

D.J.K. Mewhort et al. (Eds.): HPCS 2009, LNCS 5976, pp. 304–322, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Failure Data-Driven Selective Node-Level Duplication to
Improve MTTF in High Performance Computing

Systems

Nithin Nakka and Alok Choudhary

Department of Electrical Engineering and Computer Science
Northwestern University

2145 Sheridan Rd, Tech Inst. Bldg., EECS Dept., Evanston IL 60201
{nakka,choudhar}@eecs.northwestern.edu

Abstract. This paper presents our analysis of the failure behavior of large scale
systems using the failure logs collected by Los Alamos National Laboratory on
22 of their computing clusters.We note that not all nodes show similar failure
behavior in the systems. Our objective, therefore, was to arrive at an ordering of
nodes to be incrementally (one by one) selected for duplication so as to achieve
a target MTTF for the system after duplicating the least number of nodes. We
arrived at a model for the fault coverage provided by duplicating each node and
ordered the nodes according to coverage provided by each node. As compared
to traditional approach of randomly choosing nodes for duplication, our
model‐driven approach provides improvements ranging from 82% to 1700%
depending on the improvement in MTTF that is targeted and the failure distri-
bution of the nodes in the system.

Keywords: Fault-tolerance, Mean Time To Failure, Duplication, Partial
Duplication.

1 Introduction

Computers are being employed increasingly in highly mission- and life-critical and
long-running applications. In this scenario, there is a corresponding demand for high
reliability and availability of the systems. Since failures are inevitable in a system, the
best use of the bad bargain is to employ fault-detection and recovery techniques to
meet the requirements. Mean Time to Failure (MTTF) (commonly also referred to as
Mean Time Between Failures (MTBF)) is an important well-accepted measure for the
reliability of a system. MTTF is the time elapsed, on an average, between any two
failures in the component being studied.

Broadly speaking, two types of applications demand high reliability – (i) those
which can be stopped and their state captured at a suitable point and their execution
resumed at a later point in time from the captured state, also called the checkpointed
state, (ii) those programs that cannot be interrupted and need to execute for a mini-
mum amount of time, till the application (or the mission) is completed. Most long-
running scientific applications are examples of applications in the former category.

 Failure Data-Driven Selective Node-Level Duplication to Improve MTTF 305

They require efficient mechanisms to take checkpoints of the entire state of the appli-
cation at a suitable point, and effective techniques to detect failures so as to roll back
execution to the checkpointed state. For applications in the latter category, such as
systems and software for flight, or spacecraft control, a time for the length of the mis-
sion (or mission time) is pre-determined and appropriate fault-tolerance techniques
need to be deployed to ensure that the entire system does not fail within the mission
time. The mission time of a flight system directly determines the length of its travel
and is a highly critical decision point.

The MTTF of a system is an estimate of the time for which the system can be ex-
pected to work without any failures. Therefore, for applications that can be check-
pointed MTTF could be used to determine the checkpointing interval, within which
the application’s state must be checkpointed. This would ensure that the checkpoint
state itself is not corrupted and hence by rolling back to this state on detecting a fail-
ure the application will continue correct execution. For applications of the latter cate-
gory, the MTTF can be used to determine the mission time, before which the system
executes without any failure.

Understanding the failure behavior of a system can greatly benefit the design of
fault-tolerance and reliability techniques for that as well as other systems with similar
characteristics and thereby increasing their MTTF. Failure and repair logs are a valu-
able source of field failure information. The extent to which the logs aid in reliable
design depends on the granularity at which the logging is performed. System level
logs could assist in system-wide techniques such as global synchronous checkpointing
etc. However, logging at a finer granularity, like that at the node-level, improves the
effectiveness of techniques applied at the node level. An important observation that
we make in this paper is that, “All nodes in a system are not equal” (either by func-
tionality or by failure behavior). We attempt to take into account the logical (in the
network configuration) locations of a node in the system, in reconciling its observed
failure behavior.

Node-level reliability information also helps in designing and deploying techniques
such as duplication selectively to the most critical portions of the system. This de-
creases setup, maintenance and performance costs for the system. Furthermore, with a
framework for selective fault-tolerance in place the techniques could be customized to
meet the specific reliability requirements of the application. In this paper we show
how node-level duplication can be customized to meet an application’s target MTTF.

The key contributions of this work are:

1. Analysis of node-level failures and their correlation with system and network con-
figuration.

2. Data-driven estimation of the coverage provided for selective duplication of nodes
in the system.

3. A methodology for selecting an optimal or near-optimal subset of the nodes that
need to be duplicated to achieve the MTTF requirements of the application.

Description of Systems under Study and Data Sets
Los Alamos National Laboratory has collected and published data regarding the fail-
ure and usage of 22 of their supercomputing clusters. This data was previously ana-
lyzed by Schroeder et. al. from CMU to study the statistics of the data in terms of the
root cause of the failures, mean time between failures and the mean time to repair.

