order to provide high data throughput. Each
server may contain one or more disk RAIDs (Redundant Array
of Independent Disks) to further improve the data reliability
and performance. A file stored on the parallel file systems can
be partitioned across multiple servers so large requests can be
served by multiple servers simultaneously. However, evolving

Parallel Applications

ROMIO

MPI−IO

High Level I/O Library

Parallel File System

I/O Servers

Fig. 1. A Common Parallel I/O Architecture Stack: This figure explains
the way different I/O layers are commonly stacked one over another in large
scale parallel environments. High end application layer leverages its parallel
I/O related tasks directly or through a high level I/O library (PnetCDF, HDF
etc.) to MPI-IO. ROMIO, an MPI-IO’s implementation services these parallel
file accesses by directly interacting with underlying parallel file systems.

from traditional distributed file systems, modern parallel file
systems inherit certain I/O consistency semantics that were
designed to protect data integrity from concurrent file accesses,
a scenarios commonly occurred in a distributed environment.
To achieve desired I/O semantics, file locking mechanism
is used to guarantee the access permissions of individual
I/O requests. Two important consistency requirements from
POSIX standard known to restrict parallel I/O performance
from scaling are atomicity and cache coherence [4], [5]. When
multiple processes concurrently access a shared file, file locks
may cause serialization of the I/O operations which adversely
affects the I/O performance. While a large number of the
application processes are waiting for acquiring locks on the
same file regions, the I/O bandwidth sustainable by a parallel
file system is underutilized. Details of file system locking
issues is discussed in Section V-A.

In the traditional distributed environment, requests from
different clients are seldom related, so the impact of perfor-
mance degradation due to enforcing strict data consistency
semantics is not a frequent problem. However, in the modern
era of science and engineering, computational simulations like
combustion, molecular dynamics, fusion, climate prediction,
etc. are parallel programs that run on hundreds of thousands

of cores to scale with the size of the problem. In contrast
to the distributed computing, processes performing parallel
computations are closely related I/O clients, which often par-
tition global data objects and access shared files concurrently.
For such parallel applications, treating each client process
independently may restrict the I/O scalability.

Scientific community has started recognizing the problem
of pessimist storage system protocols adopted by the file
systems that are rarely required by the parallel applications
but handicap their I/O parallelism. In recent years, various
contributions have been made both on hardware and software
to address this problems. A noteworthy example in hardware
improvement is the IBM BlueGene systems that add a new
I/O architecture layer sitting in between compute nodes and
I/O servers, specially designed to reduce the scale of I/O con-
tention. The I/O sub-system of BlueGene systems is discussed
in Section V-D. MPI defines a set of programming interfaces
for parallel file access, commonly referred as MPI-IO. With
this framework, many optimizations such as two-phase I/O
[6] and data sieving [7], have been successfully demonstrated
significant performance improvement for the parallel I/O. One
of the prominent software contributions is the collective I/O
functionality proposed in the message passing interface (MPI)
standard [8].

Designed for MPI collective I/O, the two-phase I/O re-
arranges small, non-contiguous requests amongst processes
to form large, contiguous ones that can result in better I/O
latency. Data sieving avoids small-sized I/O by first reading
large file chunks into memory buffers, updating the buffers
with the requests, and then writing the chunks back to the
file. Despite of data sieving technique being available for
MPI independent I/O functions, optimizations for independent
I/O are generally considered to be a challenging task. High
performance independent I/O is critical, particularly for the
applications whose data is dynamically created or irregularly
partitioned amongst processes. An example is the parallel
programs based on Adaptive Mesh Refinement (AMR) algo-
rithm [9]. For such data partitioning patterns, global process
synchronization may not be practical and hence they must rely
on independent I/O to complete the I/O task.

This paper presents an I/O delegation system that aims to
minimize file lock conflicts and improve the MPI independent
I/O performance. The I/O delegation work was initiated in [5]
which provided an intermediate software layer between the
application processes and parallel file systems to enable several
I/O optimizations. I/O delegation system employs a set of
additional compute processes to carry out the I/O requests for
the application processes. These additional compute processes
are alternatively referred to as I/O delegates or delegate
processes. Application’s I/O requests are forwarded to the
delegate processes, where they are rearranged to best match
the file locking characteristics, such as lock granularity, of the
underlying file system.

In this paper, we present a new strategy for I/O delegate sys-
tem, a static file domain mapping method that statically maps
evenly partitioned file regions to the delegates in a round robin
fashion. This essentially means that a unique I/O delegate can
only access the assigned file regions, termed as the file domain

of this delegate. The motivation is to minimize the number of
I/O clients accessing an I/O server and hence potentially min-
imize the number of conflicted locks. We exercise this design
in ROMIO, a popular MPI-IO implementation developed at
Argonne National Laboratory [10]. With the static mapping
of file domains, lock contentions that frequently occur in
the parallel I/O operations can be mostly eliminated. A file
caching mechanism[11] is implemented in delegate system that
enables data aggregation across multiple requests aiming for
improving MPI independent I/O performance. Implementation
details and additional experimental analysis for caching system
has been provided in supplementary sections VI-B and VII-C.
This feature is also considered an optimization that spans mul-
tiple MPI-IO requests, collectives and/or independents, which
have been ignored by existing MPI-IO optimizations. The
I/O delegation system thins the performance gap between the
collective and independent I/O, while latter’s performance has
long been considered much worse than that of former’s. Most
importantly, I/O delegate system achieves such performance
improvement, while still fulfilling the MPI-IO data consistency
semantics.

We conducted our experiments on two production parallel
machines with real application I/O kernels. Franklin, a Cray
XT4 system at National Energy Research Scientific Comput-
ing Center [3], and Abe, the TeraGrid Intel-64 Cluster at the
National Center for Supercomputing Applications [12], were
used to evaluate I/O delegate system. Two application I/O
kernels FLASH[13], [14] and S3D[15], and an MPI-IO test
program taken from ROMIO[10] are used in the evaluation.
With only 4 to 6% of additional compute resources allocated
as delegates, independent I/O achieves up to 2.5 times faster
than the native collective I/O method on Franklin. On Abe,
we achieved up to 15 times I/O bandwidth improvement over
the collective I/O.

The paper is organized as follows. Section II explains the
strategy of static file domain mapping to the delegates in detail.
Section III presents our evaluations and analysis of the I/O
performance for different I/O benchmarks. Section IV draws
conclusions and discusses future work.

Additional sections have been added in supplementary file
which are as follows. Section V discusses the research back-
ground and motivation from the perspective of existing I/O
optimizations and characteristics of parallel file systems. This
section also discusses a number of related works including
Cray MPI-IO library [16] and I/O forwarding techniques [17].
Section VI discusses the intrinsic implementation details of
basic I/O delegation operations. Section VII provides the
details on experimental setup and additional evaluations of
I/O delegation system.

II. DESIGN AND DEVELOPMENT

This section discusses of file domain assignment strategy
in I/O delegation system. Details about I/O delegation system
architecture, and other I/O delegation functions, such as ini-
tialization, I/O request flow, and caching etc. may be found in
Section VI.

2

S11
S8

S14

S2
S5

S7
S4
S1

S10
S13S12

S9

S3
S0

S6

S15

P1 P1 P2 P0 P1 P1 P2P0 P2 P0 P2 P0

S0 S7 S15S14S13S12S11S10S9S8S4 S5 S6S2
File Access Region in terms of File Stripes

File Access Region Across Application Processes

S1 S3

OST 2

I/O Servers

OST 1OST 0

Fig. 2. File access region is partitioned among the application processes P0,
P1, and P2. Different colors represent data accessed by different application
processes. From Lustre file system’s perspective, the entire file is partitioned
into 16 stripes S0, S1, · · · , S15 which are distributed across the I/O servers,
OST0, OST1, and OST2. Even though file accesses are non-overlapping
among the processes, when requests from two processes access the same
stripe, lock conflict occurs.

D0 D2

S0

S6
S3

S9

S15
S12

S10
S13

S7
S4
S1

S11
S8
S5
S2

S14

OST 0 OST 1 OST 2

Page 1
Page 0

Page 2
Page 3
Page 4 S14

S11
S8
S5
S2

P1 P1 P2 P0 P1 P1 P2P0 P2 P0 P2 P0

File Access Region in terms of File Stripes
S0

D1

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

Request
Lock

Request
Lock

Request
Lock

I/O Servers

File Access Region Across Application Processes

Cache Pages at D2

Delegate Processes

Fig. 3. Lock conflicts can be eliminated by identical partitioning of data
across same number of delegate processes and I/O servers. Each of the
delegate processes stores data in the form of cache pages directly mapped
to the file stripes stored on a unique I/O server. Perfect cache page to file
stripe mapping has been shown for the case of D2-to-OST2 mapping. This
figure shows that with perfect mapping lock acquisition can be reduced to
only 1.

A. Static File Domain Mapping

Lock conflict at the file system occurs when two processes
compete with each other to acquire the lock to the same file re-
gion. We investigated Lustre [18] for exploring it’s scalability
issues, so that an adaptive solution for large scale systems and
their underlying parallel file system can be developed. Modern
parallel file systems, in order to meet high data throughput
requirements, employ multiple I/O servers each managing a
set of disks. Files stored on these systems can be striped across
the I/O servers, so large requests can be served concurrently.
Due to the nature of file striping, lock granularity is usually
set to be the file block or stripe size instead of a byte.
Details about locking mechanisms implemented in popular file
systems, GPFS and Lustre may be found in Section V-A.

As described in Section V-A, Lustre’s locking mechanism
is an implementation of extent-based locking protocol. Extent-
based locking protocol is implemented such that the I/O
server tends to grant locks to as many stripes as possible.
For example, on any given server, the first requesting process
will be granted a lock over all the file stripes managed by
that server. Future requests made by the same client process
need not to acquire the lock for those stripes. Second lock
acquisition to those stripes, will only be required if a different
process has already held the locks to those stripes. Ideally, if
we can arrange a one-to-one mapping between the I/O clients
and servers, then lock conflicts can be entirely avoided.

Figure 2 illustrates a parallel I/O situation, where lock
conflicts occur. In this example, three processes P0, P1, and
P2 concurrently write to a shared file, each covering multiple
non-contiguous, non-overlapping file regions. The aggregate
access region occupies 16 consecutive stripes, S0, S1, · · · , S15,
which are stored on three I/O servers (Object storage Targets in
Lustre), OST0, OST1 and OST2 in a round robin fashion. Data
written by different application processes is depicted in differ-
ent colors. In this figure, each I/O server receives requests from
all three processes, which essentially means that each process
repeatedly acquires, relinquishes, and reacquires the lock in the
midst of accesses from other processes. Considering OST0, if
the first request is made by process P0 to write stripe S0, then
a lock covering all stripes S0, S3, S6, · · · S15 is granted to
P0. However, if P1’s lock request to stripe S6 arrives while P0

is still writing S0, then locks to stripe S6 and onward will be
relinquished from P0 and granted to P1. Later, P0 must wait
behind P1 for acquiring the lock to S9. Parallel I/O can cause
lock permissions to oscillate from one process to another. In
addition, partial accessing stripes S6 and S9 results in I/O
serialization, given the lock granularity being of a file stripe
size. Such conflicts are observed on all other I/O servers in this
figure as well. Obviously, the lock conflicts can easily carry
away when applications run on thousands of processes. With a
large number of processes competing for locks to file stripes,
I/O becomes a serious bottleneck for parallel applications [19].

