
A Scalable Parallel Subspace Clustering Algorithm for Massive Data Sets�

Harsha S Nagesh
ECE Department

Northwestern University
harsha@ece.nwu.edu

Sanjay Goil
Performance Technology Group

Sun Microsystems Inc.
sgoil@eng.sun.com

Alok Choudhary
ECE Department

Northwestern University
choudhar@ece.nwu.edu

Abstract

Clustering is a data mining problem which finds dense regions in a
sparse multi-dimensional data set. The attribute values and ranges of these
regions characterize the clusters. Clustering algorithms need to scale with
the data base size and also with the large dimensionality of the data set.
Further, these algorithms need to explore the embedded clusters in a sub-
space of a high dimensional space. However, the time complexity of the
algorithm to explore clusters in subspaces is exponential in the dimension-
ality of the data and is thus extremely compute intensive. Thus, paral-
lelization is the choice for discovering clusters for large data sets. In this
paper we present a scalable parallel subspace clustering algorithm which
has both data and task parallelism embedded in it. We also formulate the
technique of adaptive grids and present a truly un-supervised clustering al-
gorithm requiring no user inputs. Our implementation shows near linear
speedups with negligible communication overheads. The use of adaptive
grids results in two orders of magnitude improvement in the computation
time of our serial algorithm over current methods with much better quality
of clustering. Performance results on both real and synthetic data sets with
very large number of dimensions on a 16 node IBM SP2 demonstrate our
algorithm to be a practical and scalable clustering technique.

1. Introduction

Clustering has been extensively studied in statistics, machine learning
[12], pattern recognition and image processing [8]. Intuitively, clustering
techniques find interesting and previously unknown patterns in large scale
data, embedded in a large multi-dimensional space and are applied to a
wide variety of problems like customer segmentation based on similarity
of buying interests [17], detection of clusters in geographic information
systems [13], etc. Clustering algorithms need to efficiently scale up with
the dimensionality of data sets and also with the data base size. Noise
present with data makes cluster detection harder. Further, clusters em-
bedded in a subspace of the total data space, result in an explosion in the
search space which is exponential in the data dimension. Parallelization
of the clustering process adds the much needed computational power for
these algorithms to be applied to massive financial data sets and large scale
scientific data. Effective representation of the detected clusters is as im-
portant as cluster detection and improves its usability. Most of the earlier
works in statistics and data mining [7, 19] operate and find clusters in the
whole data space. Most clustering algorithms [13, 1, 19] require user input
of several parameters like the number of clusters, average dimensionality
of the cluster, etc. which are not only difficult to determine but are also not
practical for real-world data sets. The output of these clustering algorithms
are very sensitive to the input parameters.

�This work was supported by the Department of Energy’s Accelerated
Strategic Computing Initiative (ASCI) program under a subcontract No
W-7405-ENG-48 from Lawarence Livermore national Laboratories and by
NSF CDA-9703228.

We use a grid and density based approach for cluster detection in sub-
spaces. Density based approaches regard clusters as higher density regions
than their surroundings. The quality of results and the computation require-
ments heavily depend on the number of bins in each dimension. Larger bin
sizes result in poor cluster quality, while finer bins result in an enormous
amount of computation. Hence, determination of bin sizes automatically
based on the data distribution greatly helps in finding correct clusters of
high quality and reduces the computation substantially. However, subspace
clustering algorithms need to explore all possible subspaces for embedded
clusters in a bottom-up algorithm resulting in a time complexity which is
exponential in the data dimension. Thus parallelization is the choice for
grid based subspace clustering algorithms for massive data sets.

In this paper we present pMAFIA (for Merging of Adaptive Finite In-
tervals), a scalable parallel subspace clustering algorithm using adaptive
computation of the finite intervals (bins) in each dimension, which are
merged to explore clusters in higher dimensions. The parallelization strat-
egy involves both task and data parallelism with negligible communication
overheads. Adaptive grid sizes improve the clustering quality by concen-
trating on the portions of the data space which have more points and thus
are more likely to be part of a cluster region enabling minimal length DNF
(disjunctive normal form) expressions, important for interpreting results by
the end-user. Further, pMAFIA requires no user input, making it a com-
pletely un-supervised data mining algorithm. We describe recent work on
clustering techniques in databases in Section 2. Density and grid based
clustering is presented in Section 3 and we also describe our approach of
using adaptive grids. Section 4 describes the parallel algorithms for detect-
ing clusters and also explains the task and data parallel algorithms followed
by their analysis. Section 5 presents the performance evaluation on a wide
variety of synthetic and real data sets with large number of dimensions,
highlighting both scalability of the algorithms and the quality of the clus-
tering. Section 6 concludes the paper.

2. Related Work

Clustering algorithms have long been studied in statistics and
databases. k-means, k-mediods, CLARANS [14], BIRCH [19], CURE
[9] are some of the earlier works. Wavecluster [16], a density and grid
based approach using wavelet transform on the multi-dimensional space,
is computationally efficient but applicable to only low dimensional data.
However, none of the above algorithms detect clusters in subspaces. PRO-
CLUS [1], a subspace clustering algorithm finds representative cluster cen-
ters in an appropriate set of cluster dimensions. It needs the number of
clusters, k, and the average cluster dimensionality, l, as input parameters,
both of which are not possible to be known apriori for real data sets. Den-
sity and grid based approaches regard clusters as regions of data space in
which objects are dense and are separated by regions of low object density
(noise) [10]. The grid size determines the computations and the quality
of the clustering. CLIQUE, a density and grid based approach for high
dimensional data sets [2], detects clusters in the highest dimensional sub-
spaces. It takes the size of the grid and a global density threshold for

2000 International Conference on Parallel Processing (ICPP'00)
0-7695-0768-9/00 $10.00 @ 2000 IEEE

clusters as input parameters. The computation complexity and the quality
of clustering is heavily dependent on these parameters. ENCLUS [4], an
entropy based subspace clustering algorithm requires a prohibitive amount
of time to just discover interesting subspaces in which clusters are embed-
ded. It also requires input of entropy thresholds which is not intuitive for
the user. A survey of parallel algorithms for hierarchical clustering using
distance based metrics is given in [15]. These are more theoretical PRAM
algorithms. Recently, k-means algorithm has been parallelized [5], but is
limited however in its applicability, as it requires the user to specify k, the
number of clusters, and also does not find clusters in subspaces.