306 N. Nakka and A. Choudhary

Table 1 provides the details of the systems. In the “Production Time” column the
range of times specifies the node installation to decommissioning times. A value of
“N/A” indicates that the nodes in the system have been installed before the observa-
tion period began. For these machines, we consider the beginning of the observation
period (November 1996) as the starting date for calculating the production time. For
some machines, multiple ranges of production times have been provided. This is
because the systems have been upgraded during the observation period and each pro-
duction time range corresponds to set of nodes within the system. For the sake of
simplicity, for all such machines, we consider the production time to be the longest
range among the specified ranges.

The failure data for a single system includes the following fields:

System: The number of the system under study (as referred to by Los Alamos
Laboratory)

machine type: The type of the system (smp, cluster, numa)
number of nodes: The number of nodes in the system
number of processors per node: Some systems are heterogenous in that they contain

nodes with different number of processors per node
number of processors total: Total number of processors in the system

= , where for a system, is the number of node types in the system,

 is the number of nodes of type and is the number of processors in a node of

type .
node number starting with zero: This node numbering is provided by Los Alamos

so as to maintain consistency among all systems in terms of node numbering for eas-
ier comparison of systems.

install date: Date that the node was installed in the system. Since the systems under
study were upgraded during the period of study, this field can vary for nodes within a
system

production date: Date, after the installation date, where the node has been tested
for initial burn-in effects and known operational failures, so that the node could be
used to run production applications.

decommission date: Date that the node was removed from the system.
field replacable unit type: Whether on a failure the repair procedure involves re-

placing the entire unit or a portion of it.
memory: the amount of memory on the node
node purpose: The function of the node in the overall system: (i) compute, (ii)

front end, (iii) graphics or a combination of the three such as graphics.fe (both graph-
ics and front end).

Problem Started (mm/dd/yy hh:mm): The time of occurrence of the failure event.
This is logged by an automated fault detection engine.

Problem Fixed (mm/dd/yy hh:mm): The time at which the failure was repaired and
the system restored. This is logged by the administrators and repair staff.

Down Time: The time elapsed between the occurrence of the problem and restora-
tion of the system.

 Failure Data-Driven Selective Node-Level Duplication to Improve MTTF 307

The root cause for the failures is classified in the following categories: (i) Facili-
ties, (ii) Hardware, (iii) Human Error, (iv) Network, (v) Undetermined, or, (vi) Soft-
ware.

Table 1. Characteristics of Systems under study

System
Type Category

System
Number

Num
nodes

procs
in node

procs
Network
Topology

Production
Time

Remarks

A smp 7 1 8 8
Not

Applicable
N/A – 12/99

B smp 24 1 32 32
Not

Applicable
N/A – 12/03

C smp 22 1 4 4
Not

Applicable
N/A – 04/03

D cluster 8 164 2 328
GigaBit

Ethernet Tree
04/01 – 11/05
u12/02 – 11/05

cluster 20 256 4 1024 12/01 – 11/05
cluster 21 128 4 512 09/01 – 01/02
cluster 18 1024 4 4096 05/02 – 11/05
cluster 19 1024 4 4096

Dual rail
fat tree

10/02 – 11/05
cluster 3 128 4 512 09/03 – 11/05
cluster 4 128 4 512 09/03 – 11/05
cluster 5 128 4 512 09/03 – 11/05

E

cluster 6 32 4 128

Single rail
fat tree

09/03 – 11/05
cluster 14 128 2 256 09/03 – 11/05
cluster 9 256 2 512 09/03 – 11/05
cluster 10 256 2 512 09/03 – 11/05
cluster 11 256 2 512 09/03 – 11/05
cluster 13 256 2 512 09/03 – 11/05

F

cluster 12 512 2 1024

Single rail
fat tree

09/03 – 11/05
03/05 – 06/05

Most jobs
run on only
one 256
node

segment

cluster 16 16 128 2048 12/96 – 09/02

cluster 2 49 128, 80 6152
01/97 – 11/05
06/05 – 11/05

G

cluster 23 5 128, 32 544

Multi rail
fat tree 10/98 – 12/04

01/98 – 12/04
11/02 – 11/05
11/05 – 12/04

H numa 15 1 256 256 11/04 – 11/05

2 Related Work

There has been significant study over the past few decades on analyzing failure logs
from large-scale computers to understand the failure behavior of such systems and
possibly use the knowledge in improving system design. Plank et. al. 0 derive an op-
timal checkpointing interval for an application using the failures logs obtained from
networks of workstations. They derive the failure rate of the machines using the time
between failures observed in the logs. In another study, Nath et. al. 0 study real-world

308 N. Nakka and A. Choudhary

failure traces to recommend design principles that can be used to tolerate correlated
failures. Particularly they have used it in recommending data placement strategies for
correlated failures.

Prior work in analyzing failure rates tried to arrive at reasonable curves that fit the
failure distribution of the systems 0-0. Schroeder and Gibson 0 have presented the
characteristics of the failure data that has been used in this study as well. However, a
limitation of these studies is that they do not evaluate how system design choices
could be affected by the failure characteristics that they have derived from the data. In
this work we specific attempt to understand the failure behavior and use that knowl-
edge in the design of an optimal node-level duplication strategy with the aim of in-
creasing the overall availability of the system at the least cost.