I/O delegate system adopts a new static file domain mapping
strategy that aims to minimize file lock conflicts. This strategy
divides the whole file into blocks of size each equal to the file
system stripe size and statically assigns the I/O responsibilities
of the blocks to the delegate processes in a round robin fashion
(identical to file system stripping configuration). All file blocks
assigned to a delegate process are collectively termed as the
file domain of this delegate. In order to achieve an optimal
mapping between the delegates and servers, we specifically
adjust the number of delegate processes to be a factor or
multiple of the number of I/O servers. For the same number
of delegate processes as I/O servers, each delegate process
is uniquely mapped to a single server. When the number
of delegate processes is a factor of the number of servers,
each delegate is uniquely mapped to a group of servers which
serve requests from that delegate only. When the number of
delegates is a multiple of the number of servers, a group
of delegates is mapped to a unique server which serves no
requests other than this group of delegates. Since the mapping
is static from one I/O request to another, most of the lock

3

S3

S9
S11

S7

S1

S5

S15
S13

S4
S2
S0

S6
S8

S12
S10

S14

D3

Delegate Processes

D0 D1 D2

I/O Servers

OST 0 OST 1

Fig. 4. Lock conflicts are completely eliminated if number of delegate
processes are equal or a factor of the number of I/O servers. If number of
delegates are more than I/O servers, lock conflicts can occur. To minimize
lock conflicts, number of delegates should be kept a multiple of I/O servers. In
this example delegate processes are double of I/O servers so each I/O server is
shared by only two delegate processes. Lock conflicts can still occur between
these two delegate processes but on a reduced level.

conflicts can be avoided, given any arbitrary I/O pattern from
the clients. Figure 3 shows an example of static file domain
mapping on delegate processes D0, D1, and D2 with the same
number of I/O servers OST0, OST1, and OST2. Static one-to-
one delegate-to-server mapping enables only a unique delegate
process requesting lock from a given I/O server. On the first
I/O request a delegate process will be granted locks for all the
stripes stored by the uniquely mapped I/O server. Therefore,
despite the number of application processes and arbitrariness
of application’s I/O access pattern, there is only one lock
acquisition necessary for writing all the stripes in a given I/O
server. In this case where the number of delegate processes
and number of I/O servers are the same, lock conflicts are
completely eliminated.

B. Delegate-to-Server Mapping
Most of the high-performance computing systems, have

only a few dozens to a few hundreds I/O servers, which is
a small fraction of the total available compute nodes. One can
expect that if the number of delegate processes is kept equal to
the number of I/O servers, then the performance will not scale
beyond thousands of nodes. For I/O delegate system design,
the question becomes how we can still avoid lock conflicts
or at least keep the conflicts minimal when the number of
delegate processes is more than the I/O servers. This section
discusses the strategy to minimize the lock conflicts if the
number of delegate processes is more than I/O servers.

Figures 4 and 5 demonstrate how two different delegate-
to-server mappings affect lock confliction. In both mappings,
file domain is logically partitioned in to file stripe sized
regions that are statically assigned to the delegates in a round
robin fashion. Small write requests can be aggregated at the
cache pages and later flushed to the file system. Collaborative
caching mechanism enables aggregation of data across the
multiple I/O calls, generates stripe sized I/O which matches
the stripe boundary of underlying file system, avoids read-
modify-write by flushing the cache pages which are already
full, and reduces the network communication by keeping I/O
size multiple of system page size. Section VI-B describes
the details of caching mechanism implemented in the I/O
delegation.

D3

S3

S9
S11

S7

S1

S5

S15
S13

S4
S2
S0

S6
S8

S12
S10

S14

D0 D1 D2 D4

I/O Servers

Delegate Processes

OST 1OST 0

Fig. 5. If delegate processes are not a factor or multiple of I/O servers
then all the delegate processes might be accessing all the I/O servers causing
serious lock acquisition competition between the processes. In this example,
each I/O server is contended by all the delegates which may deteriorate I/O
performance.

In Figure 4, the number of delegates is a multiple of the
number of I/O servers. Each server is accessed by unique
group of delegates. The potential lock conflicts happen only
within the group of delegate processes that map to the single
server. Such conflicts can be resolved by exchanging dirty
cache pages within the same group of delegates, or coordinat-
ing the order of cache page flushing among different groups.

If number of delegates are not a multiple of I/O servers
then, each I/O server may receive lock requests from all
the delegate processes as shown in figure 5. In contrast to
perfect delegate-to-server mapping case (figure 4), lock server
needs to resolve the lock conflicts among all the delegates.
Therefore, to minimize lock conflicts at the I/O servers, the
number of delegate processes are adjusted such that they are
always a factor or multiple of the number of I/O servers.
Our experimentation conforms that performance is adversely
affected if such delegate-to-server mapping is not enforced.
Section VII-D evaluates I/O performance for mapped and
unmapped delegate-to-server cases.

III. EXPERIMENT RESULTS

I/O Delegate System is evaluated on two large production
machines; Franklin, a Cray XT4 system at National Energy
Research Scientific Computing Center [3] and the TeraGrid
Intel-64 Cluster named Abe at the National Center for Super-
computing Applications [12]. Details about experimental setup
is given in Section VII.

Performance evaluation consists of comparison of 1) inde-
pendent MPI-IO with I/O delegation, 2) native MPI indepen-
dent I/O, and 3) native MPI collective I/O. The latter two
native methods use the default MPI library on the machines.
We did not explicitly evaluate the MPI collective I/O over the
I/O delegation method, because our delegation system treats
collective I/O the same as independent I/O. Under the static
file domain assignment strategy, data of an I/O request will be
split and sent to delegates based on their file offsets. Hence,
communication related to collective I/O optimizations will be
redundant as delegate system will rearrange data according to
the predefined file domain mapping. Therefore, if the collec-
tive I/O is changed to use independent I/O underneath, the
advantage of I/O delegation can be fully utilized. We expect
the significance of I/O delegation system is for independent
I/O as independent I/O traditionally performs poorly.

4

ROMIO
Benchmark

ROMIO
Benchmark

S3D IO
Multicore

S3D IO
Multicore

FLASH IO
Multicore

FLASH IO
Multicore

ROMIO
Benchmark
Multicore

ROMIO
Benchmark
Multicore

Native Collective I/O 4−6% Delegate 9−12% DelegateNative Independent I/O
1 Core/Node 3 Core/Node 4 Core/Node2 Core/Node

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

S3D IO

Franklin Franklin

(a)

 0.5

 1.5

 2.5

Abe

 0

 1

 2

 3

S3D IO

(c)(b)

Abe

I/O
 B

an
dw

id
th

 (G
B/

se
c)

 10
 12
 14
 16
 18

 0
 2

 6
 8

 4 0.5

 1.5

 2.5

 0

 1

 2

 3

FLASH I/OFLASH I/O

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

 0.5

 1.5

 2.5

 0

 1

 2

 3

16 32 64 12
8

25
6

51
2

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

16 32 64 12
8

10
24

20
48

40
96

81
92 16 32 64 12
8

25
6

51
251
2

25
6

(e)

(i)

(f)

(j) (k)

(g)

(l)

(h)

(d)

Number of Application Processes

Fig. 6. I/O Performance Evaluation of S3D I/O Kernel, FLASH I/O Kernel and ROMIO Benchmark with Franklin and Abe machines. (a),
(e), and (i) show the comparison of write bandwidths of three I/O methods: Independent I/O with I/O delegation, native independent MPI-IO,
and native collective MPI-I/O on Franklin. These charts show the effect of changing the ratio of number of delegates to the application
processes. Franklin’s Theoretical peak I/O bandwidth is approximately 16 GB/sec [3]. I/O delegate provides independent I/O performance
scaling up to the peak I/O bandwidth on Franklin. (c), (g), and (k) provide the similar comparison on Abe. (b), (f), and (j) report write
bandwidths by utilizing more cores-per-delegate-node with 4-6% delegates allocation. These charts show that there is no advantage in terms
of I/O performance by using more than one core-per-delegate. (d), (h), and (l) provide the similar comparison on Abe.

A. S3D I/O Kernel

The S3D I/O benchmark is the I/O kernel of S3D [15], a par-
allel turbulent combustion application using a direct numerical
simulation solver developed at Sandia National Laboratories.
Section VII-A provides further information about the S3D I/O
kernel. For performance evaluation, we keep the sub-array size
of globally block-partitioned array along X-Y-Z dimensions,
a constant 50 × 50 × 50. This produces about 15.26 MB of
write data per process per checkpoint.

Evaluation shows that independent I/O with I/O delegation
performs bout twice better than the default MPI collective I/O
on Franklin and more than ten time better on Abe. Figure
6 show I/O performance evaluation of S3D I/O kernel on
Franklin ((a), (b)) and Abe ((c),(d)) with the increasing number
of application processes. Figure 6(a) shows the comparison of

native independent I/O, native collective I/O, and independent
I/O using 4-6% and 9-12% of additional computer resources
as delegate processes. Keeping everything else constant, more
delegates perform better because of the bigger cache pool
and less communication contention for multiple application
processes sending data to the same delegates. On Franklin, the
native collective I/O performs better for the case of 256 appli-
cation processes and less, but the bandwidths flatten thereafter.
However, both I/O delegate methods keep scaling up beyond
256 processes. We provide our analysis of this observation in
Section V-C. In the case of 8192 processes, we achieves up to
two times performance improvement over the native collective
I/O with just 4% to 12% of delegate processes. Figures (c) and
(d) show the results of similar experimentation setups on Abe.
Native independent and collective I/O perform so slow on Abe
that their curves are almost coinciding with horizontal axis. On

5

the other hand, the independent I/O using delegation system
outperforms both native cases by a significant margin.

The bandwidth numbers obtained on these two machines
show a significant difference for the native collective I/O
method. The latest Cray MPI-IO adopts a strategy similar to
the static file domain assignment that provides much better
performance over the traditional collective I/O implementa-
tion. More discussion on this aspect is given in Section V-C.

1) I/O Delegation on Multi-core Platform: As modern
computers moving toward multi-core architecture, it would be
interesting to understand the performance impact of running
I/O delegate processes on such systems. One of two possible
implementations is to run delegate processes on a group of
compute nodes separated from those running the application
processes. The other is to run one delegate on one of the cores
of each compute node and the rest of the cores for application
processes. In this paper, we focus on the former scenario.
We choose the 4-6% delegates cases on both machines and
compare the I/O bandwidths by varying the number of cores
as delegates in each compute node. The charts (b) and (d)
show that if all other parameters are kept constant, having
different number of cores per delegate node does not make
any deterministic difference in I/O bandwidth. In theory, as the
number of delegate processes increases, the requests arrived
at the same I/O server from different delegates also increase
which can potentially cause more the lock contentions. The
similar bandwidths of our delegation system with more dele-
gate cores can be explained by the fact that Lustre’s distributed
lock management scheme is implemented such that locks are
held by nodes and not processes. In other words, lock requests
originated by all processes belonging to the same compute
node do not compete with each other for lock acquisition.

