
Detailed Analysis of I/O traces for large scale applications 
 

N. Nakka, A. Choudhary, W. K. Liao
Electrical Engineering and Computer Science 
Northwestern University, Evanston, IL, USA. 

{nakka, choudhar,wkliao}@eecs.northwestern.edu

L. Ward, R. Klundt, M. I. Weston
Sandia National Laboratory 

Albuquerque, New Mexico, USA. 
{lee,rklundt,miwesto}@sandia.gov 

 
Abstract - In this paper, we present a tool to extract 

I/O traces from very large applications running at full 
scale during their production runs. We analyze these 
traces to gain information about the application. We 
analyze the traces of three applications. The analysis 
showed that the I/O traces reveal much information 
about the application even without access to the source 
code. In particular, these I/O traces provide multiple 
indications towards the algorithmic nature of the 
application by observing the changes of data amount and 
I/O request distribution at the checkpoints. Adaptive 
Mesh Refinement (AMR) is one of the kind of algorithms 
that can exhibit such I/O behavior. This is the first study 
of I/O characteristics of unbalanced AMR-supported 
applications at scale. The key observations that we made 
in the trace were (1) Variation in aggregate data sizes 
across checkpoints for AMR and non-AMR applications, 
(2) Variation in the number of I/O calls by a client 
depending on the nature of the application, (3) Use of 
temporary files by applications and possible erroneous 
calls to I/O functions, (4) Variation in average data 
transfer size according as whether the application has 
AMR support or not, (5) Aggregation of I/O for 
processes executing on a single physical node through 
MPI-IO calls, and (6) Updates to specific data structures 
in the checkpoint file. 
 
Keywords:Large scale I/O tracing, I/O trace analysis, 
adaptive mesh refinement 

I.  INTRODUCTION 
Tracing I/O access patterns on large 

supercomputing clusters has always been challenging.  
These challenges are found in developing an efficient 
and light weight tracing solution that does not add 
significant overhead in terms of memory and 
processor time to the traced application. Researchers 
from LANL have provided a comprehensive survey of 
the currently available I/O tracing techniques [1]. 
Keeping these constraints in mind, researchers at 
Sandia National Laboratories have developed an I/O 
tracing framework for light-weight tracing of large 
scale applications on Catamount systems. I/O traces 
are a valuable source of information for debugging 
distributed applications and as guidance for I/O 
benchmark development. This paper demonstrates the 
first analysis of traces of large scale applications in 
production. These I/O traces provide interesting 
insights to the nature of the traced application, without 
viewing the source code of the application. The goal 
was not to automate the analysis process but rather to 

understand how valuable the trace information was in 
inferring application behavior. 

II.  RELATED WORK 
Using the taxonomy developed in [1] three 

differing I/O tracing tools LANL-Trace [2], Tracefs 
[3], and //TRACE [4] have been evaluated. LANL-
Trace adds a high overhead to the traced application, 
prohibiting it from being used at scale for real-world 
complex applications. Besides this, it does not support 
anonymization for distribution of the traces. Tracefs 
has advanced tracing features but has a high 
installation overhead. Particularly on parallel file 
systems, which are the subject of the current study. 
//TRACE has been recommended for replaying file 
system traces but also does not support 
anonymization. Huang et. al. [5] developed a high 
resolution disk I/O trace system built into the Linux 
operating system but does not collect information 
about the driving IO API call. Carey et. al. [6] and 
Cattell et. al. [7] provided I/O tracing mechanisms for 
large database systems, an application that is very 
different from even the most casual single program, 
multiple data application. Ramakrishnan et. al. [8] 
analyzed I/O traces in commercial computing 
environments to understand file access behavior. They 
showed that a relatively small fraction of files are 
active and studied the dynamic sharing of files but did 
not analyze distributed applications. Ousterhout et. al. 
[9] performed a trace-driven analysis of the UNIX 
BSD 4.2 file system and found some interesting 
conclusions on usage of files on the file system but, 
again, were not concerned with distributed 
applications. Howard et. al. [10] improved the 
performance of the Andrew file system using 
observations made on a prototype implementation. 
Joukov et. al. [11] designed and implemented Replayfs 
to replay the file system traces at the VFS level. 
Stardust [12] examines interactions between the client 
and server – this is it's “end-to-end” claim, and it's 
strength.  We wished to capture application interaction 
with the VFS. i.e., at the system call boundary and not 
request flow across the network. The client operating 
system has the opportunity to reformat the application 
calls in a file systems specific way. Stardust 
instrumented NFS and, so, the Stardust traces will 
show read/write calls no larger than the maximum 
payload size for the protocol. Our tool is independent 
of such specifics, recoding the actual call, response, 
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and timing as given by and from the perspective of the 
application at the “system call” boundary. 