There is also interesting research work in understanding the correlations between
system parameters and failure rate. Sahoo et. al. 0 show that the workload of the sys-
tem is closely correlated with its failure rate, whereas Iyer 0 and Castillo 0 bring out
the correlation between workload intensity and the failure rate. In our study we study
the dependency of failure rate on network configuration, which in turn determines the
workload characteristics of the system. For example, a fat tree topology necessitates
higher communication and computation bandwidth and load at the higher levels of the
tree structure.

Oliner and Stearley 0 have analyzed system logs from five supercomputers and
critically evaluate the interpretations of system administrators from patterns observed
in the logs. They propose a filtering algorithm to identify alerts from system logs.
They also recommend enhancements to the logging procedures so as to include in-
formation crucial in identifying alerts from non-alerts.

Lan et. al. 00 have proposed a machine-learning based automatic diagnosis and
prognosis engine for failures through their analysis of the logs on Blue Gene/L sys-
tems deployed at multiple locations. Their goal is to feed the knowledge inferred from
the logs to checkpointing and migration tools 00 to reduce the overall application
completion time.

Oliner et. al. 0 derive failure distributions from multiple supercomputing systems and
propose novel job-scheduling algorithms that take into account the occurrence of fail-
ures in the system. They evaluated the impact of this on the average bounded slowdown,
average response time and system utilization. In our study we have utilized failure and
repair time distributions to propose a novel node-level duplication strategy. The metric
of evaluation used is the mean time to failure (MTTF) of the system.

Duplication, both at the system- and node- level has been a topic of active and ex-
tensive research in the micro-architecture and fault –tolerant computing areas. Error
Detection Using Duplicated Instructions (EDDI) 0 duplicates original instructions in
the program but with different registers and variables. Duplication at the application
level increases the code size of the application in memory. More importantly, it
reduces the instruction supply bandwidth from the memory to the processor. Error
Detection by Diverse Data and Duplicated Instructions (ED4I) 0 is a software-
implemented hardware fault tolerance technique in which two “different” programs
with the same functionality are executed, but with different data sets, and their outputs
are compared. The “different” programs are generated by multiplying all variables
and constants in the original program by a diversity factor k.

 Failure Data-Driven Selective Node-Level Duplication to Improve MTTF 309

In the realm of commercial processors the IBM G5 processor 0 has extra I- and E-
units to provide duplicate execution of instructions. To support duplicate execution,
the G5 is restricted to a single-issue processor and incurs 35% hardware overhead.

In experimental research, simultaneous multithreading (SMT) 0 and the chip mul-
tiprocessor (CMP) architectures have been ideal bases for space and time redundant
fault-tolerant designs because of their inherent redundancy. In simultaneously and
redundantly threaded (SRT) processor, only instructions whose side effects are visible
beyond the boundaries of the processor core are checked 0-0. This was subsequently
extended in SRTR to include recovery 0. Another fault-tolerant architecture is pro-
posed in the DIVA design 00. DIVA comprises an aggressive out-of-order superscalar
processor along with a simple in-order checker processor. Microprocessor-based in-
trospection (MBI) 0 achieves time redundancy by scheduling the redundant execution
of a program during idle cycles in which a long-latency cache miss is being serviced.
SRTR 0 and MBI 0 have reported up to 30% performance overhead, which are close
to the overhead observed for Full Duplication (FullRep) in our experiments. These
results counter the widely-used belief that full duplication at the processor-level in-
curs little or no performance overhead.

SLICK 0 is an SRT-based approach to provide partial replication of an application.
The goals of this approach are similar to ours. However, unlike this approach we do
not rely on a multi-threaded architecture for the replication. Instead, this paper pre-
sents modifications to a general superscalar processor to support partial or selective
replication of the application.

As for research and production systems employing system-level duplication, the
space mission to land on the moon used a TMR enhanced computer system 0. The
TANDEM, now HP, Integrity S2 computer system 0 provided reliability through
the concept of full duplication at the hardware level. The AT&T No.5 ESS tele-
communications switch 0, 0 uses duplication in its administrative module consisting
of the 3B20S processor, an I/O processor, and an automatic message accounting
unit, to provide high reliability and availability. The JPL STAR computer 0 system
for space applications primarily used hardware subsystem fault-tolerant techniques,
such as functional unit redundancy, voting, power-spare switching, coding, and
self-checks.

3 Failure Rate Correlation with Network Configuration

The failure data for each system is analyzed independently. The data set contains the
data for all the systems in a monolithic fashion. Therefore, the data is split based on
the system number. For data for a specific system, using the nodenumz field, which
gives the number of the failed node, the failures for each node are aggregated and the
number of failures for each node calculated. This data provides an ordering of the
nodes based on the number of failures experienced by the node within the observation
period. The number of failures per node also provides insights into the correlation
between the node’s failure behavior and the logical location of the node in the sys-
tem’s network configuration.