The adoption of static file domain mapping in delegate
system aims to improve the costs of read()/write()
calls made from the application side to the file system. In
fact, this strategy reduces such costs so significantly that
they no longer dominate the overall I/O performance. To
understand the performance bottleneck, we profile the timing
in the delegate system. We measured the time spent in the
read()/write() calls and refer them as I/O time in this
section. The rest of the time is referred as communication time,
as the operations are mostly data transfer between application
and delegate processes. We choose the case of S3D I/O on
Franklin with 2048 application processes to investigate the
I/O bandwidth trends with the changing number of delegates
and number of cores per delegates. The profiling results are
given in Figure 7.

Figure 7(a) shows the overall write bandwidth trend with
the increasing number of delegates with different number of
cores used per delegate. To maintain perfect mapping between
delegate processes and I/O servers, the number of delegates are
kept a multiple of 48, the number of I/O servers on Franklin.
It can be observed that best I/O bandwidth is achieved when
only 1 core per delegate node is used. Figures 7(b) and (d)
report total time taken in the interprocess communication as
a function of number of delegates and the number of cores
per delegates respectively. As the total amount of data is
kept constant, increasing the number of delegates results into

smaller amount of data received by each delegate but more
messages passing from application processes to delegates.
Such changes of the communication patterns add complexity
to the measured communication costs. We observed that in
Figure 7(b) with the increase in the number of delegates,
mostly communication time decrease except the cases of 48
to 96 delegates for 3 and 4 cores.

Figure 7(d) shows the effect of changing number of cores
per delegate nodes while keeping everything else constant. As
no other parameter is changed except the number of cores
per delegate node, total data received by each delegate node
does not change. As the number of cores per delegate node
increases, number of messages received by each delegate node
increases and size of individual message decreases. So, overall
interprocess communication time does not improve as the
number of cores per delegate node increases.

Exception is the 96-delegate case where the communication
cost increases significantly. The S3D-IO kernel has the write
amount proportional to the number of application processes
and almost all of the individual write request sizes are not
aligned to the file stripe size and hence the lock boundaries.
Hence, using different number of delegates can results in
different distributions of communication from the application
processes to the delegates. We speculate the increasing com-
munication time in the 96 delegates case might attributes to
such distribution changes. However, the communication time
is also affected by the hardware (hotspots) on the parallel
machine and contention from other applications running at
the same time (as the inter-process communication network is
shared by all applications).

Nevertheless, observations from Figures 7(b) and 7(d) help
us conclude that the best practice of I/O delegation configu-
ration is to use only one core in a multi-core platform.

Figures 7(c) and (e) show the effect on I/O with varying
number of delegates and number of cores-per-delegate respec-
tively. Figure 7(e) shows that the number of cores per delegate
node do not affect the I/O time much. We attribute this to the
fact that locks are granted on the basis of nodes and not cores.
So, as long as static file domain mapping is maintained on
delegate node basis, no I/O time change should be observed.
So, we conclude that to obtain a good overall I/O bandwidth
(Figure 7(a)) using only one delegate process per node is the
best option as additional cores do not provide further benefit.

Figure 7(c) shows very important fact about lock contention
at file servers. As discussed in Section II-A, using more
delegate nodes than I/O servers may introduce some lock
conflict but this chart does not show any definite increase
in I/O time when the number of I/O delegates is more than
the number of I/O servers. We attributed this observation to
the extent based locking mechanism of Lustre file system. As
explained in Section V-A, each I/O server is the lock manager
of the stripes stored on that server and it grants the locks
growing downwards covering all the stripes to the largest
uncontended extent. If a couple of requests from the same
delegate node reach an I/O server, only first of them needs to
acquire the lock and rest of the requests can proceed without
any lock acquisition overhead.

For example, for 96 delegates only 2 will be accessing any

6

I/O
 B

an
dw

id
th

 (G
B/

se
c)

Number of Delegates

2 Core/Node
1 Core/Node

4 Core/Node 96 Delegate
144 Delegate
192 Delegate

48 Delegate

 0
 2
 4
 6
 8

 10
 12

48 96 14
4

19
2

Overall I/O Bandwidth

(a)

Ti
m

e
(s

ec
)

 0
 5

 10
 15
 20
 25
 30
 35
 40

48 96 14
4

19
2

Communication Time

(b) (e)
1 2 3 4

I/O Time

1 2 3 4

Communication Time

48 96 14
4

19
2

I/O Time

(c) (d)
Core/Node

3 Core/Node

Fig. 7. S3D I/O Kernel, 2048 application processes, Franklin: Breakdown analysis of two major time consuming operations: (i) Data Communication between
application and delegate processes. (ii) File system I/O. (a),(b) and (c). Overall I/O bandwidths, time spent in data communication amongst the application
and delegate processes, and file system I/O time as a function of number of delegates respectively. (d),(e). Time spent in data communication amongst the
application and delegate processes and time for file I/O with varying number of cores-per-delegate-node respectively.

given I/O server at a time writing to alternate file stripes. As
shown in the figure 4 if a write requests for S0 from D0

arrives at OST0 before any write request from D2, then a
downward grown lock for all the stripes on this server will
be granted to D0. In case write requests for S4, S8 and S12

from D0 also arrive before any write request from D2 then
these additional 3 stripes will be written without any further
lock acquisition. While D0 is writing S12 and a request for
S2 arrives from D2 then a downward grown lock from S2

to S10 will be granted to D2. So, requests for S2, S6, and
S10 can be serviced with a single lock request. D2 will have
to send another write request to write D14 though. Section
VII-D further explores the possible lock acquisition patterns
to understand the figure 7(c) better. It also includes additional
evaluation to compare mapped and unmapped delegate-to-
server assignment strategies shown in figures 4 and 5.

An important observation from Figure 7 is that the I/O
costs are about the same as the communication. Traditionally,
in a parallel I/O operation, the I/O part dominates the entire
performance. Optimizations such as two-phase I/O was pro-
posed to addressed this problem by rearranging request data
among processes to produce fastest I/O part, i.e. scarifying the
interprocess communication for better I/O to the file system.
I/O delegation system changes such scenario and raises the
attention on the optimization for the communication part. The
relative constant I/O cost also explains why increasing the
number of delegate from 4-6% to 9-12% does not produce
proportional performance improvement.

We conclude here that a substantial post of the maximum
I/O bandwidth for an I/O server has been achieved with 4-6%
of delegate processes. Any increase in number of delegates
hence does not provide linear improvement to the overall
performance. This observation also implies that I/O delegation
system does not require many delegate processes in order to
achieve a scalable performance.

B. FLASH I/O Kernel
The FLASH I/O benchmark suite [14] is the I/O kernel

of the FLASH application, a block-structured adaptive mesh
hydrodynamics code that solves fully compressible, reactive
hydrodynamic equations, developed mainly for the study of

nuclear flashes on neutron stars and white dwarfs [13]. The
computational domain is divided into blocks that are dis-
tributed across a number of MPI processes. A block is a three-
dimensional array with an additional 4 elements as guard cells
in each dimension on both sides to hold information from its
neighbors. Further detail of FLASH I/O is given in Section
VII-B. In our experiments, we used 16× 16× 16 block size.
There are 24 variables per array element, and about 80 blocks
on each MPI process. So, total of 60 MB data is generated
per process.

Figure 6 (e), (f), (g) and (h) show the similar performance
trends as S3D-IO benchmark shown in the previous section. In
Figures 6(e) and (g), independent I/O with I/O delegate system
performs the best on both Franklin and Abe. An interesting
observation from Figure 6(g) is that native independent I/O
performs better than native collective I/O in Abe’s case. This
can be explained by the I/O access pattern from each process
being already contiguous. As most part of the I/O accesses
consists of large contiguous data, synchronization and data
exchange has become not as critical as in the S3D-IO case. On
the other hand, Figure 6(e) shows that although independent
I/O does not perform as bad as in the case of other applica-
tions, collective I/O still performs better than independent I/O.
We attribute this observation to the new collective buffering
algorithm used for collective I/O on Franklin. Figures 6(f) and
6(h) show the effect of using multiple cores per delegate nodes
on Franklin and Abe respectively. As discussed in Section
III-A, using multiple cores per delegate node has no significant
impact to the I/O performance.

C. ROMIO Benchmark
ROMIO software package includes a set of test programs

in which the collective I/O test, named coll perf, writes and
reads a three-dimensional integer array that is block partitioned
along all three dimensions among processes. The subarray
size in each process is kept constant, independent from the
number of processes used, and hence the total I/O amount is
proportional to the number of processes. We set the subarray
size to 100 × 100 × 100. In order to get stable performance
numbers, we measured ten iterations of the write operations.
So, total of 38.15 MB data is generated per process.

7

Figure 6 (i), (j), (k), and (l) show the similar performance
results as the S3D-IO and FLASH I/O cases. Figures 6(i)
and (k) show that, independent I/O with the proposed I/O
delegation performs best among the native collective I/O and
native independent I/O on both Franklin and Abe. Native
independent I/O performs very poorly, but when used with the
I/O delegation architecture, its performance is improvement
significantly on both machines. Figures 6 (j) and (l) show the
effect of using multiple cores per delegate nodes on Franklin
and Abe. As discussed in section III-A, using multiple cores
per delegate node does not affect the I/O performance.

IV. CONCLUSIONS AND FUTURE WORK

We have proposed an I/O software architecture, I/O dele-
gation system with static file domain mapping for large-scale
parallel applications and file systems. The proposed architec-
ture bridges the gap between modern scientific applications’
requirements and old fashioned parallel storage protocols. For
many high performance scientific applications independent I/O
is becoming critical, particularly for the applications whose
data is dynamically created or irregularly partitioned amongst
processes. For very large scale systems, global process syn-
chronization may not be feasible for such data partitioning
patterns.

Performance evaluation demonstrates very high I/O band-
width for independent I/O which outperforms even optimized
collective I/O. I/O delegate system can be used by parallel
I/O library, such as MPI-IO, and enabled by automatically de-
tecting the underlying system configurations like stripe count,
stripe size, and stripe offset to choose the most optimal values
of cache page size and number of cores per node and achieve
optimal performance. The best practice for I/O delegation
configuration is to produce perfect delegate-to-server mapping
that requires choosing the number of delegates being either a
factor or multiple of underlying stripe count.

We have observed that using multiple delegate processes per
node does not provide any noticeable I/O benefit over single
delegate process per node. This observation implies the extra
compute cores can be used for computation best run closely to
where data reside, such as data analytics, statistical operations,
and subsetting operations. These extra compute cores can also
be utilized for running application processes, thus reducing the
overall resource allocation significantly.

We have demonstrated experimentation evaluation up to a
few thousand application processes with 4-12% of delegates.
For even larger application size, number of delegates may grow
to a few thousands. For such a large number of delegates, lock
contention between a larger number of delegate processes may
also emerge. In order for I/O delegate system to scale for very
large number of application processes, we plan to investigate
new methods for lock conflicts avoidance.