These traces are roughly the equivalent of 
capturing the Windows32 IO API calls described in 
Magpie [13]. There did not exist such a tool on 
Catamount. The equivalent, under Linux, is strace(1). 
strace is too slow (milliseconds of overhead per call) 
to preclude tracing coupled applications at scale. We 
do not have the resources to implement the Magpie 
system on a large supercomputer; the instrumentation 
points are not there. 

III.  DESCRIPTION OF TRACE UTILITY [14] 
It is of great benefit and interest to system 

developers and administrators to acquire good 
understanding of usage modes on large scale 
machines. To address the lack of such a tool 
researchers at the Sandia National Laboratory have 
implemented a tracing utility that is meant to be used 
with the Catamount Lightweight Kernel (LWK) [15]. 
The tracing utility, along with the LWK and the 
application run on Red Storm, a Cray XT3+ capability 
class machine1. By itself Catamount does not provide 
directly user accessible I/O capabilities as it is a 
custom microkernel. Application I/O is managed by 
the inclusion of user level library sysio2. This library 
provides a virtual file system implementation which 
allows the application simultaneous access to various 
file systems. Each sysio library call provides a hook at 
entry and exit. The tracing needs to be initialized 
through a function call at the beginning of the 
program. Otherwise, the hook does nothing.  

When the tracing functionality is activated, 
traversal of an entry or exit hook triggers an event, 
which consists of a call into the tracing code, passing a 
record of qualifying information for the call. Each 
event results in the encoding of the call, type of hook, 
and the qualifying information into a buffer in the 
tracing code. The design includes double buffering 
and use of asynchronous write calls to dump a buffer 
when full3. 

The tracing utility traces only I/O calls of the 
application interacting with the file system. File 
system interactions of the tracing utility itself are not 
traced.  On detection of internal error conditions the 
tracing halts, and allows the application to continue 
without interruption if possible. 

Each process in the application job generates one 
file containing the I/O traces encoded in an efficient, 
platform independent, binary format. A dictionary 

                                                           
1  http://cray.com/products/xt4/index.html 
2  http://sourceforge.net/projects/libsysio 
3  Asynchronous behavior is dependent on the capability 

of the underlying file system where the trace data is written. 
 

describing the binary file format must be generated 
using a provided external utility on the host platform. 
The resulting traces can be decoded into readable 
format by using the dictionary and the provided binary 
decoder on any machine.  

A. Details of the Trace Output Format 
Each process in the parallel job generates a set of 

trace events. The final translated output is the 
concatenation of all the trace sets, and is in human 
readable format. Note that the trace can contain the 
data transfers of the client (process) across multiple 
checkpoints (commonly also known as restart dumps) 
of the application. Each set of per-client trace events 
begins with a header line with the following format 
(bold indicates keywords): 

header(headerbom,headernode(node_nid.pid)h
eaderlength(<bytes>)) 

In this trace event the node on which the trace 
events are generated is uniquely identified by the pair 
nodeid.processid.  