310 N. Nakka and A. Choudhary

Fig. 1. Number of failures for nodes in System 18

Fig. 2. Number of failures for nodes in System 19

 Failure Data-Driven Selective Node-Level Duplication to Improve MTTF 311

As mentioned before, the nodes of a particular system show variability in the fail-
ure rate. This could partly be explained by the network configuration of the distrib-
uted system.

Fig. 1 and Fig. 2 show the failure behavior of individual nodes in System 18 and
19. The figure shows that the peaks of failures are at nodes with numbers that are
multiples of 32, with a few exceptions. The exception in the failures of other nodes
could be due to their specific workload characteristics or due to the inherent failure
susceptibility of that node. On discussion with the system administrators, it was re-
vealed that these systems are configured such that every 32nd node serves as an NFS
root for the other 31 nodes in the group and is running NFS root type services, making
its workload considerably higher than the rest.

4 Approach

This section describes our approach for analyzing the data and building a model used
for selective node-level duplication. The records for a single node are ordered accord-
ing to the time of occurrence of the failure, as given by the “Prob Started field”. The
time elapsed between the start of one failure and the consecutive failure in this or-
dered list gives the time between these two failures. Following this procedure the
times between failure for each pair of failures for the node are calculated. The average
of all these times is used as an estimate for the mean time between failures or the
mean time to failure (MTTF) for the node. Time To Failure (TTF) for a fault

1)()(−−== iii startedprobstartedprobTTFi . Therefore,

n

dateinstallsystemstartedprob

n

TTF
MTTF n

n

i
i)()(−==

∑
 OR

MTTF is calculated as:

Eq. 1

The period of study of a system is its production time, defined elsewhere as the time
between its installation and its decommissioning or the end of the observation period,
whichever occurs first.

The “Downtime” field provides the time required by the administrators to fix the
failure and bring the system back to its original state. It can be calculated as the dif-
ference between the “Prob Ended” and “Prob Started” fields. This is the repair time
for this failure. Averaging this field over all the records for a single node provides an
estimate for the mean time to repair (MTTR) for this node. Time To Repair (TTR) for

a failure iii startedprobfixedprobTTRi)()(−== . Therefore, Mean Time To

Repair is given by

312 N. Nakka and A. Choudhary

n

TTR
MTTR

n

i
i∑

=

4.1 Introducing Node-Level Duplication

From the previous analysis procedures, the MTTF and the MTTR for a node have
been estimated. Now, we introduce a methodology to understand the effect on node
failure if we augment it with a spare node. Fig. 3 shows the states through which a
duplicated node transitions on failure and repair events. When both the original and
the spare node are working correctly the system is in state “2”. It is assumed that, af-
ter a failure is detected in the node, the system has the reconfiguration capability to
fail over to the spare node instantaneously. Computation therefore continues uninter-
ruptedly. This state of the node is represented by state “1” in the figure. In the mean
time, the original node is repaired. The roles of the spare node and original node are
switched. If no other failure occurs in the node, before the original node is repaired,
then the original node assumes the role of the spare node, while the computation con-
tinues on the spare node. Essentially, the system is brought back to its pristine, fault-
free state (State “2” in the figure). However, if the next failure for the node occurs
within the mean time to repair for that node, then it is not possible to continue compu-
tation on that node. The node reaches state “0”. We declare that duplication cannot
cover this second failure. There are other possible transitions between these states,
shown as dotted lines in Fig. 3. They are (i) State “0” to “2”: When both the original
and spare nodes are repaired and the node returns to its normal state. (ii) State “0” to
“1”: When one of the failed nodes (the original or the spare) is repaired and computa-
tion continues on this node. (iii) State “2” to “0”: When both nodes fail at the same
time. However, it is to be noted that for the analysis based on the data these transi-
tions need not be considered. There would not be a transition from State “2” to “0”
since the data represent failures only in one single node and would not therefore have

2 1

0

1st failure

Failure of original node

Mean time to repair for Node

Fig. 3. State transition diagram for node failure with duplication

 Failure Data-Driven Selective Node-Level Duplication to Improve MTTF 313

two simultaneous failures. The purpose of the analysis (aided by the state transition
diagram) is to decide whether a particular failure can be covered by duplication or
not. Once the node reaches State “0” it is declared that the failure cannot be covered
by duplication. Therefore, outward transitions from State “0” (to States “1” and “2”)
are not considered.

Based on this analysis, conducted for each node individually, we evaluate all the
failures that are covered by duplication. This analysis provides an estimate of the
nodes that benefit the most (have the maximum reduction in the number of failures)
when they are duplicated.