3. Density and Grid based Clustering

Density based approaches regard clusters as higher density regions than
their surroundings. A common way of finding high-density regions in the
data space is based on the grid cell densities [10]. A histogram is con-
structed by partitioning the data space into a number of non-overlapping
regions and then mapping the data points to each cell in the grid. Equal
length intervals are used in [2] to partition each dimension, which results
in uniform volume cells. The number of points inside the cell with respect
to the volume of the cell can be used to determine the density of the cell.

Let A = fA1; A2; : : : ; Adg be a set of attributes with domains
fD1; D2; : : : ;Ddg defining S = A1�A2� : : :�Ad, a d-dimensional
numerical space. Let r = (r1; : : : ; rd) be a d-dimensional input record.
The space S is partitioned into a grid consisting of non-overlapping rect-
angular units. Let C = c

1k
0 � c

2k
00 � : : : � c

dk
0:::0 be a cell (hyper-

rectangle) if for all i 2 f1; : : : ; dg; c
ik

0 � Di. cik0 = [l
ik

0 ; u
ik

0) is the

interval in the partitioning of Ai such that
S

allk
cik = Di. In [2] each

dimension, i, is partitioned into � equal intervals such that cik = Di

�
for

all k = 1; : : : ; �. A record r = (r1; : : : ; rd) is contained in the cell C, if
lik � ri < uik for all cik . A cell C is dense if the fraction of the total
data points contained in the cell is significantly greater (by some factor �)
than the value expected if data were uniformly distributed in the data space.
A significant deviation from uniform distribution can be characterized by
a value of � greater than 1.5.

Clusters are unions of connected high density cells. Two k-
dimensional cells are connected if they have a common face in the k-
dimensional space or if they are connected by a common cell. Creating
a histogram that counts the points contained in each unit is infeasible in
high dimensional data. Subspace clustering further complicates the prob-
lem as it results in an explosion of such units. A bottom-up approach of
finding dense units and merging them to find dense clusters in higher di-
mensional subspaces has been proposed in CLIQUE [2]. Each dimension
is divided into a user specified number of intervals, �. The algorithm starts
by determining 1-dimensional dense units by making a pass over the data.
In [2] candidate dense cells in any k dimensions are obtained by merging
the dense cells in (k� 1) dimensions which share the first (k� 2) dimen-
sions. However, this method of combining dense units does not explore all
possible candidate dense cells. For example, consider two 3-dimensional
dense units fa1; b7; c8g and fb7; c8; d9g, where (a; b; c; d) are the bins
in the dimensions indicated by their subscripts. Let the numerical space
be defined by an ordered set of dimensions f1; : : : ; 10g. We can easily
see that the two dense units results in a 4-dimensional candidate dense
unit fa1; b7; c8; d9g which is not formed by the approach in [2]. Thus,
in our approach, candidate dense cells in k dimensions, are obtained by
merging any two dense cells, represented by an ordered set of (k � 1)
dimensions, such that they share any of the (k � 2) dimensions. A pass
over data is made to find which of the candidate dense cells are actually
dense. The algorithm terminates when no more candidate dense cells are
generated. In [2] candidate dense units are pruned based on a minimum
description length technique to find the dense units only in interesting sub-
spaces. However, as noted in [2] this could result in missing some dense
units in the pruned subspaces. In order to maintain the high quality of
clustering we do not use this pruning technique.

3.1. Adaptive Grids

We propose an adaptive interval size in which bins are determined
based on the data distribution in a particular dimension. The size of the
bin and hence number of bins in each dimension in turn determine the
computation and quality of clustering. Finer grids leads to an explosion
in the number of candidate dense units, while coarser grids leads to fewer
bins, and regions with noise data might also get propagated as dense cells.
Also, a user defined uniform grid size may fail to detect many clusters or
may yield very poor quality results. A single pass over the data is done in
order to construct a histogram in every dimension. Algorithm 1 describes
the steps of the adaptive grid technique. The domain of each dimension is
divided into fine intervals, each of size x. The maximum of the histogram
value within a window is taken to reflect the window value. Adjacent win-
dows whose values differ by less than a threshold percentage are merged
together to form larger windows ensuring that we divide the dimensions
into variable sized bins which capture the data distribution. In essence, we
fit the best rectangular wave which matches the data distribution. How-
ever, in dimensions where data is uniformly distributed this results in a
single bin and indicates much less likelihood of the presence of a cluster.
In order to examine these dimensions further, we split the domain into a
small fixed number of partitions and collect statistics for these bins. This
also allows us to set a high threshold as this dimension is less likely to be
part of a cluster. This technique greatly reduces the computation time as
we are able to limit the degree to which the bins from non-cluster dimen-
sions contribute to the computation. In the dimensions with variable sized
bins we set a variable threshold for each bin in that dimension. A bin in
such a dimension is likely to be part of a cluster if it has a significantly (by
a factor of �) greater number of points than it would have had, had the data
been uniformly distributed in that dimension. Thus, for a bin of size a in a
dimension of size Di we set its threshold to be �aN

Di

, where N is the total
number of data points. A value of � greater than 1.5 has worked well in
our experiments.

Algorithm 1 Adaptive Grid Computation

Di - Domain of Ai

N - Total number of data points in the data set
a - Size of a generic bin
for each dimension Ai; i 2 (1; : : : d)

Divide Di into windows of some small size x
Compute the histogram for each unit of Ai, and set the value of
the window to the maximum in the window
From left to right merge two adjacent units if they are within a
threshold �
/* Single bin implies an equi-distributed dimension */
if(number of bins == 1)

Divide the dimension Ai into a fixed number of equal par-
titions.