We believe that scientific applications involving parallel
reads can benefit from I/O delegate system. Collaborative
caching on delegate processes can provide the benefits of read
ahead as file system reads are performed on stripe basis and
data is cached in memory. This prefetching mechanism can
save many read requests from traveling across the network

over to the parallel file system. We plan to study read perfor-
mance of I/O delegation system with different applications.

V. ACKNOWLEDGEMENTS

This work was supported in part by NSF award num-
bers: CCF-0621443, SDCI OCI-0724599, CNS-0551639, IIS-
0536994, and HECURA-0938000. This work was also par-
tially supported by DOE grants DE-FC02-07ER25808, DE-
FG02-08ER25848, DE-SC0005309, and DE-SC0005340.

REFERENCES

[1] Teragrid Infrastructure. http://www.teragrid.org.
[2] Jaguar (Cray xt5). http://www.nccs.gov/computing-resources/jaguar/.
[3] Franklin (Cray xt4). http://www.nersc.gov/nusers/resources/franklin/.
[4] Rajeev Thakur, Robert B. Ross, and Robert Latham. Implementing

byte-range locks using mpi one-sided communication. In Beniamino Di
Martino, Dieter Kranzlmüller, and Jack Dongarra, editors, PVM/MPI,
volume 3666 of Lecture Notes in Computer Science, pages 119–128.
Springer, 2005.

[5] Arifa Nisar, Wei-keng Liao, and Alok Choudhary. Scaling parallel I/O
performance through I/O delegate and caching system. In SC ’08:
Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
pages 1–12, Piscataway, NJ, USA, 2008. IEEE Press.

[6] Juan Miguel del Rosario, Rajesh Bordawekar, and Alok Choudhary. Im-
proved parallel i/o via a two-phase run-time access strategy. SIGARCH
Comput. Archit. News, 21(5):31–38, 1993.

[7] Rajeev Thakur, William Gropp, and Ewing Lusk. Data sieving and
collective i/o in romio. In In Proceedings of the Seventh Symposium on
the Frontiers of Massively Parallel Computation, pages 182–189. IEEE
Computer Society Press, 1998.

[8] Message Passing Interface Forum. MPI: A Message Passing
Interface Standard, Version 1.1, June 1995. http://www.mpi-
forum.org/docs/docs.html.

[9] M. Berger and J. Oliger. Adaptive Mesh Refinement for Hyperbolic
Partial Differential Equations. Journal of Computational Physics,
53:484–512, Mar. 1984.

[10] R. Thakur, W. Gropp, and E. Lusk. Users Guide for ROMIO: A
High-Performance, Portable MPI-IO Implementation. Technical Report
ANL/MCS-TM-234, Mathematics and Computer Science Division, Ar-
gonne National Laboratory, October 1997.

[11] Wei keng Liao, Avery Ching, Kenin Coloma, Arifa Nisar, Alok Choud-
hary, Jackie Chen, Ramanan Sankaran, and Scott Klasky. Using MPI file
caching to improve parallel write performance for large-scale scientific
applications. In SC. The ACM/IEEE Conference on Supercomputing,
November 2007.

[12] Abe (teragrid intel-64 cluster)
. http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/Intel64Cluster/.

[13] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q.
Lamb, P. MacNeice, R. Rosner, and H. Tufo. Flash: An Adaptive
Mesh Hydrodynamics Code for Modelling Astrophysical Thermonuclear
Flashes. In Astrophysical Journal Suppliment, page 131273, 2000.

[14] M. Zingale. FLASH I/O Benchmark Routine Parallel HDF 5.
http://flash.uchicago.edu/˜zingale/flash benchmark io, March 2001.

[15] R. Sankaran, E. R. Hawkes, J. H. Chen, T. Lu, and C. K. Law. Direct
numerical simulations of turbulent lean premixed combustion. Journal
of Physics Conference Series, 46:38–42, September 2006.

[16] Dick Oswald David Knaak. Optimizing MPI-IO for Applications on
Cray XT Systems. White paper, Cray Inc, May 2009. Available online
(20 pages).

[17] Kamil Iskra, John W. Romein, Kazutomo Yoshii, and Pete Beckman.
Zoid: I/o-forwarding infrastructure for petascale architectures. In PPoPP
’08: Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and practice of parallel programming, pages 153–162, New York, NY,
USA, 2008. ACM.

[18] High-Performance Storage Architecture and Scalable Cluster File Sys-
tem White Paper. White paper, Sun Microsystems, Inc., October 2008.
Available online (20 pages).

[19] C. William McCurd, Rick Stevens, Horst Simon, William Kramer, David
Bailey, William Johnston, Charlie Catlett, Rusty Lusk, Thomas Morgan,
Juan Meza, Michael Banda, James Leighton, and John Hules. Creating
Science-Driven Computer Architecture:A New Path to Scientific Leader-
ship. Technical report, National Energy Research Scientific Computing
Center, October 2002.

8

Arifa Nisar has received her BSc degree from
Department of Electrical Engineering at University
of Engineering and Technology Lahore, Pakistan
in 2003. She received her Ph.D from Department
of Electrical Engineering and Computer Science,
Northwestern University in 2010. Arifa is currently a
NSF/CRA Computing Innovation Fellow at Storage
Systems Research Center, University of California
Santa Cruz. Her main research interests include
high performance I/O systems, parallel I/O, and file
systems.

Wei-keng Liao is a Research Associate Professor
in the Electrical Engineering and Computer Science
Department at Northwestern University. His research
interests are in the area of high-performance com-
puting, parallel I/O, data mining, data management
for scientific applications.

Alok Choudhary is a Professor in and the Chair of
the EECS department and a Professor at the Kellogg
School of Mgmt at Northwestern University. From
1989-1996, he was a faculty member in the ECE de-
partment at Syracuse University. Alok Choudhary re-
ceived his Ph.D. from University of Illinois, Urbana-
Champaign, in Electrical and Computer Engineering
(1989), an M.S. from University of Massachusetts,
Amherst, (1986) and B.E. (Hons.) from Birla In-
stitute of Technology and Science, Pilani, India in
1982. Dr. Choudhary was a co-founder of Accelchip

Inc. and was its Vice President for Research and Technology from 2000-
2002. Dr. Choudhary has published more than 350 papers in various journals
and conferences. Dr. Choudhary serves on the editorial boards of: IEEE
Transactions on Parallel and Distributed Systems, Journal of Parallel and Dis-
tributed Systems and International Journal of High Performance Computing
and Networking. His research interests include: High-performance computing
and communication systems, power aware systems, computer architecture,
high-performance I/O systems and software and their applications in many
domains including information processing (e.g., data mining, CRM, BI) and
scientific computing (e.g., scientific discoveries). Further interests lie in the
design and evaluation of architectures and software systems (from system
software such as runtime systems to compilers), high-performance servers,
high-performance databases and input-output and software protection/security.
He has also written a book and several book chapters on these research
interests.

9

1

Supplementary Document: Delegation-based I/O
Mechanism for High Performance Computing

Systems
Arifa Nisar, Wei-keng Liao and Alok Choudhary

Electrical Engineering and Computer Science Department Northwestern University
Evanston, Illinois 60208-3118

Email: {ani662,wkliao,choudhar}@ece.northwestern.edu

V. BACKGROUND AND RELATED WORK

This work is inspired by the observation that file systems are
unable to cater for a group of related clients accessing shared
files. This hampers their ability to fine-tune the consistency
control mechanism to meet I/O requirements optimally. We
believe that lack of proper programming interfaces to the file
systems prevents applications from passing down their I/O in-
tents that could be very useful in optimizing I/O performance.
For example, a group of processes writing a partitioned global
array in parallel should be considered as a group of correlated
I/O requests by the file system. In this case, data consistency
control should only protect the file data from processes outside
of the group, instead of the processes inside. Without a proper
way to detect such cases, the file system is forced to protect
individual request regardless of the client’s group membership.

Under these circumstances, we believe that an I/O layer
sitting in between application processes and file system is
necessary to capture the missing information and potentially
use it to enhance I/O performance. For understanding the
characteristics of parallel file systems on supporting data con-
sistency for concurrent requests to shared files, we investigated
the file locking protocols and their implementations on existing
file systems. Since different file systems may not use the same
locking mechanism, it is important that this I/O layer adapts to
their distinct features in order to produce the best I/O strategy.

A. Distributed Lock Management in Parallel File Systems
Modern parallel file systems, in order to meet high data

throughput requirements, employ multiple I/O servers, each
managing a set of disks. Files stored on these systems can
be striped across the I/O servers, so large requests can be
served concurrently. Due to the nature of file striping, lock
granularity is usually set to be the file block or stripe size
instead of a byte. If two I/O requests fall into the same lock
granularity region and at least one of them is a write, they must
be carried out serially even if they do not overlap in bytes. File
systems rely on a locking mechanism to provide a client with
an exclusive access to a file region and hence to implement the
data consistency control. The implementation of a distributed
file locking system aiming at reducing the lock acquisition
frequency, varies among different file systems. Many parallel
file systems, such as IBM’s GPFS [1], [2] and Lustre [3],

[4], adopt an extent-based locking protocol in which a lock
manager tends to grant access to the largest possible file
region. For example, the first requesting process to a file is
granted the lock for an entire file. When the second write from
a different process arrives, the first process will relinquish a
part of the file to the requesting process. If the starting offset
of the second request is ahead of the first request’s ending
offset, the relinquished region will start from the first request’s
ending offset toward the end of file. If not, the relinquished
region will contain a segment from file offset 0 to the first
request’s starting offset. The advantage of this protocol is that a
process’s successive requests within the already granted region
would require no lock request.

To avoid the obvious bottleneck from a centralized lock
manager, various distributed file locking protocols have been
proposed. For example, GPFS employs a distributed token-
based locking mechanism to maintain coherent caches across
compute nodes [1]. This protocol makes a token holder a
local lock authority for granting further lock requests to its
corresponding byte range. A token allows a node to cache
data that cannot be modified elsewhere without first revoking
the token.

Lustre, a POSIX compliant file system, respects POSIX I/O
atomicity semantics. To guarantee I/O atomicity, file locking is
used for each read/write call, allowing only exclusive access
to the requested file region. Lustre file system stripes a file
in round robin fashion across the file servers. Lustre uses a
distributed locking protocol where each I/O server manages
locks for the file stripes it stores. Extent based locking is
performed on the stipes stored at any individual I/O server. On
an I/O request, I/O server grants the locks growing downwards
covering all the stripes to the largest uncontended extent [5].
If a client requests a lock held by another client, a message is
sent to the lock holder requesting to release the lock. Before
a lock can be released, dirty cache data must be flushed to
the servers. On parallel file systems like Lustre and GPFS,
where files are striped across multiple I/O servers, conflicted
locks can significantly degrade parallel I/O performance [6]
and hence it is important that an I/O middleware recognizes the
file system’s locking behavior and minimizes lock conflicts.
Our proposed work is motivated by such needs and designed
to generate the I/O pattern which performs best with the
underlying file system’s locking mechanism. We use Lustre

to demonstrate the impact of perfectly matched I/O access
patterns with locking boundaries of underneath file systems.