The next part of the study is used to achieve application requirements of MTTF. To
estimate the improvement in MTTF using node-level duplication, the nodes are or-
dered in terms of the reduction in number of failures when they are duplicated. In
short, we will refer to this sorting criterion as the duplication coverage of the node.
For a system without duplication the MTTF is calculated as the ratio between the total
period of observation for the system and the number of failures observed as in the
original data. Now, we pick the node with the highest duplication coverage. The
MTTF for the system is recalculated as the total observation period for the system
divided by the remaining number of failures in the system. Since the total observation
period is constant, the MTTF is inversely proportional to the number of failures re-
maining in the system. Next, we pick the node with the next highest duplication cov-
erage and recalculate the MTTF. Progressively, we include nodes in the order of their
duplication coverage and calculate the MTTF. The duplication of nodes is continued
until the MTTF requirements of the application are met.

4.2 Effect of Duplication on System Reliability

The node-level failure information is interpolated by selectively applying duplication
to nodes that are most sensitive to errors. Depending on its execution profile, or on the
frequency of its checkpointing support, the application demands a certain mean time
to failure from the system so as to reduce the amount of wasted computation in the
event of a failure. We study how the MTTF of the system is affected by incrementally
adding dual redundancy to the nodes in the system.

In this study we consider node-level duplication as a fault-tolerance technique em-
ployed to increase the MTTF of a system. For each node that is duplicated, using the
analysis mentioned in Section 0, some or all of the failures for that node are covered.
This decreases the total number of failures in the system, thereby increasing the
MTTF of the system using Eq. 1. If no information about the failure rate of nodes is
available, all nodes would be assumed to fail uniformly and therefore the nodes to be
duplicated would be picked at random one after another. We refer to this as the Tradi-
tional approach. However, with the failure rate analysis of the data we have derived a
model for the coverage provided by duplication at the node-level and an ordering for
the nodes based on the improvement in coverage by duplicating that node. Using this
model, we may be able to improve the choice of nodes to be duplicated. This is the
“Model-driven” approach to selecting nodes for incremental duplication.

Fig. 4 through Fig. 9 compare the cumulative increase in MTTF due to incremental
node duplication for Systems 10, 11, 12, 13, 18, and 19 respectively, for these two
approaches. The x-axis represents the percentage of nodes that have been duplicated.

314 N. Nakka and A. Choudhary

The y-axis gives the percentage in MTTF achieved by duplicating that subset of the
nodes in the system. The data points when major increments in MTTF (25%, 50%,
100%, 150%, 200%) 1are crossed are labeled on the curves for the “Traditional” and
“Model-driven” approaches. We see that consistently for all curves and for all major
increments in MTTF, our Model-driven approach far outperforms the Traditional ap-
proach of random selection of nodes. For example, in Fig. 4 for System 10 the model-
driven approach achieves close to 25% improvement of MTTF (exactly 26.7%) when
3.9% of the nodes are duplicated. For approximately the same improvement in MTTF
the traditional approach requires 20.3% of the nodes to be duplicated. Thus there is an
improvement of about 420% in the number of nodes to be duplicated using our data-
derived model-driven approach. Table 2 summarizes these results for 6 systems that
characterize those under study and for different aims for improvement in MTTF.

From Table 2 we note two striking observations. Firstly, the average improvement
in number of nodes duplicated varies widely between different systems. This is due to
the variation in the failure distribution of the system. The marginal increase in fault
coverage for System 18, System 10 and System 12 with every additional node dupli-
cated using the model-driven approach is shown in Fig. 10, Fig. 11, and Fig. 12 re-
spectively. We see that for Systems 18 and 19, using the model-driven approach,

3.9%, 26.7
7.8%, 51.9

13.7%, 100.8
18.4%, 152.1

21.5%, 203.8

20.3%, 25.4

35.5%, 50.0

52.7%, 100.8
64.8%, 152.1

71.1%, 200.0

0.1

1

10

100

1000

10000

100000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

%
 In

cr
ea

se
 in

 M
TT

F

% of nodes duplicated

% Increase in MTTF with Node-Level Duplication for System 10

Model-driven

Traditional

Fig. 4. % Increase in MTTF with node-level duplication for System 10

1 Note that the actual data point represents the first time the increase in MTTF has crossed a

major increment and is not exactly equal to the major increment.