Compute the threshold of each bin of size a as �aN
Di

end

3.2. Adaptive Grids and Quality of Clustering

Figure 1.1(a) illustrates the uniform grid used in CLIQUE and, as seen,
generates many more candidate dense units than an adaptive grid illus-
trated in Figure 1.1(b). CLIQUE also uses a greedy algorithm as a post-
processing phase to generate the minimal description length of the clusters
to make the cluster definitions more amenable to the end-user. It covers the
found grids in clusters by maximal rectangles that provide coverage. Since
this is an approximation of the cluster, it further adds to the complexity and
reduces the correctness of the reported clusters. On the other hand, since
pMAFIA uses adaptive grid boundaries its cluster definitions are minimal
DNF expressions and report the boundaries of clusters far more accurately.
Figure 1.2 shows a cluster definition in two dimensions. The cluster re-
ported by CLIQUE, pqrs, shown in Figure 1.2(a), loses the boundaries

2000 International Conference on Parallel Processing (ICPP'00)
0-7695-0768-9/00 $10.00 @ 2000 IEEE

of the cluster. pMAFIA develops grid boundaries very close to the bound-
aries of the cluster and reports abcdefghijkl shown in Figure 1.2(b) as the
cluster with the DNF expression (l; y)^(m; z)^(n; y)^(m; x)^(m; y).

4. pMAFIA Implementation
We introduce a scalable parallel formulation of the subspace cluster-

ing algorithm incorporating both data and task parallelism on a distributed
memory architecture. Programs run in the Single Program Multiple Data
(SPMD) mode, where the same program runs on multiple processors but
uses portions of the data assigned to the processor leading to data paral-
lelism. Task parallelism is achieved by portions of the task at hand as-
signed to each processor. Processors communicate by exchanging mes-
sages. In contemporary parallel architectures which use this paradigm (e.g
IBM SP2), the communication latencies are more than an order of mag-
nitude larger than computation time. To achieve good parallelization, the
overhead of communication has to be reduced by allocating tasks to pro-
cessors such that relatively few small messages are exchanged. pMAFIA
is a disk-based parallel and scalable algorithm which can handle massive
data sets with a large number of dimensions. The algorithm can also run
on a single processor in which the communication steps will be ignored.
Algorithm 2 shows the steps of the algorithm. In our set up on the IBM
SP2, each processor reads a portion of the data from a shared disk initially
and keeps it on the local disk. The bandwidth seen by a processor of an I/O
access from the local disk is much higher than an access to a shared disk.

Algorithm 2 pMAFIA Algorithm

N - Number of records; p - Number of processors; d - Dimensionality
of data
Ai - ith attribute i 2 d; B - Number of records that fit in memory
buffer allocated at each processor
/* Each processor reads N

p
data from its local disk */

On each processor
Read N

pB
chunks of B records from local disk and build a his-

togram in each dimension Ai; i 2 (1; : : : ; d)
Reduce communication to get the global histogram
Determine adaptive intervals using the histogram in each dimen-
sion Ai; i 2 d and also fix the threshold level
Set candidate dense units to the bins found in each dimension
Set current dimensionality, k to 1
while (no more dense units are found)

if (k > 1)
Find-candidate-dense-units();

Read N
pB

chunks of B records from local disk and for ev-
ery record populate the candidate dense units
Reduce communication to get the global candidate dense
unit population
Identify-dense-units();
Register non dense units with the print data structures on
the parent processor.
Build-dense-unit-data-structures();

if (Parent Processor)
print-clusters();

end

pMAFIA consists mainly of the following steps. Candidate dense units
in dimension k are built by combining dense units of dimension k�1 such
that they share any of the k � 2 dimensions. The parallel algorithm Find-
candidate-dense-units() elaborates the steps involved in this process. The
algorithm spends most of its time in making a pass over the data and find-
ing out the dense units among the candidate dense units formed in every
dimension. Repeated passes over the data need to be done as the algo-
rithm progresses building dense units of higher dimensions. After finding
the histogram count of the candidate dense units in a particular dimension,
dense units are identified and dense unit data structures are built for the
next higher dimension. The algorithms Identify-dense-units() and Build-

dense-unit-data-structures() explain these in detail. We have introduced
both data parallelism for the I/O intensive phase of building the histogram
count of the candidate dense units and task parallelism for all the remain-
ing tasks in the algorithm. The algorithm terminates when no more dense
units exists. Clusters are finally printed by the parent processor at the end
of the program.

4.1. Data Parallelism
Each processor starts by building a histogram for all dimensions with

the data of size N
p

, where N is the total number of records and p the num-
ber of processors. It is during this process that the data is read from the
shared disk and written to the local disks of an IBM SP2 so that subsequent
data set accesses can see a much larger bandwidth. A Reduce communi-
cation primitive with sum as its operand gathers the global histogram on
each processor. Given a vector of size m on each processor and a binary
associative operation, the Reduce operation computes a resultant vector of
size m and stores it on every processor. The ith element of the resultant
vector is the result of combining the ith element of the vectors stored on
all the processors using the binary associative operation. Each processor
now determines the adaptive finite intervals for every dimension and fixes
the bin sizes and thresholds for every bin formed as elaborated in Algo-
rithm 1. Each bin thus found is considered to be a candidate dense unit.
Candidate dense units are populated by a pass on local data, which is read
in chunks of B records. This enables our algorithm to be applicable to
out of core data sets. Since each processor accesses only the local data,
of size N

p
, data parallelism can be obtained. A Reduce operation gets the

global histogram count of the candidate dense units on all processors. This
is followed by the task parallel algorithms which identify the dense units
and build their data structures.