All other contents of the final output have the 
following format: 

tracetype(ENTER|EXIT)time:(secs)time:(msec
s)str(<event_name>)<infolist> 

Each system call which occurs in the traces will 
have an Enter/Exit pair present. The time fields above 
denote seconds and microseconds since the Epoch 
(00:00:00 UTC, January 1, 1970) as returned by the 
gettimeofday call.  

The <infolist> contains a hierarchically arranged 
collection of qualifying information for the particular 
I/O system call and varies according to the call.  

A simple example is the event for entry to the open 
syscall. The trace event contains, after the timestamp, 
the name of the call, a string with a sanitized version 
of the pathname, and the incoming values for open 
flags and mode. 

tracetype(ENTER)time:(1205528630)time:(529
780)str(open)str(“filename”)flags(578)mode(43
6) 

A more complex example is the stat call, which 
resolves to a call to fxstat within the sysio library. 
Here are the Enter and Exit events for that call: 

tracetype(ENTER)time:(125528630)time:(5311
85)str(fxstat)ver(1)fd(3) 

tracetype(EXIT)time:(125528630)time:(53136
8)str(fxstat)return(0)stat(st_dev(0)st_ino(10
702772)st_mode(33204)st_nlink(1)gid(41776)uid
(41776)st_rdev(0)st_size(0)st_atime(120552855
8)st_mtime(1205528630)st_ctime(1205528630)st_
blksize(2097152)st_blocks(0)) 

The Enter event for fxstat provides the incoming 
values of the version and file descriptor. The Exit 
event provides a return code, and the contents of the 
stat struct items which have been acquired by the call. 
The item names are taken from the stat struct 
definition of the machine where the traces have been 
generated.   
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The call names in the trace events reflect the actual 
API call within the sysio library where the trace event 
is being recorded. Generally these follow the POSIX4 
definitions and should be self-explanatory.  

Some calls are specific to sysio. For example, all 
I/O transfers in the released traces are implemented at 
the lowest level with asynchronous versions of, 
usually familiar, calls, and iowait/iodone5. The ireadv 
and iwritev trace events, for instance, provide 
information identifying the file descriptor, the pointer 
to an I/O vector, and the length requested for the 
transfer. The request is queued, to be completed 
asynchronously if possible. The iodone routine is used 
to poll for completion, but is not traced. The return 
code in the iowait Exit event reports the number of 
bytes transferred. Here is an example of the sequence 
of trace events associated with a write call: 

tracetype(ENTER)time:(125528630)time:(5863
86)str(iwritev)fd(3)ziovec(base(0x200EFDC0)le
n(524288)) 

tracetype(EXIT)time:(125528630)time:(59048
9)str(iwritev)ptr(0x200B1110) 

tracetype(ENTER)time:(125528630)time:(5904
90)str(iowait)ptr(0x200B1110) 

tracetype(EXIT)time:(125528630)time:(59053
0)str(iowait)return(524288) 

Also provided are a set of asynchronous vector I/O 
calls which perform extent based transfers. Both 
ireadx and iwritex calls take as input a file descriptor, 
a list and count of memory specifications (struct iovec 
*) and a list and count of extent specifications (struct 
xtvec *). The return value is, as for all data transfer 
calls, a transaction identifer ioid_t. The extent 
specifications are (offset, length) pairs and define the 
locations in the file involved in the data transfer, as 
follows: 

struct xtvec { 
  off_t xtv_off; // Stride/Extent offset. 
  size_t xtv_len;// Stride/Extent length. 
}; 

The ireadx/writex calls reconcile the memory 
specification list and file extent list in order, 
performing transfers as directed, until one or the other 
of the lists is exhausted. Here is an example of the 
trace events produced by iwritex and corresponding 
iowaits: 

tracetype(ENTER)time:(1216152765)time:(250
413)str(iwritex)fd(1)count(4)ziovec(base(0x53
7D50)len(10),base(0x538590)len(10),base(0x537
D70)len(10),base(0x538BB0)len(17))count(4)yxt
vec(off(0)len(15),off(20)len(5),off(30)len(10
), off(50)len(10)) 

tracetype(EXIT)time:(1216152765)time:(2504
87)str(iwritex)ptr(0x538DF0) 

tracetype(ENTER)time:(1216152765)time:(250
505)str(iowait)ptr(0x538DF0) 