B. MPI-IO

MPI defines a set of programming interfaces for parallel file
access, commonly referred as MPI-IO. With this framework,
many optimizations such as two-phase I/O [7] and data sieving
[8], have been successfully demonstrated significant perfor-
mance improvement for the parallel I/O. One of the promi-
nent software contributions is the collective I/O functionality
proposed in the message passing interface (MPI) standard [9].
In addition to two-phase I/O [7], many collaboration strategies
have been proposed and demonstrated their success, including
disk directed I/O [10], persistent file domain [11], [12], view
based collective I/O [13], collaborative caching [14], [15],
layout awareness [16] etc.

There are mainly two types of I/O access functions in MPI-
IO: Collective I/O and Independent I/O. Collective functions
require collaboration among processes to rearrange I/O re-
quests for achieving better performance. This collaboration
incurs the overhead of process synchronization but it provides
significant performance improvements over uncoordinated I/O.
ROMIO[17] implements collective I/O calls using the two-
phase I/O method, which comprises of the request redistri-
bution and I/O phases. Two phase I/O’s implementation for
collective functions is explained in figure 8. The implemen-
tation first calculates the aggregate access file region and
then evenly partitions it among the I/O aggregators into file
domains. The I/O aggregators are a subset of the processes
which act as I/O proxies for all of the processes. In the
redistribution phase, all processes exchange data with the
aggregators based on the calculated file domains. If data to be
distributed is larger than the maximum buffer size, collective
I/O operation is decomposed into multiple steps of two-phase
I/O. In the I/O phase, aggregators access the shared file
within the assigned file domains. Two-phase I/O can combine
multiple non-contiguous requests into large contiguous ones.
This approach has been demonstrated to be very successful
as modern file systems handle large contiguous requests more
efficiently. On the parallel machines where each compute node
contains a multi-core CPU or multiple processors, ROMIO, by
default, picks one of the core/processor as the aggregator in
every node.

Independent I/O calls, on the other hand, do not require
process synchronization and hence lack the opportunity to
exchange requests. Therefore, application users community
is discouraged to use independent I/O citing its poor per-
formance. However, not all scientific applications can afford
process synchronization due to the irregularity of their data
distribution and creation. For instance, when several global
arrays are partitioned among the different groups of processes,
synchronization I/O for a global array requires all processes to
participate even for those groups that do not contain any data
for this array. In such a situation, synchronization serializes
I/O. Mostly, process synchronization may not even be possible
as new data objects are created dynamically, and one process
may not have any information about the data on a different

0P P2 P4 P6

P1 P2 P30P P1 P2 P30P P5 P6 P74P P5 P6 P74P

endstart aggregate access region
offset view in file space

0P P1 P2 P3

P4 P5 P6 P7

start

end

I/O phase

file system

domains
file

data partitioning of a 2D global array
a logical view of subarrays in memory space

communication phase

Fig. 8. Two Phase Implementation for MPI Collective I/O: In the first phase
aggregate access region is evenly divided among the chosen processes termed
as aggregators. In the second phase aggregators complete the file system I/O
by performing the actual file system operations.

process. Examples of such I/O pattern are the applications
using Adaptive Mesh Refinement (AMR) algorithm. For these
applications, independent I/O may be the only choice and it
is important that the I/O systems provide performance similar
to the collective I/O.

Traditional collective I/O does not have persistent file do-
main assigned to the aggregators. Every I/O access is treated
individually and the access region specific to the I/O call is
partitioned to the aggregators. Collective I/O is also limited
by the maximum allowed size of the temporary buffer. If
access region per process is larger than the maximum buffer
size (16 MB is default) then data exchange is performed
in multiple stages. Collective I/O generates large disjoint
contiguous accesses to the file system and does not consider
underlying file system locking strategy.

I/O delegation system allocates a small set of additional
nodes to handle I/O responsibilities. I/O delegation system
aims to minimize file lock conflicts and improve the MPI
independent I/O performance. A file caching mechanism is
implemented in the delegate system that enables data aggre-
gation across multiple requests aiming for improving MPI in-
dependent I/O performance. This feature is also considered an
optimization that spans multiple MPI-IO requests, collectives
and/or independents, which have been ignored by existing
MPI-IO optimizations. I/O delegate performs asynchronous
data communication in a single step. I/O delegate system
employs a static file domain mapping method that statically
maps evenly partitioned file regions to the delegates such that
the data layout is perfectly matched with underlying the file
system.

C. Cray XT MPI Optimizations
In our experiments, we observed significant performance

difference for the native MPI collective I/O method between
Franklin and Abe. The two-phase I/O implementation in the
MPI-IO library installed on Abe uses the traditional file do-
main partitioning method. This method divides the aggregate

2

access file region of a collective I/O into contiguous, disjoint
subregions, each assigned to an I/O aggregator. However, this
strategy performs poorly on Lustre as investigated in [18].

Very recently, a new collective buffering algorithm used
by the Cray MPI-IO library [19], [20] similar to the static
file domain partitioning method proposed in [18] was made
available on Franklin[21] and successfully demonstrated a
dramatic performance enhancement. In traditional collective
I/O, file domain is assigned at the time access. Access region
is partitioned in disjoint regions and each region is assigned
to an aggregator. In contrast to the traditional collective I/O a
persistent file domain is assigned to the aggregators.

The idea of keeping a static and optimal mapping between
the I/O processes and file servers is the key to scalable
parallel I/O performance on Lustre file system. However,
there are two limitations on the current design of the Cray’s
collective buffering algorithm. First, the default number of I/O
aggregators is set to equal to the number of I/O servers no
matter how large the number of application processes is. When
the number of application processes is much larger than the I/O
servers, the communication contention for rearranging request
data to the I/O delegates can easily become the performance
bottleneck. Second, the largest file access region that can be
processed by a single two-phase I/O is equal to the file stripe
size times the number of I/O servers.

For instance, when the file stripe size is set to 1MB on
Franklin, the maximum file access region per two-phase I/O
is only 48 MB. For requests with much larger aggregate file
access region, this limitation will produce many two-phase
I/O stages and each covers a file region no greater than 48
MB. Under such circumstance, this algorithm may incur higher
overhead of process synchronization and communication.

From Figure 6(a) we observe that the native collective I/O
on Franklin fails to scale beyond 512 application processes.
On the contrary, the I/O delegate approach scales much better.
The reasons behind can be the 48 MB file access limitation
and the delegate system being able to aggregate small requests
in the caches. Also, delegate can improve I/O performance
across multiple access calls. Cray XT MPI does not allow
more than 48 aggregators in the interest of removing lock
contention. For very large number of application processes,
only 48 aggregators may become communication bottleneck
and hamper scalability.

File domain assignment for Cray MPI is similar to the
file domain assignment in the delegate system. I/O delegate
provides a way to minimize lock contention in case there
are more delegates than servers. Other than the scalability
problem, the new collective buffering only benefits the col-
lective writes and is not applicable to collective reads or
independent I/O. As explained in section VI-A, I/O delegate
performs asynchronous data communication in a single step.
Each application process sends data over to any delegate in a
single MPI send only.

D. I/O Delegation and I/O Forwarding

I/O delegation with file caching framework (IODC) [22]
provides an infrastructure where all the I/O accesses are

pushed through a small number of additional compute pro-
cesses (referred to as I/O Delegate processes). This infrastruc-
ture creates an intermediate layer between application and file
system. IODC reduces lock contention by limiting the number
of processes accessing the underlying parallel file system.
It also employs a collaborative file caching subsystem to
enable data aggregation, page migration, and request sequen-
tial consistency control. The delegation layer is implemented
in ROMIO and hence transparent to the regular MPI-IO
programs. Performance evaluation of this work demonstrated
noticeable improvements for collective I/O on both Lustre
and GPFS. In this paper, our proposed approach extends
the I/O delegation concept and focuses on the file locking
characteristics of the underlying file system. Moreover, in
addition to collective I/O, our solution is also directed towards
independent I/O.

In pursuit of avoiding the I/O bottleneck at storage systems,
architectures like BlueGene, have brought I/O nodes closer to
parallel storage layer. The IBM BlueGene systems adopt a
new I/O architecture specially designed to reduce the scale of
I/O contention. The new I/O sub-system consists of a group
of additional I/O nodes physically situated in between the
compute nodes and file system servers. Compute nodes on
a BlueGene are organized into separate processing sets, each
equipped with an I/O node. I/O requests from the compute
nodes on the same processing set are accomplished via the I/O
node [23], [24]. From file system’s point of view, I/O nodes are
the actual clients to the file system. Hence, data consistency
semantics are enforced on the I/O nodes. Other existing
contributions have also recognized the importance of using
a middleware to coordinate parallel I/O requests by reducing
potential conflicts before data reaches file system. Different
system level solutions have been proposed to accomplish I/O
forwarding between compute nodes and I/O nodes. CIOD
(Control and I/O Daemon) [25], is a light weight kernel for I/O
nodes developed at IBM. It receives I/O requests forwarded
from the compute nodes over the collective network and
invokes corresponding Linux system calls. ZOID (ZeptoOS
I/O Daemon) [26], a function call-forwarding infrastructure
developed at Argonne National Lab, is integrated into the
ZeptoOS software stack [27]. Both of these I/O forwarding
components allow communication between statically mapped
compute nodes and I/O nodes only. They do not facilitate the
intercommunication between I/O nodes, or flexibility between
compute and I/O nodes interactions. Such inflexible I/O archi-
tectures may lose all the high level I/O information as well as
the opportunity of any optimization at I/O nodes layer.

E. File Domain Partitioning in Collective I/O

Recent research has shown the importance of adjusting
parallel I/O requests with the file system’s locking boundaries
[28], [18], [29]. Several file domain partitioning methods have
been proposed and evaluated in [18]. The stripe-boundary
alignment method appears to be the best choice for GPFS.
This method aligns the partitioning of the aggregate access file
region with the GPFS’s file stripe boundaries which results
in large contiguous requests to the file system. On Lustre,

3

the static and group-static partitioning methods outperform
other methods with significant margins. The static method
assigns the file domains based on the stripes stored on the
I/O servers by keeping the mapping of the I/O processes to
the servers persistent. Since the client-server mapping does not
change from one collective I/O call to another and the number
of accessing clients per server is minimized, this method
eliminates the possible lock conflicts. We adopt the static file
domain strategy in our I/O delegation system, expecting that
the lock conflicts from the delegate processes to the file system
can be minimized.

Sanchez et. al [30] proposed an I/O proxy based I/O archi-
tecture, which uses local disks to implement an intermediate
file system between application and parallel storage system.
This architecture uses the local file system to perform some
optimizations before data is flushed to parallel file system.

Panda [31] is a server-directed I/O strategy, in which one
compute node and one I/O node act like master client and
master server. Master client and master server exchange the
layout of in memory and on disk data distribution to determine
the optimized way of transferring data between clients and I/O
nodes.

Collective buffering approach [32] rearranges requests in
processors’ memory, to initiate optimized I/O requests, thus
reducing the time spent in performing I/O operations. This
scheme requires a global knowledge of I/O pattern in order
to perform optimization. Bennett et.al. present an I/O library
Jovian [33], [34], which uses separate processors called ‘co-
alescing nodes’ to perform I/O optimization by joining small
I/O operations. This approach requires application support to
provide out-of-core data information in order to combine the
contiguous data on disk.