4.2. Task Parallelism
The task of finding the candidate dense units and identifying the dense

units among the candidate dense units is divided among the processors
such that each processor gets an equal amount of work. Optimal task parti-
tioning is important in order to ensure that processors do not wait for other
processors to finish their tasks. After completion of the job at hand, pro-
cessors exchange messages in order to obtain the global information. The
benefits of task parallelism are obtained only when the computation time is
much more than the communication overheads. Each candidate dense unit
(CDU) and, similarly a dense unit, in the dth-dimension is completely
specified by the d dimensions of the unit and their corresponding d bin
indices. In our implementation we store this information in the form of an
array of bytes, one array for the bin indices of all the CDUs and one for
the CDU dimensions. Similarly an array each is used to store the dimen-
sions and the bin indices of the dense units. By storing the information
in the form of a linear array of bytes we not only optimize for space, but
also gain enormously while communicating. This helps in communicating
information in a single step with the use of much smaller message buffers.

4.3. Building Candidate Dense Units

Figure 2 illustrates the process of building candidate dense units in
dimension 3 for a data set in 10 dimensions. Candidate dense units in any
dimension k are formed by combining dense units of dimension k�1 such
that they share any k� 2 dimensions. The steps of this algorithm is shown
in Algorithm 3. Let the number of dense units be denoted by Ndu and the
number of CDUs by Ncdu. It is easy to see that each dense unit needs to
be examined with every other dense unit to form candidate dense units and
this would lead to a huge amount of computation when Ndu is large. One
can thus generate these CDUs in parallel and speedup the whole process.
We shall now derive formulations which achieve optimal task partitioning
of the candidate dense unit generation process and result in good speedups.
Let k be the dimension in which we build candidate dense units. If Ndu

is the number of dense units, it can be easily seen that the total amount

of computation performed is Ndu(Ndu+1)
2

when each processor works
on all the dense units. Let n1; n2; : : : ; np�1 be real numbers such that

2000 International Conference on Parallel Processing (ICPP'00)
0-7695-0768-9/00 $10.00 @ 2000 IEEE

(a) (b)

10 20 30 40 50 60 70
0

1

2

3

4

5

6

a

b c

d e

f g

h

j

i

k

l

p

q r

s

B

A
(a)

10 20 30 40 50 60 70
0

1

2

3

4

5

6

a

b c

d e

f g

h

j

i

k

l

B

x y z

l

m

n

A
(b)

(1.1a) Uniform (1.1b) Adaptive (1.2a) CLIQUE (1.2b) pMAFIA

Figure 1. (1) Grid Size (2) Cluster Discovered

21 1 1 1 1 1 1 1 1 1 1 1 1 1

1 7 1 8 2 3 2 4 2 5 4 5 7 9 8 9

2

2 4 5 2 4 5

1 1 1 1 1 1

1 7 8 1 7 9 1 8 9 2 3 4 2 3 5 2 4 5

2 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 7 8 1 7 9 1 8 9 2 3 4 2 3 5 2 4 5

2 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 8 9

21 1

7 8 9

21 1

Dense Unit Dimensions

Dense Unit Bins

CDU Dimensions

CDU Bins

Repeat

Ndu = 8

Ncdu = 7

Figure 2. Building CDUs. (Dimension, k = 3)

0 < n1 < n2 < : : : < np�1 < Ndu and divide the Ndu dense
units into p parts such that each part of the dense unit array be processed
by one of the p processors. The division of Ndu into p parts is such that

each processor does an equal amount of work, equal to Ndu(Ndu+1)
2p

. If
processor of rank i operates in the region between ni and ni+1 comparing
the dense units from ni to ni+1 with all the other dense units greater than
ni, we have

Ndu � (ni+1 � ni)� (

ni+1�1X

j=ni

j) =
Ndu(Ndu + 1)

2p
(1)

Solving the p � 1 equations iteratively for n1; : : : ; np�1, starting from
n1, one can obtain an optimal task partition for finding the candidate dense
units. Having obtained the solution for ni, the value of ni+1 can be ob-
tained by solving the above quadratic equation. CDUs generated by the
processors are communicated to the parent processor which concatenates
the CDU dimension and bin arrays in the rank order of the processors. This
information is broadcast to all the processors. Dense units which could not
be combined with any other dense units are registered with the parent pro-
cessor as a potential cluster in dimension k � 1. Candidate dense units
are generated in parallel only when each processor is guaranteed to have
a minimal amount of work. If Ncdu is less than a constant � , CDUs are
generated by all processors by processing all the dense units.

It can be seen from Figure 2 that the process of CDU generation may
lead to identical candidate dense units being formed. We need to iden-
tify the repeated CDUs and retain only the unique elements. Elimination
of identical CDUs is not only necessary but also greatly reduces the time
during the task parallel part of the algorithm. One needs to compare each
CDU with every other CDU to identify the repeated elements, which re-
sults in an O(Ncdu2) complexity algorithm. Thus, when Ncdu is large
we identify the repeated candidate dense units in parallel. This is similar

to the generation of the candidate dense units and task parallelism is ob-
tained by solving the above (p � 1) equations iteratively and with Ndu

being substituted by Ncdu. Further, if the number of unique candidate
dense units identified is still large, (> �), we construct the data structures
of the CDUs in parallel and finally exchange messages to obtain the global
information. The steps of the algorithm are elaborated in Algorithm 4.

Algorithm 3 Find-candidate-dense-units()

Ncdu - Number of candidate dense units; CDU - Candidate dense unit
Ndu - Number of dense units; p - Number of Processors; � - A constant
On each Processor

if (Ndu > �)
Find the start and end indices of the portion of the dense
unit array it has to process.
Build CDUs from its portion of the dense units.
Send the information of local CDU count, CDU dimen-
sions and Bins to the parent processor.
Send non combinable dense unit information to the parent
processor.
if (Parent Processor)

Recv local CDU count, CDU dimension, CDU bin
indices from all processors.
Compute total number of CDUs, Ncdu and con-
catenate the CDU dimension and CDU bin indices
in their rank order.
Broadcast Ncdu and the concatenated CDU dimen-
sion and bin information.
Recv non combinable dense unit information and
update the data structures used for printing clusters.