                                                           
4  IEEE Std 1003.1 available at  

http://standards.ieee.org/ 
5  man pages for the calls ireadv, ireadx, iwritev, iwritex, 

iodone, and iowait are available on Cray XT3 machines 

tracetype(EXIT)time:(1216152765)time:(2505
21)str(iowait)return(40) 

The above trace indicates that the iwritex call 
sourced data from four buffers of length 10, 10, 10, 
and 17, and sent the data to four locations in the file, 
specified by (offset, length) pairs (0,15), 
(20,5),(30,10),(50,10). The Exit event from the iowait 
call reported 40 bytes transferred. This implies that 7 
bytes in the last buffer went unused, which is correct 
since the file extent specification list was exhausted 
before sourcing all data referred to in the memory 
specification.  

In the following discussion for the sake of brevity 
and clarity of presentation, we do not include the 
tracetype and time stamp, whenever an excerpt from a 
trace is to be shown for illustrating an observation. 

IV.  APPLICATIONS TRACED 
Traces for 3 very large scientific applications were 

collected while they were executing representative 
production tasks. All three use the Message Passing 
Interface (MPI) to efficiently support inter-client 
communications. 

Alegra. ALEGRA [16] is a coupled physics 
framework whose roots go back to 1990, when the 
authors joined Sandia National Laboratories and began 
development of a shock physics code based on 
arbitrary Lagrangian-Eulerian finite element 
algorithms. The application can be executed on 
multiple clients among which the input problem is 
distributed. The refinement of the input distribution 
depends on the number of clients. In this paper we 
analyze the two traces from Alegra provided with the 
same input problem , one executed on 2744 clients and 
the other on 5832 clients. 

S3D IO Kernel. S3D is a compressible Navier-
Stokes solver coupled with an integrator for detailed 
chemistry (CHEMKIN-compatible), and is based on 
high-order finite differencing, high-order explicit time 
integration, and conventional structured meshing [17]. 
The IO portion of S3D was extracted and it was this 
kernel that was traced. 

CTH. CTH [18] is a family of codes developed at 
Sandia National Laboratories for modeling complex 
multi-dimensional, multi-material problems that are 
characterized by large deformations and/or strong 
shocks. A two-step, second-order accurate Eulerian 
solution algorithm is used to solve the mass, 
momentum, and energy conservation equations. CTH 
includes models for material strength, fracture, porous 
materials, and high explosive detonation and initiation. 

Both the ALEGRA and CTH traces were taken 
with production binaries and parametrized with 
production input decks. However, in order to keep the 
trace files to a reasonable size, the trace files 
themselves have been truncated to include only the 
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first few compute-dump cycles. The remaining cycles, 
for both, are similar to the first few, excepting file 
address use, of course. 

V.  VARIATION IN DATA TRANSFER SIZE ACROSS 
CHECKPOINTS 

For each application the amount of data transfer 
per second was aggregated and the data transfer size 
was plotted against time. The plot for the cth 
application is shown in Figure 1. 
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Figure 1. I/O Activity with Time for CTH 

In the figure each set of spikes represents the data 
transfer for a checkpoint. It shows that a checkpoint 
was taken after about every 20 minutes. However, the 
total amount of data transfer for each checkpoint 
varies, increasing gradually in the beginning and 
reaching a saturation point at about the 5th checkpoint. 
This would seem to be a side-effect of the AMR 
nature of the cth application. As the application 
progresses, for every iteration the mesh is refined 
further to improve the computation efficiency. As a 
byproduct, the amount of data  dumped for each 
checkpoint seems to fluctuate until the adaptive 
algorithm reaches some equilibrium. The cth 
application was traced for about 200 minutes. Since 
cth never settled to a completely reproducible pattern, 
the amount of trace data included is far larger. Once 
again, AMR seems the prime driver for this behavior. 

