
J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 1093–1097, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Flow Monitoring in High-Speed Networks with 2D Hash
Tables

David Nguyen, Joseph Zambreno, and Gokhan Memik

Department of Electrical and Computer Engineering
Northwestern University
Evanston, Illinois 60208

{dnguyen, zambro1, memik}@ece.northwestern.edu

Abstract. Flow monitoring is a required task for a variety of networking appli-
cations including fair scheduling and intrusion/anomaly detection. Existing
flow monitoring techniques are implemented in software, which are insufficient
for real-time monitoring in high-speed networks. In this paper, we present the
design of a flow monitoring scheme based on two-dimensional hash tables.
Taking advantage of FPGA technology, we exploit the use of parallelism in our
implementation for both accuracy and performance. We present four tech-
niques based on this two-dimensional hash table scheme. Using a simulation
environment that processes packet traces, our implementation can find flow in-
formation within 8% of the actual value while achieving link speeds exceeding
60 Gbps for a workload with constant packet sizes of 40 bytes.

1 Introduction

There is a tremendous growth in the complexity of networking applications. Many
applications (such as QoS, fair packet scheduling, intrusion/anomaly detection, fire-
walls, traffic engineering) require flow information1 [5]. Because of increasing wire
speeds, there is a need for hardware-based flow monitoring techniques in high-speed
networks. However, most routers do not implement flow monitoring. The existing
solutions, which also include software solutions, are either too slow or inaccurate.

In this paper, we present four novel techniques utilizing a two dimensional hash
table to gather flow information. We implement our Flow Monitoring Unit (FMU)
using a Xilinx Virtex II XC2V8000 [8] chip and achieve throughput speeds up to 73
Gbps without sacrificing accuracy. We observe different designs perform better for
certain workloads/requirements. Because network traffic profiles are all unique,
FPGAs are an attractive implementation choice for their reconfigurable properties.

In Section 2, we explain the flow monitoring techniques. Section 3 presents the
FPGA implementation. In Section 4, we discuss the experimental results and Section
5 concludes the paper.

1 In this paper, the terms flow and session are used interchangeably; both correspond to a TCP

session. Hence, flow information is statistics (such as total traffic generated) about a TCP
connection collected at a router.

1094 D. Nguyen, J. Zambreno, and G. Memik

2 Flow Monitoring Unit (FMU)

2.1 Queries

The host machine uses the FMU unit by sending two types of queries.
UPDATE(k, v) : Increase the value of the key k by v.
GET(k) : Return the value for the key k.
The key k is a combination of five TCP packet header fields: source IP, destination

IP, source port, destination port, and protocol. In our design, the FMU stores the
number of packets for each flow. Note, while tracking different flows, it is possible
for collisions to occur. Therefore, the GET query does not always return the correct
value. We will discuss this in Section 4 with error analysis.

2.2 Flow Monitoring Techniques

As mentioned, our FMU is based on hashing. We chose the Jenkins hash function [4]
for this study for its proven performance for hash tables. For a two-dimensional hash
function with dimensions NxS, there are N hash tables each with S elements. Each of
these tables is addressed by a different hash function2. The GET(k) function takes
the results from each hash table N and uses one of the following techniques:

Min FMU: The simplest technique is called the min FMU (MIFMU). MIFMU
reads the corresponding values from the tables and returns the smallest value. This
method is most accurate for large flows.

min {Ti[hi(k)]}, }1,..,0{ −∈∀ Ni
Median FMU: The second technique is the median FMU (MEFMU). As stated,

this method returns the median of the values (corrected with a balanced hash factor
sum/S) from the tables for a key k.

median {Ti[hi(k)] –
S

sum
}, }1,..,0{ −∈∀ Ni

Collision Estimate FMU: The collision estimate FMU (CEFMU) estimates the
number of collisions for each hash bucket and returns the output values according to a
collision counter. The collision counter is incremented when the current access does
not match the last access to the hash table. An additional table (Ci[hi(k)]) stores
the collision counters. This method is most accurate for small flows.

min {Ti[hi(k)] – Ci[hi(k)]}, }1,..,0{ −∈∀ Ni
Hybrid FMU: The final technique is the hybrid FMU (HYFMU), which runs both

CEFMU and MIFMU techniques in parallel and returns one value. Again by virtue of
FPGA design, there is a negligible performance hit. A threshold value is used to se-
lect the hybrid value. HYFMU subtracts the output of CEFMU from the output of

2 In our implementation, to achieve equal timing, we utilized the same hash function with

different hash seeds to generate the effect of different hash functions.

Flow Monitoring in High-Speed Networks with 2D Hash Tables 1095

MIFMU. Given a threshold, MIFMU is used for larger estimates and CEFMU for
smaller estimates.

3 FPGA Implementation

We implemented the FMU using the Synplify Pro synthesis tool [7] and Xilinx De-
sign Manager implementation tools. We chose Xilinx VirtexII XC2V8000 FPGA as
our target chip. The FMU architecture is presented in Figure 1. According to the
FMU type (MIFMU, MEFMU, CEFMU, HYFMU), the selection mechanism returns
the corresponding output. The resource limit for this chip was memory (S=80,000
entries) for the hash tables. This fact favors using two-dimensional hash tables. For
one, there is smaller access latency because multiple smaller tables are accessed in
parallel. Also, the two-dimensional hash table design inherently performs better than
a single hash table.