 Failure Data-Driven Selective Node-Level Duplication to Improve MTTF 315

3.5%, 27.0
6.6%, 50.6

12.1%, 101.5
16.8%, 152.8

20.3%, 204.5

18.0%, 25.8

32.4%, 51.4

45.7%, 101.5
55.1%, 150.5

61.3%, 201.1

0.1

1

10

100

1000

10000

100000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

%
 In

cr
ea

se
 in

 M
TT

F

% of nodes duplicated

% Increase in MTTF with Node-Level Duplication for System 11

Model-driven

Traditional

Fig. 5. % Increase in MTTF with node-level duplication for System 11

1.4%, 26.3

2.9%, 52.4

6.1%, 102.3
8.6%, 153.910.2%, 201.2

24.6%, 25.7

36.5%, 50.6

56.6%, 102.3
72.3%, 151.5

76.8%, 223.8

0.1

1

10

100

1000

10000

100000

0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0

%
 In

cr
ea

se
 in

 M
TT

F

% of nodes duplicated

% Increase in MTTF with Node-Level Duplication for System 12

Model-driven

Traditional

Fig. 6. % Increase in MTTF with node-level duplication for System 12

316 N. Nakka and A. Choudhary

2.7%, 26.4

6.3%, 52.3
11.7%, 101.0

15.6%, 151.3
18.4%, 204.5

20.7%, 26.4
33.2%, 50.0

47.7%, 103.0
57.4%, 151.3

59.4%, 204.5

0.1

1

10

100

1000

10000

100000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

%
 In

cr
ea

se
 in

 M
TT

F

% of nodes duplicated

% Increase in MTTF with Node-Level Duplication for System 13

Model-driven

Traditional

Fig. 7. % Increase in MTTF with node-level duplication for System 13

4.5%, 25.3

10.7%, 50.2

22.0%, 100.2
30.3%, 150.4

36.7%, 200.1

19.0%, 25.1

31.7%, 52.6
49.3%, 100.3

60.4%, 150.8
66.9%, 200.5

0.1

1

10

100

1000

10000

100000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

%
 In

cr
ea

se
 in

 M
TT

F

% of nodes duplicated

% Increase in MTTF with Node-Level Duplication for System 18

Model-driven

Traditional

Fig. 8. % Increase in MTTF with node-level duplication for System 18

 Failure Data-Driven Selective Node-Level Duplication to Improve MTTF 317

3.5%, 25.1
9.6%, 50.4

20.4%, 100.4
28.4%, 150.535.4%, 200.5

22.2%, 25.2
35.5%, 50.2

52.7%, 100.0
61.9%, 153.069.0%, 200.5

0.01

0.1

1

10

100

1000

10000

100000

1000000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

%
 In

cr
ea

se
 in

 M
TT

F

% of nodes duplicated

% Increase in MTTF with Node-Level Duplication for System 19

Model-driven

Traditional

Fig. 9. % Increase in MTTF with node-level duplication for System 19

Table 2. Improvement in #nodes duplicated using Model-driven vs Traditional approaches

System Number
Improvement

in nodes duplicated
10 11 12 13 18 19

Average

25
420
%

411% 1700% 657%
324
%

531% 674%

50
355
%

388% 1147% 431%
195
%

271% 465%

100
286
%

277% 835% 307%
124
%

158% 331%

150
253
%

228% 741% 268%
100
%

118% 285%

%MTTF
Improvement

(approx.)

200
231
% 202% 656% 223% 82% 95% 248%

Average
309
% 301% 1016% 377%

165
% 235%

the MTTF continues to increase until about 90% of the nodes are duplicated. This
indicates that failures occur in upto 90% of the nodes, even though to a small degree,
as shown in Fig. 10. Therefore the average improvement for these systems is 165%

318 N. Nakka and A. Choudhary

and 235% respectively. For Systems 10, 11 and 13, it is seen that failures occur in
only about 50% of the nodes (please see Fig. 11), thus there is an initial rapid im-
provement in MTTF using the model-driven approach as compared to the traditional
approach. The average improvement for these systems ranges between 300 to 375%.
For System 12, failures are concentrated in only upto 25% of the nodes, as shown in
Fig. 12. Therefore, the improvement is even more stark and rapid, thereby showing an
average improvement of about 1000%.

0

0.5

1

1.5

2

2.5

3

3.5

0% 10% 20% 29% 39% 49% 59% 68% 78% 88% 98%

In
cr

ea
se

 in
 F

au
lt

Co
ve

ra
ge

 (%
)

% of Nodes Duplicated

Marginal Increase in Fault Coverage with Duplication for System 18

Fig. 10. Marginal increase in fault coverage with model-driven node duplication for System 18

Secondly, the improvement achieved in the nodes to be duplicated decreases as we
try to achieve higher increments in MTTF. In other words, the gain in number of
nodes duplicated for 25% improvement in MTTF is higher than that for 50% im-
provement in MTTF, which in turn is greater than that for a 100% improvement in
MTTF and so on. This supports intuition since the model-driven approach is essen-
tially greedy. It attempts to pick the node that provides the next best improvement in
MTTF (or failure coverage). Therefore, the marginal increase in failure coverage for
every additional node that is duplicated decreases monotonically. However, for a ran-
dom selection of nodes, it is possible that nodes selected at later stages for duplication
have a higher increment in the failure coverage than that of nodes selected in the ear-
lier picks. These two trends are depicted in Fig. 13.