VI. IMPLEMENTATION OF I/O DELEGATE SYSTEM

delegates
processes

I/O servers

application
processes

network

S S S SSS

D DDDDD

P P P P P P

P

P

P P P P P P

P

PPPPP

P

P

P PP

MPI−IO

MPI library

Fig. 9. I/O Delegate Architecture: It is a portable I/O middleware integrated
inside the MPI-IO layer. A small percentage of application processes is
allocated in addition to the required application processes (P). These additional
resources termed as delegate processes (D) perform all the I/O operations like
open(), write(), read(), sync() and close() on the behalf
of application processes.

The I/O delegation system is implemented in ROMIO
library, so it can be available to all the MPI-IO applications
and is portable across different file systems. This system is ac-
tivated by separating all the MPI processes allocated by a par-
allel job into two disjoint groups, one running the application

and the other running the I/O delegate system. The delegate
system emerges as an intermediate layer between application
and parallel storage system. Compute processes running on
this intermediate layer are called delegate processes. The num-
ber of delegate processes is kept no more than a small fraction
of total compute processes executing the parallel application.
Figure 9 illustrates the overall system architecture. All the I/O
operations initiated by the application processes pass through
the delegate processes which perform respective I/O operations
on behalf of the application processes. Current implementation
requires users to explicitly allocate additional processes for
I/O delegation when submitting a parallel job. At the start of
the application, the number of delegates is taken as an input
parameter and automatically adjusted to match the number
of I/O servers of underlying file system, so the number of
delegates is either a factor or multiple of the number of servers,
unless otherwise specified. Our current implementation does
not change the number of delegates during the life time of the
application. The entire MPI processes allocated by a single
MPI job are split into two separate communicator groups,
one for the delegate processes and the other for the parallel
application, which exchange I/O and related information with
each other using MPI inter-communicators.

To make this implementation generic, we use MPI dynamic
process management functionality for initial communicator
setups. For machines that have not yet supported the dynamic
process management, such as Cray XT, we use the traditional
communicator construction functions, such as MPI communi-
cator split, to separate the two communicators.

During the MPI application’s execution, all I/O requests
from the application processes are redirected to the I/O dele-
gate processes, limiting the file system interactions to delegate
processes only. Reduction in the number of compute nodes
accessing the storage system reduces the scale of overall I/O
contention at storage system. Delegate processes continuously
poll on incoming requests from application processes as well
as from peer delegate processes. Application processes send
requests, such as file open, write, read, and close, to delegate
processes, and delegate processes collaborate with each other
to perform I/O bookkeeping and optimizations. The lifetime of
delegate processes is mapped to parallel applications execution
time only. However, the idea of such I/O architecture can
be extended to a set of physical compute nodes persistently
serving requests from all the applications. As described earlier
in Section V, the IBM BlueGene systems have already been
configured with such I/O layer in hardware. To explore the
maximal potential of such architecture, it’s necessary to make
the software layer aware of the MPI processes running a single
program and treating them as an integrated I/O client. Fol-
lowing sections discuss various components of I/O delegation
system in detail.

A. I/O Request Flow

All the delegate processes run an infinite loop that
keeps polling incoming requests from both the application
and delegate processes using respective inter- and intra-
communicators. When a file is collectively opened by a group

4

of application processes, only delegate process 0 creates the
file and broadcasts the open request to the rest of delegates. On
receiving the open request, all delegate processes open the file
locally and initializes the data structures for I/O delegation. A
unique global ID associated to local file ID at the delegates is
returned to the clients, so it can be used for future references
to this file. The metadata of a read/write request is packaged
by each application process into an MPI message containing
the information of file ID, request size, and an array of
requesting file offset-length pairs if the request consists of
multiple disjoint file regions. When a delegate process receives
this message, it allocates proper memory space to receive
the metadata, as well as the cache pages to accommodate
the write/read data. For write request, metadata is sent to a
delegate process followed by the write data. The write data is
sent by using an MPI derived data type to pack noncontiguous
data, so the communication can be completed in a single
MPI send call. Delegate process separates the disjoint request
segments based on the offset-length metadata and copies them
to their respective location in the cache pages. The byte
number of data received is sent back to the application process
as the return value. I/O delegate system adds an extra step
of passing data through delegate nodes, which incurs some
extra data communication cost. But as our implementation
does not use the optimizations implemented in ROMIO, we
justify this communication overhead by saving two-phase
I/O’s synchronized communication overhead. We have also
implemented an alternate approach that packs the write request
metadata along with the actual data in a single message.
Our experimentation shows that these two approaches perform
about the same, so we selected two-messages approach and
present its evaluation results. For read request, the operations
are simply reversed. Data are fetched in units of file stripes
and read data is also cached at the delegate processes. The file
close operation is similar to file open, where delegate process
0 acts as a coordinator for all the delegate processes.

B. File Caching
We incorporate a file caching mechanism into the I/O del-

egation layer. Although caching is considered to be beneficial
mainly for repeated data access, this caching mechanism is the
essential component of I/O delegate layer aiming to improve
both write and read performance.

With the feature of file caching, small write requests can
be aggregated at the cache pages and later flushed to the file
system. The size of I/O operations to the file system are in the
units of cache page size, in our case also the file stripe size.
Similarly, small read requests to a single file stripe will result
in only multiple of stripe size read request at the delegate
process. File domain is logically partitioned in to file stripe
sized regions that are statically assigned to the delegates in
a round robin fashion. Due to the use of static file domain
strategy, local cache pages stored at an I/O delegate perfectly
map to file stripes handled by a unique I/O server. Figure 3
illustrates an example of such mapping for delegate D2 to
server OST2.

The caching policy used in our previous work [22], is a
greedy algorithm that caches the first requested data on the

delegates regardless the locking protocol implemented by the
underneath file system. Our new delegation implementation in-
corporates the ideas of taking the file system locking behavior
into concern. Static file domain assignment to the delegates
ensures that there is only one copy of file data. Metadata
information associated with a cache page is maintained by the
same delegate that holds the cache page. The fact that only one
delegate has access to the caching information of a file stripe,
eliminates the need of distributed locking mechanism like the
one proposed in [35], [36], [22]. In the absence of locking
requirements, no data communication is required amongst the
delegates for caching operations.

The caching mechanism keeps tracks of dirty segments in
each file stripe in the form of offset-length pairs. Coalescing of
two consecutive dirty ranges in the same stripe is performed
when a new request accesses the cached stripe. Coalescing
stops when a cache page is fully dirty. When flushing a cache
page, if it contains more than one dirty segment, a read-
modify-write will be performed. This approach allows one
read and one write per file stripe in the worst case and helps
avoiding unaligned I/O access by flushing partially filled cache
pages.

In addition to avoiding lock conflicts by using static file
domain mapping, we have achieved many performance bene-
fits from our caching design. The caching mechanism enables
aggregation of data across the multiple I/O calls, generates
stripe sized I/O which matches the stripe boundary of under-
lying file system, reduces read-modify-write operations and
hence the client-server communication cost.

C. Running I/O Delegates on Multi-core Compute Nodes

Modern high-performance computing systems are heading
towards constructing multi-core compute nodes architectures.
It would be interesting to explore the performance impact
of running I/O delegates, each on a single core of a multi-
core compute node. For file system perspective, all processes
running on a single compute node are handled by the sole
copy of client-side file system on that node, so lock requests
coming from different processes on the same node do not
cause any conflicts. We enable the I/O delegate system in
such a way that when more than one core per nodes are used
as delegate processes, the file domain assignment conforms
the mapping of the I/O servers to the delegate nodes, instead
of delegate cores. For example, in Figure 3, multiple cores
working as delegate processes in delegate node D0 are still
assigned stripes S0, S3, S6, · · ·. No matter how many cores
per nodes are used, file domain assignment remains same at
the delegate node level. This assignment guarantees no new
lock conflicts that would occur among the processes within
the same delegate node, while the I/O workload is shared by
more delegate processes.

D. MPI-IO Semantics

MPI-IO data consistency requirements differ from that of
POSIX’s [37]. POSIX’s semantics require that by the time a
write operation is returned, all other processes should maintain

5

sequential consistency and atomicity. On the other hand, MPI-
IO semantics require that by the time a write is returned,
only the processes in the same communicator group are
guaranteed to maintain semantics. Since I/O delegation system
is integrated in ROMIO, it is important that the MPI-IO data
consistency is not broken. The data cached at the I/O delegate
processes is available to all the application processes that
collectively open the shared file.

VII. EXPERIMENTATION

I/O Delegate System is evaluated on two large production
machines; Franklin, a Cray XT4 system at National Energy
Research Scientific Computing Center [21] and the TeraGrid
Intel-64 Cluster named Abe at the National Center for Super-
computing Applications [38]. Table VII describes the technical
summary of Franklin and Abe, as well as the file system
configurations used in evaluation. For performance evaluation,
we used one artificial benchmark from ROMIO test programs,
and two I/O kernels from production applications FLASH and
S3D. The I/O bandwidth numbers were calculated by dividing
the aggregate I/O amount by the time measured from the
beginning of file open until after file close.

For all three I/O applications, each process writes a fixed
size of data to the shared file(s). Thus, the total data size to be
written increases proportionally as the number of processes.
Although no explicit file synchronization is called in these
benchmarks, closing files flushes all the dirty cache data. We
have collected results up to 8192 application processes on
Franklin and 512 application processes on Abe. I/O delega-
tion system was evaluated with 4-6% and 9-12% additional
compute resources allocated as delegate processes. For eval-
uation purposes we have used 4 cores per compute node for
application processes, and 1 to 4 cores per node for delegate
processes, while the number of delegate nodes are kept either
a factor or multiple of the number of file system I/O servers.
Section VII-D from supplementary document demonstrates the
change in performance when number of delegate nodes are co-
prime to the number file servers.

A. S3D I/O
S3D solves fully compressible Navier-Stokes, total en-

ergy, species and mass continuity equations coupled with
detailed chemistry. The governing equations are solved on
a conventional three-dimensional structured Cartesian mesh.
A checkpoint is performed at regular intervals, and its data
consists primarily of the solved variables in 8-byte three-
dimensional arrays, corresponding to the values at the three-
dimensional Cartesian mesh points. During the analysis phase
the checkpoint data can be used to obtain several more derived
physical quantities of interest; therefore, a majority of the
checkpoint data is retained for later analysis. At each check-
point, four global arrays are written to files and they represent
the variables of mass, velocity, pressure, and temperature,
respectively. Mass and velocity are four-dimensional arrays
while pressure and temperature are three-dimensional arrays.
All four arrays share the same size for the lowest three spatial
dimensions X, Y, and Z, and they are all partitioned among

MPI processes along X-Y-Z dimensions in the same block
partitioning fashion. The length of the fourth dimension of
mass and velocity arrays is 11 and 3, respectively, and not
partitioned.