Alegra performs checkpoint dumps with a period 
of about 4 minutes. The traces contain 4 checkpoint 
dumps. The times captured by the traces were 
sufficient to capture the behavior. For instance, the 12 
minutes of Alegra capture 4 time steps. Capturing the 
remaining 10,000 minutes would show the same 
behavior. For alegra 2744 shown in Figure 2 the group 
of data transfers starting at 3 minutes, 5.3 minutes, 7.8 
minutes and 10.3 minutes correspond to the 4 
checkpoints. For alegra 5832 (shown in Figure 3) the 
checkpoints start at 4.4 minutes, 7.9 minutes, 11.6 
minutes and 15.3 minutes. From a visual observation it 
is clear that the aggregate data transferred for each 
checkpoint is the same for every consecutive 

checkpoint for both versions of alegra. This strong 
lack of variability provides evidence for its non-
adaptive nature. 
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Figure 2: I/O Activity with Time: alegra with 2744 clients 
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Figure 3: I/O Activity with Time: alegra with 5832 clients 

VI.  VARIATION IN THE NUMBER OF I/O CALLS 
The traces for different applications were analyzed 

and the number of I/O calls made by each client 
counted. The clients were distributed into classes 
depending on the number of I/O calls they made. For 
alegra (refer to Figure 4 and Figure 5) and s3d it was 
seen that there were only a very few, static, roles for 
clients. Data and the related work is statically 
partitioned among the allocated nodes at the beginning 
of the application and this distribution is maintained 
throughout the lifetime of the run. Similarly, then, the 
amount of data written out by each client remains the 
same throughout the lifetime of the run. The following 
figures illustrate this phenomenon. In all three 
applications one of the clients shows a relatively high 
number of I/O calls. This is the head node that reads 
the input decks and communicates with all other nodes 
to parameterize and initialize the run. 
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Figure 4: Client distribution by #I/O calls: alegra 2744 

4096

1536

192
1 6 1

0

500

1000

1500

2000

2500

3000

3500

4000

4500

378 412 477 601 613 8271

N
um

be
r o

f C
lie

nt
s

Num of IO Calls

Num IO Calls - alegra 5832 clients total

 
Figure 5: Client distribution by #I/O calls: alegra 5832 

On the other hand for the AMR-supported 
application, cth, there is a wide range of the number of 
calls made by all clients, as shown in Figure 6. This 
again appears only to be explained if we consider that 
this AMR application distributes and redistributes 
either or both of its data and the amount of work per 
cycle required among its clients. At each iteration the 
data distribution is redefined to adaptively balance the 
computation. Figure 6 demonstrate this wide spectrum 
in the distribution of clients. 
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Figure 6: Client distribution by #I/O calls: cth 

VII.  USE OF TEMPORARY FILES 
The I/O trace for alegra showed calls to open two 

temporary files. After using the file during the course 
of the application, the I/O trace showed calls to rmdir 
to remove these entries. The “rmdir” system command 
is normally used to remove directory entries, when the 
directory is empty. This returned an error response 
with an error code for the rmdir command. The error 
code returned was ENOTDIR (“Is not a directory”) 
since the names belonged to temporary files and not 
directories. The “unlink” function was then called with 
the same filenames as parameters  to remove these file 
entries. This gives us an understanding of the 
application semantics. Firstly, that the application uses 
two temporary files. Secondly, the application 
attempted to remove these names using calls to both 
rmdir and unlink. One of them would be successful 
depending on whether the name refers to a directory or 
a file and the other would return an error. 