 Failure Data-Driven Selective Node-Level Duplication to Improve MTTF 319

0

0.5

1

1.5

2

2.5

3

3.5

4

0% 10% 20% 30% 39% 49% 59% 69% 79% 88% 98%

In
cr

ea
se

 in
 F

au
lt

Co
ve

ra
ge

 (%
)

% of Nodes Duplicated

Marginal Increase in Fault Coverage with Duplication for System 10

Fig. 11. Marginal increase in fault coverage with model-driven node duplication for System 10

0

1

2

3

4

5

6

0% 10% 20% 29% 39% 49% 59% 69% 78% 88% 98%

In
cr

ea
se

 in
 F

au
lt

Co
ve

ra
ge

 (%
)

% of Nodes Duplicated

Marginal Increase in Fault Coverage with Duplication for System 12

Fig. 12. Marginal increase in fault coverage with model-driven node duplication for System 12

320 N. Nakka and A. Choudhary

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

0% 10% 20% 30% 39% 49% 59% 69% 79% 88% 98%

Marginal Increase in coverage with duplication - Model-driven vs Traditional

Traditional

Model-driven

Fig. 13. Marginal increase in failure coverage for traditional and model-driven approaches

5 Conclusions and Future Directions

In this paper, we have presented our analysis of the failure behavior of large scale
systems using the failure logs collected by Los Alamos National Laboratory on 22 of
their computing clusters. We note that not all nodes show similar failure behavior in
the systems. Our objective, therefore, was to arrive at an ordering of nodes to be in-
crementally (one by one) selected for duplication so as to achieve a target MTTF for
the system after duplicating the least number of nodes. The network configuration of
the systems and the consequent unequal distribution of workloads showed a close
correlation with the failure behavior of the nodes. Using the start times and the down
times logged for the failures we derived the time between failures and the mean time
for repairs failures on a node. Using these two derived quantities, we arrived at a
model for the fault coverage provided by duplicated each node and ordered the nodes
according to coverage provided by each node. We saw that as compared to traditional
approach of randomly choosing nodes for duplication, our model-driven approach
provides improvements ranging from 82% to 1700% depending on the improvement
in MTTF that is targeted and the failure distribution of the nodes in the system. The
variations due to these parameters have also been explained.

The failure data from LANL provides node level failure information even though
each node has multiple processors. Also, different nodes have different number of
processors, therefore a more fine-grained logging of failures at the processor-level
could provide even higher improvement in hardware overheads in achieving higher
levels of System-level MTTFs.

 Failure Data-Driven Selective Node-Level Duplication to Improve MTTF 321

Acknowledgments. This work was supported in part by NSF OCI-0956311, NSF
HECURA CCF-0621443, NSF SDCI OCI-0724599, NSF CNS-0830927, NSF IIS-
0905205, and DOE SCIDAC-2: Scientific Data Management Center for Enabling
Technologies (CET) grant DE-FC02-07ER25808, DOE FASTOS award number DE-
FG02-08ER25848. We are very thankful to Gary Grider, John Bent, John Nunez and
Satsangat Khalsa from Los Alamos National Laboratory (LANL) for their guidance
and providing key insights into the data.

References

1. Plank, J.S., Elwasif, W.R.: Experimental assessment of workstation failures and their im-
pact on checkpointing systems. In: Proceedings of Fault Tolerant Computing Systems,
FTCS 1998 (1998)

2. Nath, S., Yu, H., Gibbons, P.B., Seshan, S.: Subtleties in tolerating correlated failures. In:
Proceedings of the Symposium On Networked Systems Design and Implementation, NSDI
2006 (2006)

3. Heath, T., Martin, R.P., Nguyen, T.D.: Improving cluster availability using workstation
validation. In: Proceedings of ACM SIGMETRICS (2002)

4. Long, D., Muir, A., Golding, R.: A longitudinal survey of internet host reliability. In: Pro-
ceedings of the 14th Intl. Symposium on Reliable Distributed Systems (1995)

5. Nurmi, D., Brevik, J., Wolski, R.: Modeling machine availability in enterprise and wide-
area distributed computing environments. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par
2005. LNCS, vol. 3648, pp. 432–441. Springer, Heidelberg (2005)

6. Sahoo, R.K., Sivasubramaniam, A., Squillante, M.S., Zhang, Y.: Failure data analysis of a
large-scale heterogeneous server environment. In: Proceedings of Dependable Systems and
Networks (June 2004)

7. Tang, D., Iyer, R.K., Subramani, S.S.: Failure analysis and modelling of a VAX cluster
system. In: Fault Tolerant Computing Systems (1990)

8. Xu, J., Kalbarczyk, Z., Iyer, R.K.: Networked Windows NT system field failure data
analysis. In: Proc. of the Pacific Rim International Symposium on Dependable Computing
(1999)

9. Schroeder, B., Gibson, G.: A large-scale study of failures in high-performance-computing
systems. In: Proceedings of the International Conference on Dependable Systems and
Networks (DSN), Philadelphia, PA (June 2006)

10. Iyer, R.K., Rossetti, D.J., Hsueh, M.C.: Measurement and modeling of computer reliability
as affected by system activity. ACM Transactions on Computing Systems 4(3) (1986)

11. Castillo, X., Siewiorek, D.: Workload, performance, and reliability of digital computing
systems. In: 11th International Conference on Fault Tolerant Computing Systems (1981)

12. Oliner, A.J., Stearley, J.: What Supercomputers Say: A Study of Five System Logs. In:
Proceedings of the International Conference on Dependable Systems and Networks (DSN),
Edinburgh, UK, June 2007, pp. 575–584 (2007)