Eliminate-repeat-CDUs();
else

Build candidate dense units of dimension k from all the
dense units of dimension (k � 1).
if (Parent Processor)

Register non combinable dense units with the data
structures used for printing clusters.

Eliminate-repeat-CDUs();
end

4.4. Identification of Dense Units

Candidate dense units have to be examined to determine which of them
are actually dense. Each processor selects 1

p

th
of the candidate dense units

to determine the dense units. The histogram count of each CDU is com-
pared against the threshold of all the bins which form the CDU. A local
count of the number of dense units found is maintained on each processor.
A Reduce communication operation is now performed so that all proces-
sors have the information of the dense units from the set of candidate dense

2000 International Conference on Parallel Processing (ICPP'00)
0-7695-0768-9/00 $10.00 @ 2000 IEEE

Algorithm 4 Eliminate-repeat-CDUs()

Nrepeat - repeated CDUs;
On each Processor

if (Ncdu > �)
Find the start and end indices of the portion of the CDU
array it has to process.
Identify repeated CDUs in the entire CDU array as com-
pared to the CDUs of its portion of the array.
Reduce communication to obtain the global information of
the repeated CDUs.
Set the value of Nrepeat and Ncdu = Ncdu �
Nrepeat.
build-cdu-with-unique-elements();

else
Identify the repeated CDUs. Set the value ofNrepeat and
Ncdu = Ncdu�Nrepeat.
build-cdu-with-unique-elements();

end
build-cdu-with-unique-elements()f
if (Ncdu > �)

Divide Ncdu by p and find the start and end indices of the CDU
array it has to process.
Build the (1

p
)th CDU dimension and Bin arrays removing the

repeated CDU elements.
Send the (1

p
)th CDU information formed to the parent processor.

if (Parent Processor)
Recv the (1

p
)th CDU information from all the processors.

Concatenate them in their rank order.
Broadcast the global CDU information to all processors.

else
Build CDU data structures of the CDU dimensions and bins re-
moving the repeated CDU elements.

g

units. Another Reduce communication operation is performed to obtain the
global count of the number of dense units (Ndu) on all processors. If the
number of candidate dense units is less than � , each processor works on all
the candidate dense units to determine the dense units. Algorithm 5 shows
the steps involved. As before, if the number of dense units is greater than
� , the data structures of the dense units are constructed in parallel. It is
important to note that we need to carefully divide the task of building the
data structures as the dense units would not be distributed evenly. A linear
search over the dense unit array is required to determine the start and end
indices between which each processor operates for equal task distribution.
Data structures of dense unit bin indices and their dimensions constructed
in parallel are now merged with a Reduce communication operation. The
steps of the algorithm is shown in Algorithm 6. The algorithm then pro-
ceeds to a higher dimension and starts building the candidate dense units.
It terminates when there are no more candidate dense units.

After the cluster detection process is completed, the parent processor
processes all the entries registered in its data structures for printing clus-
ters. Clusters which are a proper subset of a higher dimension cluster are
eliminated and only unique clusters of the highest dimensionality are pre-
sented to the end user. This increases the usability of the algorithm to a
much greater extent. pMAFIA is an un-supervised clustering algorithm.
The clusters discovered by the algorithm are dependent on two parame-
ters, � and �. � indicates the magnitude of deviation of the histogram
values from that of equidistribution. A value of � greater than 1:5 has
been accepted to be sufficient deviation to be considered significant in the
field of statistics and data mining. Discovering clusters with higher values
of � yields clusters in the data set which are more dominant than the oth-
ers in terms of the number of data points contained in the cluster. Hence,
choosing a suitable value of � is straightforward. The parameter � con-
trols the process of finding adaptive grids. � controls the number of bins

formed in each dimension. A low value of � results in merging adjacent
bins which have nearly identical histogram values. However, histogram
values of adjacent bins are rarely the same. Thus a low value of � results
in a large number of bins in each dimension with greater computation time
and better cluster quality. High values of � results in merging all the bins
in a given dimension and will yield poor quality clusters. Our algorithm
is not very sensitive to the value of �. Clusters of high quality are dis-
covered efficiently by pMAFIA when too low or too high values of � are
avoided. A value of � in the range of 25% to 75% has worked well in our
experiments.

Algorithm 5 Identify-dense-units()

On each Processor
if (Ncdu > �)

Divide Ncdu by p. Find the start and end indices of the
portion of the CDU array which it has to process.
For each CDU in its portion of the array, compare the CDU
histogram count with the thresholds of the bins which form
the CDU.
Determine if the CDU is dense or not. Maintain a local
count of the number of dense units detected.
Reduce communication to get the dense unit information
of all the CDUs followed by another Reduce communica-
tion to get the total number of dense units Ndu.

else
For all CDUs, Ncdu, compare the CDU histogram count
with the thresholds of the CDU bins.
Determine if the CDU is dense or not. Find the total num-
ber of dense units Ndu.

end

Algorithm 6 Build-dense-unit-data-structures()

On each Processor
if (Ndu > �)

Divide Ndu by p. Find the start and end indices of the
CDU array on which it has to process.
Construct the data structures related to the dimension and
bin indices of the dense units from its portion of the CDU
array.
Reduce communication to get the global information of
the data structures of the dense units.

else
From all CDUs, construct data structures related to the di-
mension and bin indices of the dense units.