str(open)str(”file1”)flags(577)mode(436) 
str(open)return(3) 
. 
. 
. 
str(open)str(”file2”)flags(577)mode(436) 
str(open)return(3) 
. 
. 
. 
str(rmdir)str(”file1”) 
str(rmdir)errcode(-20) 
str(unlink)str(”file1”) 
str(unlink)return(0) 
. 
. 
. 
str(rmdir)str(”file2”) 
str(rmdir)errcode(-20) 
str(unlink)str(”file2”) 
str(unlink)return(0) 

VIII.  AGGREGATION OF I/O 
The s3d application was traced in two different 

setups: s3d_fort is doing file per process I/O via posix 
I/O calls, and s3d_MPI-IO is doing single shared file 
I/O via MPI IO calls. Figure 7 shows that for s3d_fort 
all processes were performing almost the same amount 
of I/O uniformly. However for s3d_MPI-IO, based on 
sizes of trace output, we noticed that half the processes 
were doing very little. This is evident in the 
distribution of clients according to the number of I/O 
calls made as shown in Figure 8.  
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Figure 7: Client distribution by #I/O calls: s3d fortran 

This behavior was not readily attributable. In this 
case, the source code was examined and revealed that 
the s3d application uses collective IO support within 
the ROMIO implementation of MPI-IO. ROMIO 
appears to chose one process from each node to use as 
an aggregator. This collective behavior is enabled in 
s3d by the use of a romio hint, 'romio_no_indep_rw', 
in the call to MPI_Info_set. This causes only 
aggregators to call open(), but not non-aggregators. 

3200 3199

1
0

500

1000

1500

2000

2500

3000

3500

28 160 778

N
um

be
r o

f C
lie

nt
s

Num of IO Calls

Num of IO Calls - s3d MPI

 
Figure 8: Client distribution by #I/O calls: s3d MPI-IO 

IX.  DATA TRANSFER BLOCK SIZE, SEQUENTIAL 
VS. RANDOM ACCESS I/O 

The I/O trace shows the block of data transferred 
by the size of each transfer. The calls to lseek and 
lseek64 I/O functions that appear before data transfer 
function calls show whether the application is 
performing I/O sequentially from the file or accessing 
random sections of the file. 

str(ireadv)fd(3)ziovec(base(0x200EFDC0)len 
(1048576)) 

The above read function trace from alegra shows 
that the application is trying to read 1048576 bytes = 
1MB of data. Thus the data block size is at least 1 MB. 

In the trace for cth, we see a larger access block of 
2 MB (2097152 bytes), as shown in the following 
excerpt. 

str(ireadv)fd(4)ziovec(base(0x39D07790)len 
(2097152)) 

From the offsets to consecutive calls to the lseek 
function in alegra (shown below) it can be concluded 
that the application does not perform sequential I/O.  

str(lseek)zoff64(1048576) 
str(lseek)zoff64(524288) 
str(lseek)zoff64(524288) 
str(lseek)zoff64(0) 
str(lseek)zoff64(1572864) 
str(lseek)zoff64(1048576) 
str(lseek)zoff64(524288) 
str(lseek)zoff64(524288) 
str(lseek)zoff64(0) 

Another interesting observation in seek offset was 
in the cth application where the offsets revealed that 
the application continuously wrote data to the file and 
read back all the data in a consecutive read. This 
behavior is unexplained. 

X.  UPDATES TO SPECIFIC DATA STRUCTURES 
The I/O trace was helpful in understanding the 

workings of the application in updating specific data 
structures. For example, in analyzing the traces for the 
cth application, one would except that the application 
would write the checkpoint file in large chunks to the 
file system. However, we observed a significant 
number of writes of size length 4. We inferred that the 
"length 4 write"s are updates to header information. 
This is because the client writes a chunk of data at a 
specific position in the file and then moves the pointer 
back to a particular location within the written data 
and again writes the 4 bytes (thus updating some 4 
bytes of information within the already written data).  
In fact, the total number bytes written initially by each 
client is the same. This makes it clear that this could 
be some kind of header information. There are several 
"length 4 write"s in a single checkpoint dump from a 
client. For all clients, the corresponding offsets in the 
file for all except the last "length 4 write" seem to be 
the same. The location of the last length 4 write varies 
depending on the client, hinting that this could be 
client specific information in the header. 