13. Lan, Z., Li, Y., Gujrati, P., Zheng, Z., Thakur, R., White, J.: A Fault Diagnosis and Prog-
nosis Service for TeraGrid Clusters. In: Proceedings of TeraGrid 2007 (2007)

14. Gujrati, P., Li, Y., Lan, Z., Thakur, R., White, J.: Exploring Meta-learning to Improve
Failure Prediction in Supercomputing Clusters. In: Proceedings of International Confer-
ence on Parallel Processing, ICPP (2007)

15. Li, Y., Lan, Z.: Using Adaptive Fault Tolerance to Improve Application Robustness on the
TeraGrid. In: Proceedings of TeraGrid 2007 (2007)

322 N. Nakka and A. Choudhary

16. Lan, Z., Li, Y.: Adaptive Fault Management of Parallel Applications for High Performance
Computing. IEEE Transactions on Computers 57(12), 1647–1660 (2008)

17. Oliner, A.J., Sahoo, R.K., Moreira, J.E., Gupta, M., Sivasubramaniam, A.: Fault-aware job
scheduling for Bluegene/L systems. In: Proceedings of the 18th International Parallel and
Distributed Processing Symposium, IPDPS (2004)

18. Weaver, C., Austin, T.: A fault tolerant approach to microprocessor design. In: Proceed-
ings of the International Conference on Dependable Systems and Networks, July 2001, pp.
411–420 (2001)

19. Austin, T.: DIVA: A reliable substrate for deep submicron microarchitecture design. In:
Proceedings of the Thirty-Second International Symposium on Microarchitecture, Novem-
ber 1999, pp. 196–207 (1999)

20. Vijaykumar, T., Pomeranz, I., Cheng, K.: Transient fault recovery using simultaneous mul-
tithreading. In: Proceedings of the Twenty-Ninth Annual International Symposium on
Computer Architecture, May 2002, pp. 87–98 (2002)

21. Oh, N., Shirvani, P.P., McCluskey, E.J.: Error detection by duplicated instructions in su-
perscalar processors. IEEE Transactions on Reliability 51(1), 63–75 (2002)

22. Oh, N., Mitra, S., McCluskey, E.J.: ED4I: Error Detection by Diverse Data and Duplicated
Instructions. IEEE Transactions on Computers 51(2), 180–199 (2002)

23. Slegel, T., et al.: IBM’s S/390 G5 microprocessor design. IEEE Micro 19(2), 12–23 (1999)
24. Tullsen, D.M., Eggers, S.J., Levy, H.M.: Simultaneous multithreading: Maximizing on-

chip performance. In: Proceedings of the Twenty-Second International Symposium on
Computer Architecture, June 1995, pp. 392–403 (1995)

25. Rotenberg, E.: AR-SMT: A microarchitectural approach to fault tolerance in microproces-
sors. In: Proceedings of the Twenty-Ninth International Symposium on Fault-Tolerant
Computing Systems, June 1999, pp. 84–91 (1999)

26. Sundaramoorthy, K., Purser, Z., Rotenberg, E.: Slipstream processors: Improving both per-
formance and fault tolerance. In: Proceedings of the Thirty-Third International Symposium
on Microarchitecture, December 2000, pp. 269–280 (2000)

27. Reinhardt, S.K., Mukherjee, S.S.: Transient fault detection via simultaneous multithread-
ing. In: Proceedings of the Twenty-Seventh International Symposium on Computer Archi-
tecture, June 2000, pp. 25–36 (2000)

28. Qureshi, M.A., Mutlu, O., Patt, Y.N.: Microarchitecture-based introspection: A technique
for transient-fault tolerance in microprocessors. In: Proceedings of International Confer-
ence on Dependable Systems and Networks, June 2005, pp. 434–443 (2005)

29. Parashar, A., Sivasubramaniam, A., Gurumurthi, S.: SlicK: slice-based locality exploita-
tion for efficient redundant multithreading. In: Proceedings of the 12th Intl., conference on
ASPLOS (2006)

30. Cooper, A.E., Chow, W.T.: Development of on-board space computer systems. IBM Jour-
nal of Research and Development 20(1), 5–19 (1976)

31. Jewett, D.: Integrity S2: A fault-tolerant Unix platform. In: Digest of Papers Fault-Tolerant
Computing: The Twenty-First International Symposium, Montreal, Canada, June 25-27,
pp. 512–519 (1991)

32. AT&T 5ESSTM from top to bottom,
 http://www.morehouse.org/hin/ess/ess05.htm

33. AT&T Technical Staff. The 5ESS switching system. The AT&T Technical Journal 64(6),
Part 2 (July-August 1985)

34. Avizienis, A.: Arithmetic error codes: Cost and effectiveness studies for Application in
digital system design. IEEE Transactions on Computers 20(11), 1332–1331 (1971)

	Failure Data-Driven Selective Node-Level Duplication to Improve MTTF in High Performance Computing Systems
	Introduction
	Related Work
	Failure Rate Correlation with Network Configuration
	Approach
	Introducing Node-Level Duplication
	Effect of Duplication on System Reliability

	Conclusions and Future Directions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