end

4.5. Analysis

Let k represent the highest dimensionality of any dense unit in the data
set. The running time of the algorithm is exponential in k. This is due to
the fact that if a dense cell exists in k dimensions, then all its projections in
a subset of k dimensions, O(2k) combinations, are also dense. Thus one
needs to check for clusters in all possible subspaces among the k cluster
dimensions. However, with the use of adaptive grids the number of can-
didate dense units is greatly reduced and thus enables pMAFIA to scale
gracefully with the dimensionality of the data set and the data set size. Let
� be the constant for communication and S be the size of messages ex-
changed among processors and N , the total number of records. Also, let
B be the number of records that fit in memory buffer on each processor and
let be the I/O access time for a block of B records from the local disk.
The computation time complexity of the algorithm is then O(ck), where c
is a constant. The total I/O time on each processor is O(N

pB
k) as each

processor has to read just N
p

part of the data in chunks of B records. The

2000 International Conference on Parallel Processing (ICPP'00)
0-7695-0768-9/00 $10.00 @ 2000 IEEE

factor of k is due to the k passes required over the database before the al-
gorithm terminates. The communication time is O(�Spk). The total time
complexity of the algorithm is then O(ck+ N

pB
k+�Spk). The running

time on a single processor can simply be obtained by substituting p = 1
and S = 0, as there will be no communication.

5. Performance Evaluation

Our implementation of pMAFIA is on an IBM SP2, which is a collec-
tion of IBM RS/6000 workstations connected with a fast communication
switch. In our setup of 16 processors, each processor is a 120MHz thin
node with 128MB main memory, and a 2GB disk on each node of which
1GB is available as scratch space. The communication switch has a latency
of 29.3 milliseconds and the bandwidth is 102 MB/sec (uni-directional)
and 113 MB/sec (bi-directional). We use Message Passing Interface (MPI)
for communication between processors.

5.1. Data Sets
We created a data generator to produce the data sets used in our exper-

imental results. The data generator takes from the user the extents of the
cluster in every dimension of the subspace in which it is embedded. Data
can vary between any user specified maximum and minimum values for
all attributes and clusters can have arbitrary shapes instead of just hyper-
rectangular regions. The attribute values in the dimensions of the subspace
in which the cluster is defined is generated as follows. All dimensions are
scaled to lie in the range [0; : : : ; 100]. Data points are generated such that
each unit cube, part of the user defined cluster, in this scaled space contains
at least one point. The data so generated is scaled back appropriately into
the user specified attribute ranges. This method, as against randomly pop-
ulating the user defined cluster region as used in [2], ensures that we have
a cluster exactly as defined by the user and helps to validate the results.
For the remaining attributes we select a value at random from a uniform
distribution over the entire range of the attribute. We use a better random
number generator called the Inversive Congruential Generator [6] as long
sequences of Unix random number generators (LCGs) exhibit regular be-
havior by falling into specific planes. An additional 10% noise records is
added to the data set. Values for all the attributes in these noise records
are independently drawn at random over the entire range of the attribute.
Also, user specified cluster definition is permuted to ensure no dependency
on the order of input records.

5.2. Experimental Results

We present performance results of pMAFIA in terms of the speedups
on different number of processors, scalability of the algorithm with the
database size and scalability of the algorithm with dimensionality of the
data and cluster dimensionality. Further, we compare CLIQUE with
pMAFIA, followed by results of the improvement in quality of the clus-
tering obtained by our algorithm. In the results we report below time taken
for data to be read from the shared disk onto the local disks of the proces-
sors is not included as data is read over an NFS and this time varies greatly
based on the network activity. We first report the results on the synthetic
data sets followed by the results on real data.

5.3. Parallel Performance

Figure 3 presents the times obtained by pMAFIA. The results are on a
30 dimensional data set with 8:3 million records containing 5 clusters each
in a different 6 dimensional subspace. The threshold percentages were au-
tomatically set by the algorithm for bins in all the dimensions based on the
data distribution. From the plot it can be seen that we have achieved near
linear speedups. This is due to the algorithm being heavily data parallel
and time for computation goes down linearly with the increase in the num-
ber of processors. We observed that bulk of the time is taken in populating

Table 1. Execution times (in secs)
Number of Processors

1 2 4 8 16

pMAFIA 32.15 17.73 8.34 5.08 4.51
CLIQUE 2469.12 1324.51 664.65 338.19 184.36

the candidate dense units which is completely data parallel. Communi-
cation overhead introduced due to the parallel algorithm is negligible as
compared to the total time. The time taken to build the initial histogram is
also a very small percentage of the total time. Further, we observed that
the I/O time decreases with the increase in the number of processors as
expected due to the data parallelism.

1 2 4 8 16
Number of Processors

0

500

1000

1500

2000

2500

3000

3500

4000

Ti
m

e
(in

 s
ec

on
ds

)

30D data, 8.3M records, 5 clusters each of 6 dimension

Figure 3. Parallel run times of pMAFIA

5.4. Effect of using Adaptive Grids

Figure 4 shows the speedup obtained over CLIQUE on different num-
ber of processors. The results are for a database with 300,000 records in 15
dimensions with one cluster embedded in a 5 dimensional subspace. We
set the threshold percentages for the bins in various dimensions depending
on the bin size based on Algorithm 1. However, while running CLIQUE
we set the threshold � to a uniform high value of 2% in all dimensions
so that it could discard a larger number of candidate dense units in every
pass over the data. Each dimension is divided into 10 bins for the results
reported for CLIQUE. We see good parallelization for both CLIQUE and
pMAFIA from the Table 1. Figure 4 shows that pMAFIA performs 40 to
80 times better than CLIQUE for this data set. The results presented for
CLIQUE are using the CDU generation algorithm in [2]. This speedup is
due to the minimal set of bins in each dimension based on its interesting-
ness as observed from the data histogram in every dimension. This results
in a set of candidate dense units much lower than the one obtained by equal
number of bins in all dimensions. Table 1 shows the comparative execution
times of pMAFIA and CLIQUE for the data set used in Figure 4.