str(lseek64)fd(4)zoff64(0)cmd(0) 
str(lseek64)zoff64(0) 
str(ireadv)fd(4)ziovec(base(0x39D07790)len

(2097152)) 
str(ireadv)ptr(0x37D86930) 
str(iowait)ptr(0x37D86930) 
[1] str(iowait)return(638672)  
[2] str(lseek64)fd(4)zoff64(4294667292) 

cmd(1) 
[3] str(lseek64)zoff64(338668) 
[4] str(iwritev)fd(4)ziovec(base(…)len(4)) 
str(iwritev)ptr(0x37D86930) 
str(iowait)ptr(0x37D86930) 
str(iowait)return(4) 
str(lseek64)fd(4)zoff64(0)cmd(0) 
str(lseek64)zoff64(0) 
str(ireadv)fd(4)ziovec(base(0x39D07790)len

(2097152)) 
str(ireadv)ptr(0x37D86930) 
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str(iowait)ptr(0x37D86930) 
[5] str(iowait)return(638672) 

In the above excerpt the first call to read (line [1]) 
returns 638672 bytes. The file pointer is currently at 
638672 bytes. The following call to lseek64 ([2]) 
places the file pointer at a negative offset  

4294667292 = – 300004 (in a signed 32 bit word) 
relative to the current pointer, placing the final file 

pointer at (638672 – 300004 = ) 338668 bytes as 
shown in line [3] the excerpt. The application then 
writes 4 bytes into this location (line [4]), which does 
not increase the size of the file but overwrite already 
written data. This is proved by the fact that the next 
read of the file returns the same 638672 bytes of data 
(line [5]). 

XI.  DISTRIBUTION BY DATA TRANSFER SIZE 
We examined the distribution of data transfer size 

across the application clients. Once again, we note a 
remarkable distinction between applications with and 
without support for AMR. Figure 9 and Figure 10 
show the distribution of data transfer size for the first 
two checkpoints of the cth application with AMR 
executing on 3300 clients. Figure 11 and Figure 12 
show the distribution for the alegra application without 
AMR support. We used the alegra run with 2744 
clients for comparison. 

The horizontal axis shows the amount of data 
transferred. Clients are binned into groups based on 
their data transfer size. The y-axis shows a count of 
the clients. The distributions show that for an AMR-
supported application the amount of data transferred 
varies widely across the clients. For a non-AMR 
application, the clients reliably perform similarly sized 
data transfers. 

 

Figure 9: Data transfer size histogram for chkpt#1: cth  

 

Figure 10: Data transfer size histogram for chkpt#2: cth 

XII.  CONCLUSIONS AND FUTURE WORK 
In this paper, for the first time we have obtained 

and analyzed I/O traces for very large scale 
applications executing on a large supercomputer, 
representative of their production runs. The tracing 
was performed using an I/O tracing library to be 
linked into the application. The analysis of the traces 
showed that application-level I/O traces by themselves 
can give us many good insights into the nature of the 
application without requiring access to the source 
code. Particularly analysis of the traces provide 
multiple indications of applications behavior, such as 
the presence of AMR (adaptive mesh refinement). 
Apart from distinguishing the nature of applications, 
the traces also revealed aggregation of I/O through 
MPI I/O, use of temporary files and updates to data 
sections in checkpoint files. The tracing tool has been 
developed to work specifically for the Catamount 
LWK. However, we cannot derive adequate benefit 
from the tracing mechanism by restricting it to a 
specific kernel. To address this very issue, we are in 
the process of porting it to Linux. 
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Figure 11: Data transfer size histogram for chkpt#1: alegra 2744

 
Figure 12: Data transfer size histogram for chkpt#2: alegra 2744
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