B. FLASH I/O
Variation in block numbers per MPI process is used to

generate a slightly unbalanced I/O load. Since the number of
blocks is fixed for each process, increasing the number of
MPI processes linearly increases the aggregate write amount.
FLASH I/O produces a checkpoint file and two visualization
files containing centered and corner data. The largest file is
the checkpoint, the I/O time of which dominates the entire
benchmark. FLASH I/O uses the HDF5 I/O interface to save
data along with its metadata in the HDF5 file format. Since
the implementation of HDF5 parallel I/O is built on top of
MPI-IO [39], the performance effects of I/O delegate caching
system can be observed in overall FLASH I/O performance.
To eliminate the overhead of memory copying in the HDF5
hyper-slab selection, FLASH I/O extracts the interiors of the
blocks via a direct memory copy into a buffer before calling
the HDF5 functions. There are 24 I/O loops, one for each of
the 24 variables. In each loop, every MPI process writes into a
contiguous file space, appending its data to the previous ranked
MPI process; therefore, a write request from one process does
not overlap or interleave with the request from another. In
ROMIO, this non-interleaved access pattern actually triggers
the independent I/O subroutines, instead of collective subrou-
tines, even if MPI collective writes are explicitly called.

FLASH I/O writes both array data and metadata through the
HDF5 I/O interface to the same file. Metadata, usually stored
at the file header, may cause unaligned write requests for array
data when using native MPI-IO.

C. Cache Eviction
This section provides evaluation and analysis of cache pages

eviction in I/O delegate. A full-dirty page is marked with
a high priority for flushing and are first ones to be evicted
under memory usage pressure. The metadata of each cache
page contains a time variable to record the last access time.
For page eviction, a least-recently-used (LRU) policy is used
amongst the fully dirty pages. At the file close, all the dirty
cache pages, fully dirty by now, are flushed to the file system.
If a page is to be evicted before it is fully dirty then only
the dirty segment is flushed. When flushing a cache page, if it
contains more than one dirty segment, a read-modify-write will
be performed. This approach allows one read and one write
per file stripe in the worst case and helps avoiding unaligned
I/O access by flushing partially filled cache pages.

We have performed additional experimentation to observe
the effect of varying memory pressures on overall I/O per-
formance. S3D I/O kernel is used with the sub-array size of
globally block-partitioned array along X-Y-Z dimensions, a
constant 50 × 50 × 50. This produces approximately 15.26
MB of write data per process per checkpoint. Keeping all other
parameters constant, we reduce the cache pool size to trigger
eviction.

6

TABLE I
COMPARISON OF TECHNICAL SPECIFICATIONS BETWEEN FRANKLIN AND ABE

Specification Franklin Abe
Number of Compute Cores 38,288 9,600
Processor Cores per Node 4 8 (Dual socket quad core)

Number of Compute Nodes 9,572 1,200
Processor Intel 64, 2.33 GHz Opteron 2.3 GHz Quad Core
Memory 8 GB/node (2 GB/core) 8 GB/node (1 GB/core)

Network Interconnect SeaStar2 InfiniBand
Compute Node Operating System Compute Node Linux (CNL) Red Hat Enterprise Linux 4 (Linux 2.6.18)

Parallel Programming Models Cray MPICH2 MPI MVAPICH 2 (v. 2-1.2)
File System Lustre v. 1.6.5-2 (Two /scratch file systems; 436 TB) Lustre (100 TB) v. 1.6

Number of OSTs 48 for each scratch (used 48) 180 (used 128)
Theoretical IO Bandwidth 350 MB/sec x 48 = 16.4 GB/sec -

File Stripe Size (Smallest Lock granularity) 1 MB 1 MB

Fig. 10. Time distribution of I/O operations of S3D I/O kernel on
Franklin under varying cache pool sizes. Number of Checkpointing Files
= 10, Number of Application Processes = 4096, Number of Delegates =
192, Data Generated = 610.35 GB, Data/Delegate/File 325.12 MB (No
Eviction). Cache pool size is 2GB/delegate so data fits in the cache and
flushed at MPI_file_close() only. MPI_file_write() time mainly
encompasses communication, cache management, memory copy etc. (Full
Page Eviction). Cache pool size is 256MB/delegate, so cache page eviction
occurs during MPI_file_write() calls. Eviction of Fully dirty pages
alleviates some flushing cost at the time of MPI_file_close(). Overall
I/O time remains the same.

If the total data received by a delegate do not fit in the cache
pool then some of the pages are flushed to file system during
MPI_file_write(). If data fits in the delegate cache pool
then cache pages are flushed during MPI_file_close().
Figure 10 shows time spent in MPI_file_write() and
MPI_file_close() with and without cache pages evic-
tion. In this evaluation, data received by each delegate is
approximately 325.12 MB. Cache pool size per delegate is
varied from 2GB to 256 MB.

For first case, cache pool size is big enough to not to
cause any eviction before file close. We can see that only
a small fraction of the total time is spent in performing
MPI_file_write() calls. File close takes most of the time
as in the absence of eviction, all the I/O is performed at file
close. In this case I/O accesses at close time are file stripe
aligned which is the lock boundary for Lustre.

In second case, cache pool size per delegate is limited
to 256 MB. In this case eviction will be triggered dur-
ing MPI_file_write() operation to accommodate in-

coming accesses. Delegate cache may be able to hold ap-
proximately maximum of 78% of the total data in the
memory at a given time. Eviction policy is such that the
fully dirty cache pages are chosen to evict. In this ex-
ample an average of 69.5 pages per delegate per check-
pointing file were evicted. Overall time taken by these
two cases is almost the same but there is shift of timing
from MPI_file_close() to MPI_file_write(). Now
MPI_file_write() takes more time to complete because
of eviction while MPI_file_close() time is much less
than first case. That essentially means that there are less cache
pages to flushed at close time because significant portion of
evicted data consisted of fully dirty pages.

Time taken by other components of application include file
open operation, cost of cache management, and memory copy
etc.

From this evaluation we know that eviction does not hurt the
performance in I/O delegation if fully dirty pages are chosen
for eviction. It just shifts time taken in this flushing from
MPI_file_close() to MPI_file_write().

D. Exploring Extent Based Locking Algorithm

Lustre’s internal extent based lock implementation is adapt-
able to the I/O load and access patterns. Lock heuristic changes
with changing number of clients contending for the locks. It
is possible that locks may be granted according to different
heuristics, depending on the arrival time of the requests to a
shared file.

Each I/O server is the lock manager of the stripes stored on
that server and it grants the locks growing downwards covering
all the stripes to the largest uncontended extent. If the number
of processes contending for locks is more than an internally
specified threshold, locks will grow only upward[40]. If some
of the locks are already held by a set of clients before upward
lock extension is triggered, then the clients do not have to
give up the locks they previously held. New requests may be
granted locks grown upward until the uncontended extent. As
I/O delegate flushes stripe by stripe in ascending order of their
offsets, alternated by other stripes from other clients, mix of
downward and upward grown locks may prevent unnecessary
lock relinquishing. This scenario may prevent degradation of
I/O performance.

In figure 7(c), it is difficult to identify the effect of contin-
uous changing of lock acquisition heuristics during the execu-

7

(c)(b)(a)
1024
2048
4096

I/O Time (Mapped)
Comm Time(Mapped)
I/O Time (Unmapped)

Comm Time(Unmapped)

4948 96 14
4

20
1

19
2

14
597

 0

 20

 40

 60

 80

 100

48 96 14
4

20.54

42.58

82.41

10.4

8192

MappedUnmapped

I/O Time Vs Problem Size (Mapped)S3DIO −I/O Bandwidth (2048) S3DIO − Time (2048)

Ti
m

e
(s

ec
)

Ti
m

e
(s

ec
)

I/O
 B

an
dw

id
th

 (G
B/

se
c)

 70
 60
 50
 40
 30
 20
 10

 0

 14
 12
 10

 8
 6
 4
 2
 0

38
4

19
248 96 20
1

19
29749 14
5

14
4

Number of Delegate Processes

Fig. 11. S3D IO Kernel Analysis on Franklin: (a) I/O Performance comparison of perfectly mapped and unmapped I/O access patterns
generated by I/O delegate system for a fixed problem size (b) Breakdown analysis of total time spent in communication and system I/O.
Unmapped delegates-to-server case provides much slower I/O as compared to mapped case, while communication time is unchanged (c) I/O
time for perfectly mapped I/O access patterns with increasing problem size.

tion of an application. We conducted an additional set of ex-
periments with relatively larger number of delegates accessing
an I/O server. We have conducted some additional experiments
to compare performance of mapped and unmapped delegate-
to-server assignment strategies shown in figures 4 and 5.

Figure 11(a) shows I/O bandwidths achieved by both
mapped and unmapped delegates-to-server cases. By keeping
everything else constant, we vary the number of I/O delegates
to observe any change in I/O performance. If the number of
delegates is a co-prime to the number of I/O servers then all
the delegates access all the servers, and such I/O pattern limits
the advantages of extent based locking protocol. Given the
number of I/O servers 48 on Franklin, we chose the number
of delegates 49, 97, 145, and 201 to violate delegates-to-
server mapping. It is evident from figure 11 that I/O bandwidth
decreases significantly for unmapped delegates-to-server case.
On the other hand, mapped case provides much higher I/O
bandwidth than unmapped case.

Figure 11(b) provides a break down analysis of total time
spent in performing I/O operations. Total time spent in com-
pleting the I/O operations can be divided in to two main
components 1) I/O time, and 2) Communication time. We
measured the time spent in the write() calls and refer them
as I/O time. The rest of the time is referred as communication
time, as the operations are mostly data transfer between
application and delegate processes.

Figure 11(b) shows the communication and I/O time for
both mappings from figure 11(a). This chart shows that
communication time does not deviate much by changing the
number of delegate processes from a ‘multiple of servers’ to
the closest ‘co-prime’ but I/O time increases drastically. Also
Figure 11(b) confirms that dramatic decrease in I/O bandwidth
in unmapped case is (figure 11 (a)) triggered by the slow I/O
only. In case of mapped delegate-to-server case, the number
of delegate processes accessing one I/O server is limited to
1, 2, 3, and 4 only. By the adaptive nature of lock granting
heuristic, we expect some benefits from extent based locking

protocol even though multiple delegates accesses one server.
Changing the number of delegates from 48 to 49 violates
the perfect mapping between delegates-and-I/O servers. As
each I/O server is contended by all the delegates, extensive
lock confliction at I/O servers may be introduced. Lustre lock
acquisition heuristic may adapt to this development by limiting
or suspending extent based locking. For mapped case, no
I/O performance degradation is seen in figure 7(c) and 11(b)
with the increase in number of delegates. We attribute this
observation to dynamic adaptation of extent based locking
heuristics during he life time of an application. We believe
that in changing the direction of lock growth may only benefit
the clients which are holding the downward grown locks. We
conclude that by keeping the number minimal we may avoid
serious performance degradation.

Another lock acquisition heuristic comes into the effect
when even larger number (32 and above for Franklin) of clients
access an I/O server. For more than 32 clients accessing an I/O
server, extension of lock is limited to 32 MB range only. When
a large number of clients are accessing one server, reducing
the range of lock extension may help reducing the overheard
of lock acquiring-relinquishing-reacquiring phase. This will
essentially allow all the process to compete in the range of
32 MB only[40].