1 2 4 8 16
Number of processors

20

30

40

50

60

70

80

90

Sp
ee

du
p

ov
er

 C
LI

Q
UE

300,000 records, 15D data, 1 cluster in 5 dimensions

Figure 4. Speedup of pMAFIA over CLIQUE

5.5. Adaptive Grids and Computation Complexity
We generated a data set containing a single 7 dimensional cluster in a

10 dimensional data space. The data set contained 5:4 million records. In
this experiment we ran pMAFIA and compared it with our modified imple-
mentation of [2] where candidate dense units in dimension k are formed

2000 International Conference on Parallel Processing (ICPP'00)
0-7695-0768-9/00 $10.00 @ 2000 IEEE

1.45 Million 2.9 Million 5.9 Million 11.8 Million
Number of Records

0

20

40

60

80

100

120

140

160

180

200

Ti
m

e
(in

 s
ec

on
ds

)

20D data, 16 processors, 5 clusters each in 5 dimensions

Figure 5. Scalability with database size
by combining k�1 dimensional dense units which share any k�2 dimen-
sions. This modification of the algorithm drastically increases the search
space for finding the embedded clusters. Table 2 shows the number of
CDUs (Ncdu) and the number of dense units (Ndu) generated in this ex-
periment. Results presented for [2] are with 10 uniform sized bins in each
dimension and a threshold percentage of 1% for all dimensions. pMAFIA
discovered correctly the single cluster embedded. However, CLIQUE dis-
covered 75 unique clusters each of dimension 6 and 546 unique clusters
each of dimension 7. Most of these clusters contained at least one cluster
dimension which was not part of the original defined cluster. The increase
in the search space of the algorithm detects all embedded clusters. Since
[2] treats all dimensions of the data set in the same way by forming uniform
sized grids, its computation time grows drastically. However, pMAFIA
exploits the data distribution in each dimension by forming adaptive grids
and thus greatly reduces the computation time by forming as few bins as
required in each dimension. This results in very few candidate dense units
being generated as seen in Table 2. For this experiment on a 400 MHz
Pentium II processor, pMAFIA took just 691 seconds while the modified
implementation of CLIQUE took 79162 seconds resulting in a factor of
114:56 speedup.

Table 2. CDUs generated: pMAFIA, CLIQUE
Dimension 2 3 4 5 6 7 8
pMAFIA Ncdu 21 35 35 21 7 1 0

Ndu 21 35 35 21 7 1 0
CLIQUE Ncdu 2313 5739 19215 38484 42836 24804 5820

Ndu 535 1572 3337 3870 2312 546 0

5.6. Scalability with Database Size
Figure 5 shows the results for scalability with the database size for a 20

dimensional data with the number of records ranging from 1:45 million to
11:8 million. There were 5 clusters embedded in 5 different 5-dimensional
subspaces. The results reported are on 16 processors. The thresholds for
different bins were determined automatically by Algorithm 1. The time
spent in cluster detection almost shows a direct linear relationship with the
database size. The linear behavior is because the number of passes over
the database depends only on the dimensionality of the embedded cluster.
An increase in the size of the database just means that more data has to
be scanned on every pass over the database while finding the dense units
resulting in a linear increase in time.

5.7. Scalability with Data and Cluster Dimensions
In Figure 6 we see that pMAFIA scales very well with the increase in

data dimension. The results shown are on a data set of 250; 000 records
with 3 clusters each in a five dimensional subspace, with a total of 9 dis-
tinct dimensions. The results reported are on 16 processors with similar
behavior observed on other number of processors. The linear behavior is
due to the fact that our algorithm makes use of data distribution in every
dimension and only depends on the number of distinct cluster dimensions.
CLIQUE not only depends on distinct cluster dimensions but also on the
data dimensionality. Hence it exhibits a quadratic behavior with respect to
the data dimensionality as reported in [2].

Figure 7 shows the scalability observed with increasing cluster dimen-
sionality in pMAFIA. The results reported are for a 50-dimensional data
set with 650; 000 records containing 1 cluster on 16 processors. Results
show that the time increase with cluster dimensionality reflects the time

0 10 20 30 40 50 60 70 80 90 100
Dimensionality of Data

0

10

20

30

40

Ti
m

e
(in

 s
ec

on
ds

)

250,000 records, 16 processors, 3 clusters each in 5 dimensions

Figure 6. Scalability with Data Dimension

complexity of the algorithm, which is exponential in the number of dis-
tinct cluster dimensions. Similar behavior is observed on other number of
processors.

3 4 5 6 7 8 9 10
Dimensionality of Hidden Cluster

0

10

20

30

40

50

60

70

80

90

100

Ti
m

e
(in

 s
ec

on
ds

)

50D data, 16 processors, 650,000 records, 1 cluster

Figure 7. Scalability with Cluster Dimension

5.8. Quality of Results
We compare the quality of the results obtained by pMAFIA with those

of CLIQUE, shown in Table 3. The results are for a relatively small data set
with 400; 000 records in 10 dimensions with 2 clusters each in a different
4 dimensional subspace. We ran our parallelized version of CLIQUE on
16 processors. In the first case we set the number of bins to be 10 in every
dimension and also set a threshold of 1% uniformly in all dimensions (as
implemented in CLIQUE). In the second case we set arbitrary number of
bins in each dimension (with a minimum of 5 bins to a maximum of 20 bins
per dimension). The threshold in each dimension is set to 1%. In the first
case CLIQUE reported the correct dimensions of the 2 clusters, however,
it detected the 2 clusters only partially and large parts of the clusters were
thrown away as outliers. In the second run, with a variable number of bins
in each dimension, it completely failed to detect one of the clusters and, as
before, the single cluster was partially detected. This is due to the inherent
nature of CLIQUE which uses fixed discretization of the dimensions and
hence results in a loss in the quality of the cluster obtained. For real life
data sets validation of the results obtained would be a very hard task and
thus bin selection would be a non trivial problem. When we ran pMAFIA
on the same data set on 16 processors, both the clusters and the cluster
boundaries in each dimension were accurately reported.