Fig. 1. Overview of the FMU

Table 1 presents the critical path for different FMU designs. Extensive pipelining
increases the overall throughput significantly. The rightmost column of Table 1 pres-
ents the corresponding maximum bandwidth supported for GET queries. This value is
calculated for constant packet sizes of 40 bytes.

Table 1. The latency of critical paths of various FMU components

Configuration Critical Path Delay Max. Bandwidth

N = 1, S = 8K 6.63 ns. 48.3 Gbps

N = 4, S = 2K, MIFMU 4.33 ns 73.9 Gbps

N = 4, S = 2K, MEFMU 4.99 ns. 64.1 Gbps

N = 4, S = 2K, CEFMU 4.33 ns. 73.9 Gbps

N = 4, S = 2K, HYFMU (combining min and CE) 4.99 ns. 64.1 Gbps

4 Experimental Results

In this section, we present the simulation results for the different FMU techniques
(MIFMU, MEFMU, CEFMU, and HYFMU as explained in Section 2.2) we have
developed. We implemented a simulator that processes NLANR packet traces [6] and

1096 D. Nguyen, J. Zambreno, and G. Memik

executes the FMU techniques. For error analysis, the simulator finds the exact num-
ber of packets for each flow in a packet trace. We report the error rate, which is the
average error for finding flow size of all the flows in a trace.

First, we compare different FMU techniques. Figure 2 presents the average error
rates for the four FMU techniques and varying table size S=500 to S=16000 entries.
We set the number of parallel hash functions to N=4. The CEFMU technique has the
best overall performance for varying configurations. For the largest setup, N=4 and
S=16,000, HYFMU gives the best performance with an error rate of 7.3% obviously
because it employs both MIFMU and CEFMU methods.

Fig. 2. Average error rates of various FMU techniques.

4.1 Sensitivity Analysis

For sensitivity analysis, we fix the total size for the hash tables (S) and vary the
number of parallel hash functions (N) to find the optimal parallelism. The results for
Stotal=32K entries are presented in Figure 3. For all techniques except MEFMU,
increasing the number of parallel hash functions initially results in a reduction in the
error rate. Particularly, for Stotal=32K, the error rate reduces from 69% to 17%, from
59% to 11%, and from 63% to 19% for MIFMU, CEFMU, and HYFMU, respec-
tively. The CEFMU technique, on the other hand, improves its performance slightly
until N=4. This is because CEFMU is more immune to collisions, which occur more
frequently in smaller hash tables. CEFMU is designed to perform well under these
circumstances.

Fig. 3. Error rates for a total table size Stotal=32K.

Flow Monitoring in High-Speed Networks with 2D Hash Tables 1097

5 Conclusions

Flow monitoring is an important task in computer networks. However, almost all
techniques are implemented in software and designing hardware for them is very hard
if not impossible. With the increase in the link speeds and the wider usage of flow
information, hardware flow monitoring is becoming essential for most state-of-the-art
routers. In this paper, we presented a hardware flow monitoring design implemented
on FPGAs. The FMU unit is based on two-dimensional hashing. With hashing, it has
two major advantages over alternative techniques. First, high speeds can be achieved.
And second, the access latency to any data is constant. Clearly, any inaccuracies are a
result of depending on the performance of the hash function. Multiple hash functions
running in parallel on an FPGA alleviates the inherent accuracy penalty. We have
applied four different techniques to address this problem. The best technique
(HYFMU), which combines CEFMU and MIFMU, can process 200M packets per
second (corresponding to a link speed of 64 Gbps for 40-byte packets), while having
an average error rate of 7.3%.

References

1. Arsham, H. Time Series Analysis and Forecasting Techniques,
http://obelia.jde.aca.mmu.ac.uk/resdesgn/arsham/opre330Forecast.htm

2. Carter, J. and M. Wegman, Universal classes of hash functions. Journal of Computer and
System Sciences, 1979, 18: p. 143--154.

3. Cheung, O. Y. H., P. H. W. Leong. Implementation of an FPGA Based Accelerator for
Virtual Private Networks. In IEEE International Conference on Field-Programmable Tech-
nology (FPT’ 02), Dec. 2002. Hong Kong, China.

4. B. Jenkins, Hash Functions and Block Ciphers,
http://www.burtleburtle.net/bob/hash/index.html

5. C. Madson, , L. Temoshenko, C. Pellecuru, B. Harrison, and S. Ramakrishnan, IPSec Flow
Monitoring MIB Textual Conventions. Mar. 2003, Internet Engineering Task Force.

6. NLANR Project. Network Traffic Packet Header Traces, http://moat.nlanr.net/Traces
7. Synplicity Inc. Synplify Pro: The Most Powerful HDL Synthesis Solution for Multi-Million

Gate Programmable Logic Designs, 2000, www.synplify.com
8. Xilinx Inc., SPEEDRouter v1.1 Product Specification. Oct. 2001.

	Introduction
	Flow Monitoring Unit (FMU)
	Queries
	Flow Monitoring Techniques

	FPGA Implementation
	Experimental Results
	Sensitivity Analysis

	Conclusions