Unmapped case performs slower than mapped case but as
the number of delegates are increased, unmapped case im-
proves gradually. In fact, the I/O time of unmapped delegate-
to-server case decreases with the increase in number of del-
egates accessing the shared file. This may also be attributed
to the adapted lock heuristic. When lock is highly contended,
Lustre switches from extent-based mode to as-requested mode
and hence avoids further lock conflicts.

For perfect mapping between delegate-to-servers, chart 11
(c) demonstrates the effect of increased problem size on I/O
component to the total time. Each curve in this chart represents
the I/O time for a specific problem size with varying number
of I/O delegate processes. Problem size is doubled by doubling

8

the number of application processes from 1024 to 2048 and so
on. We observe that as the problem size is doubled, I/O time
is also doubled and does not deteriorate further. This shows
that if a perfectly mapped I/O access pattern is chosen then
the I/O cost may longer be a bottleneck with growing problem
size.

These results advocate that in order to utilize extent based
protocol to the full of its potential we need to minimize the
number of clients per I/O server.

REFERENCES

[1] General Parallel File System. http://www-
03.ibm.com/systems/clusters/software/gpfs/index.html.

[2] Frank B. Schmuck and Roger L. Haskin. GPFS: A shared-disk file
system for large computing clusters. In Darrell D. E. Long, editor,
FAST, pages 231–244. USENIX, 2002.

[3] Peter J. Braam et al. The Lustre Storage Architecture. www.lustre.org.
[4] Lustre: A Scalable, High-Performance File System. Whitepaper, 2003.
[5] Feiyi Wang, Sarp Oral, Galen Shipman, Oleg Drokin, Tom Wang, and

Isaac Huang. Understanding lustre filesystem internals. White pa-
per, Oak Ridge National Laboratory. http://wiki.lustre.org/images/d/da/
Understanding Lustre Filesystem Internals.pdf, April 2009. Available
online (76 pages).

[6] R. Ross, R. Latham, W. Gropp, R. Thakur, and B. Toonen. Implementing
mpi-io atomic mode without file system support. In CCGRID ’05:
Proceedings of the Fifth IEEE International Symposium on Cluster
Computing and the Grid (CCGrid’05) - Volume 2, pages 1135–1142,
Washington, DC, USA, 2005. IEEE Computer Society.

[7] Juan Miguel del Rosario, Rajesh Bordawekar, and Alok Choudhary. Im-
proved parallel i/o via a two-phase run-time access strategy. SIGARCH
Comput. Archit. News, 21(5):31–38, 1993.

[8] Rajeev Thakur, William Gropp, and Ewing Lusk. Data sieving and
collective i/o in romio. In In Proceedings of the Seventh Symposium on
the Frontiers of Massively Parallel Computation, pages 182–189. IEEE
Computer Society Press, 1998.

[9] Message Passing Interface Forum. MPI: A Message Passing
Interface Standard, Version 1.1, June 1995. http://www.mpi-
forum.org/docs/docs.html.

[10] David Kotz. Disk-directed I/O for MIMD Multiprocessors. In OSDI,
pages 61–74, 1994.

[11] Wei keng Liao, Kenin Coloma, Alok Choudhary, Lee Ward, Eric Russell,
and Neil Pundit. Scalable design and implementations for mpi parallel
overlapping i/o. IEEE Transactions on Parallel and Distributed Systems,
17(11):1264–1276, 2006.

[12] Kenin Coloma, Avery Ching, Alok N. Choudhary, Wei keng Liao,
Robert B. Ross, Rajeev Thakur, and Lee Ward. A new flexible MPI
collective I/O implementation. In CLUSTER. IEEE, 2006.

[13] Nawab Ali, Philip H. Carns, Kamil Iskra, Dries Kimpe, Samuel Lang,
Robert Latham, Robert B. Ross, Lee Ward, and P. Sadayappan. Scalable
i/o forwarding framework for high-performance computing systems. In
CLUSTER, pages 1–10. IEEE, 2009.

[14] Javier Garcı́a Blas, Florin Isaila, Jesús Carretero, Robert Latham, and
Robert Ross. Multiple-level MPI file write-back and prefetching for
Blue Gene systems. In Proc. of the 16th European PVM/MPI User’s
Group Meeting (Euro PVM/MPI 2009), September 2009.

[15] Seetharami Seelam, I-Hsin Chung, John Bauer, Hao Yu, and Hui-Fang
Wen. Application level i/o caching on blue gene/p systems. In IPDPS,
pages 1–8. IEEE, 2009.

[16] Yong Chen, Xian-He Sun, Rajeev Thakur, Huaiming Song, and Hui
Jing. Improving parallel i/o performance with data layout awareness. In
CLUSTER, 2009.

[17] R. Thakur, W. Gropp, and E. Lusk. Users Guide for ROMIO: A
High-Performance, Portable MPI-IO Implementation. Technical Report
ANL/MCS-TM-234, Mathematics and Computer Science Division, Ar-
gonne National Laboratory, October 1997.

[18] Wei-keng Liao and Alok Choudhary. Dynamically adapting file domain
partitioning methods for collective i/o based on underlying parallel
file system locking protocols. In SC ’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, pages 1–12, Piscataway, NJ,
USA, 2008. IEEE Press.

[19] Dick Oswald David Knaak. Optimizing MPI-IO for Applications on
Cray XT Systems. White paper, Cray Inc, May 2009. Available online
(20 pages).

[20] Mark Pagel, Kim McMahon, and David Knaak. Scaling the MPT
software on the cray XT5 system and other new features. In Cray XT
Cray Users’ Group Meeting, May 4-7, 2009, Atlanta, GA., May 2009.

[21] Franklin (Cray xt4). http://www.nersc.gov/nusers/resources/franklin/.
[22] Arifa Nisar, Wei-keng Liao, and Alok Choudhary. Scaling parallel I/O

performance through I/O delegate and caching system. In SC ’08:
Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
pages 1–12, Piscataway, NJ, USA, 2008. IEEE Press.

[23] George Almasi, Charles Archer, Jose G. Castanos, C. Chris Erway,
Philip Heidelberger, Xavier Martorell, Jose E. Moreira, Kurt Pinnow,
Joe Ratterman, Nils Smeds, and Burkhard. Implementing MPI on the
BlueGene/L Supercomputer.

[24] R. D. Loft. Blue Gene/L Experiences at NCAR. In IBM System Scientific
User Group meeting (SCICOMP11), 2005.

[25] José E. Moreira, Michael Brutman, José G. Castaños, Thomas En-
gelsiepen, Mark Giampapa, Tom Gooding, Roger L. Haskin, Todd
Inglett, Derek Lieber, Patrick McCarthy, Michael Mundy, Jeff Parker,
and Brian P. Wallenfelt. Blue gene system software - designing a highly-
scalable operating system: the blue gene/l story. In SC, page 118. ACM
Press, 2006.

[26] Kamil Iskra, John W. Romein, Kazutomo Yoshii, and Pete Beckman.
Zoid: I/o-forwarding infrastructure for petascale architectures. In PPoPP
’08: Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and practice of parallel programming, pages 153–162, New York, NY,
USA, 2008. ACM.

[27] The zeptoos project. http://www.zeptoos.org/.
[28] Hao Yu, R. K. Sahoo, C. Howson, George. Almasi, J. G. Castanos,

M. Gupta, Jose. E. Moreira, J. J. Parker, T. E. Engelsiepen, Robert Ross,
Rajeev Thakur, Robert Latham, and W. D. Gropp. High performance
file I/O for the BlueGene/L supercomputer. In Proceedings of the 12th
International Symposium on High-Performance Computer Architecture
(HPCA-12), February 2006.

[29] Phillip M. Dickens and Jeremy Logan. Towards a high performance
implementation of MPI-IO on the Lustre file system. In Proceedings of
GADA’08: Grid computing, high-performAnce and Distributed Applica-
tions. Monterrey, Mexico, November 2008.

[30] L. M. Sánchez Garcı́a, Florin Isaila, Félix Garcı́a Carballeira, Jesús Car-
retero Pérez, Rolf Rabenseifner, and Panagiotis A. Adamidis. A new i/o
architecture for improving the performance in large scale clusters. In
Marina L. Gavrilova, Osvaldo Gervasi, Vipin Kumar, Chih Jeng Kenneth
Tan, David Taniar, Antonio Laganà, Youngsong Mun, and Hyunseung
Choo, editors, ICCSA (5), volume 3984 of Lecture Notes in Computer
Science, pages 108–117. Springer, 2006.

[31] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-
directed collective i/o in panda. In In Proceedings of Supercomputing
'95, 1995.

[32] Bill Nitzberg and Virginia Lo. Collective buffering: Improving parallel
I/O performance. In HPDC ’97: Proceedings of the 6th IEEE Interna-
tional Symposium on High Performance Distributed Computing, page
148, Washington, DC, USA, 1997. IEEE Computer Society.

[33] Robert Bennett, Kelvin Bryant, Joel Saltz, Alan Sussman, and Raja
Das. Framework for optimizing parallel i/o. Technical report, Univ.
of Maryland Institute for Advanced Computer Studies Report No.
UMIACS-TR-95-20, College Park, MD, USA, 1995.

[34] Robert Bennett, Kelvin Bryant, Alan Sussman, Raja Das, and Joel Saltz.
Jovian: A Framework for Optimizing Parallel I/O. In Proceedings of the
Scalable Parallel Libraries Conference, pages 10–20, Mississippi State,
MS, 1994. IEEE Computer Society Press.

[35] Wei keng Liao, Avery Ching, Kenin Coloma, Alok N. Choudhary, and
Lee Ward. An Implementation and Evaluation of Client-Side File
Caching for MPI-IO. In IPDPS, pages 1–10. IEEE, 2007.

[36] Wei keng Liao, Avery Ching, Kenin Coloma, Arifa Nisar, Alok Choud-
hary, Jackie Chen, Ramanan Sankaran, and Scott Klasky. Using MPI file
caching to improve parallel write performance for large-scale scientific
applications. In SC. The ACM/IEEE Conference on Supercomputing,
November 2007.

[37] R. Thakur, W. Gropp, and E. Lusk. On Implementing MPI-IO Portably
and with High Performance. In the Sixth Workshop on I/O in Parallel
and Distributed Systems, pages 23–32, May 1999.

[38] Abe (teragrid intel-64 cluster)
. http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/Intel64Cluster/.

[39] HDF Group. Hierarchical Data Format, Version 5. The National Center
for Supercomputing Applications. http://hdf.ncsa.uiuc.edu/HDF5.

[40] Lustre mailing list. http://www.mail-archive.com/lustre-
discuss@lists.lustre.org/msg05640.html.

9

http://wiki.lustre.org/images/d/da/Understanding_Lustre_Filesystem_Internals.pdf
http://wiki.lustre.org/images/d/da/Understanding_Lustre_Filesystem_Internals.pdf

	Introduction
	Design and Development
	Static File Domain Mapping
	Delegate-to-Server Mapping

	Experiment Results
	S3D I/O Kernel
	I/O Delegation on Multi-core Platform

	FLASH I/O Kernel
	ROMIO Benchmark

	Conclusions and Future Work
	Acknowledgements
	References
	Biographies
	Arifa Nisar
	Wei-keng Liao
	Alok Choudhary