Table 3. Quality of Clustering
Cluster Dimensions Clusters Discovered

CLIQUE (fixed 10 bins) f1,7,8,9g,f2,3,4,5g f1,7,8,9g,f2,3,4,5g
CLIQUE (variable bins) f1,7,8,9g,f2,3,4,5g f2,3,4,5g
MAFIA f1,7,8,9g,f2,3,4,5g f1,7,8,9g,f2,3,4,5g

5.9. Real Data Sets
We applied pMAFIA on three real world data sets to discover embed-

ded clusters in different subspaces. The data sets used are of very high
dimensionality. Although the data set size is small compared to the syn-
thetic data sets used in our experiments, we report the results mainly to
illustrate the applicability of pMAFIA, a completely un-supervised data
mining algorithm, on real world problems. Our experiments show that
for such data sets task parallelism is more effective than data parallelism.
However, it is easy to see that one would gain enormously from both task
and data parallelism with the increase in the data set size.

2000 International Conference on Parallel Processing (ICPP'00)
0-7695-0768-9/00 $10.00 @ 2000 IEEE

Table 4. Clusters Discovered in DAX Data Set
Cluster Dimension 3 4 5 6
Number of Clusters Discovered 161 134 104 24

1. One Day Ahead Prediction of DAX
The data set is a one day ahead prediction of the German Stock index
(DAX, Deutscher Aktien Index) based on twelve input time series
which includes different stock indices, bond indices and inflation in-
dicators like the DAX Price Index, DAX Price-Earnings Ratio and
DAX Composite. Detailed explanation of the DAX data set and de-
scription of the inputs can be found in [18]. The data set is in 22
dimensions with 2757 records. We choose the value of � to be 2
for the results reported. The clusters discovered are given in Table
4. The results reported are with 8 processors taking 8:16 seconds.

2. Ionosphere Data
We applied pMAFIA to the radar data that was collected by a system
in Goose Bay, Labrador [3]. The data set is of 34 dimensions with
351 records. In the results reported on 8 processors we set � to be 2.
We discovered 158 unique clusters in 3 dimensional subspaces and
32 unique clusters in 4 dimensional subspaces. However, when we
increased � to 3 we discovered one single cluster in a 3 dimensional
subspace. PROCLUS [1] has reported two clusters one each in 31
and 33 dimensions for this data set. However, we believe that this
could be in part due to an incorrect value of l, the average cluster
dimensionality, chosen by the user. Further, [1] also requires the
user to specify k, the number of clusters in the data set which cannot
be known apriori for real data sets.

3. EachMovie Recommendation Data
We applied pMAFIA to a massive data set which contained movie
ratings. The data set was collected by DEC Systems Research Cen-
ter [11] over a period of 18 months. During this period 72916 users
entered a total of 2; 811; 983 (� 2:8 Million) numeric ratings for
1628 different movies (films and videos). Each rating is character-
ized by four numbers. These numbers contain information about the
user-id, movie-id, a score (0� 1) and a weight (0� 1). In this 4 di-
mensional data set we discovered 7 clusters all of dimension 2 in just
about 28 seconds on a 400 MHz Pentium II processor. Clusters dis-
covered by pMAFIA revealed interesting information about which
set of movies were rated most by which set of users. The experi-
ment reveals the scalability with respect to the data size of pMAFIA
on real data as seen from the run times in Table 5.

Table 5. Parallel Performance.
Processors 1 2 4 8 16
Run Times (in sec) 144.86 70.47 36.86 20.35 10.18
Speed Up 1 2.06 3.93 7.11 14.23

6. Conclusions
In this paper we presented pMAFIA, an efficient parallel algorithm for

subspace clustering using a density and grid based approach with adap-
tive finite intervals. This performs two orders of magnitude better than
CLIQUE and also improves the quality of clustering greatly as compared
to both CLIQUE and PROCLUS. pMAFIA requires no user input, which
makes it a totally un-supervised data mining algorithm. Experimental eval-
uations on a variety of synthetic and real data sets, with varying dimen-
sionality and database sizes, show the gains in performance and quality
of clusters. The use of adaptive grids in pMAFIA leads to large improve-
ments over CLIQUE, as large as 80 times better for some data sets. Near
linear speedups have also been obtained with very small communication
overheads in the parallel formulation.

References

[1] C. Aggarwal, C. Procopiuc, J. Wolf, P. Yu, and J. Park. A
Framework for Finding Projected Clusters in High Dimen-

sional Spaces. In Proc. ACM SIGMOD International Confer-
ence on Management of Data, 1999.

[2] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Au-
tomatic subspace clustering of high dimensional data for data
mining applications. In Proc. ACM SIGMOD International
Conference on Management of Data, 1998.

[3] C. Blake and C. Merz. UCI reposi-
tory of machine learning databases. 1998.
http://www.ics.uci.edu/�mlearn/MLRepository.html.

[4] C. Cheng, A. Fu, and Y. Zhang. Entropy-based subspace clus-
tering for mining numerical data. In Proc. ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, 1999.

[5] I. Dhillon and D. Modha. A data-clustering algorithm on dis-
tributed memory multiprocessors. Large-Scale Parallel KDD
Systems, ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 1999.

[6] J. Eichenauer-Herrmann and H. Grothe. A new inversive
congruential pseudorandom number generator with power of
two modulus. ACM Transactions on Modeling and Computer
Simulation, 2(1):1–11, January 1992.

[7] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A Density-
based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise. In Proc. of the 2nd International
Conference on Knowledge Discovery in Databases and Data
Mining, 1996.

[8] K. Fukunaga. Introduction to Statistical Pattern Recognition.
Academic Press, 1990.

[9] S. Guha, R. Rastogi, and K. Shim. CURE: An Efficient
Clustering Algorithm for Large Databases. In Proc. ACM
SIGMOD International Conference on Management of Data,
1998.

[10] A. Jain and R. Dubes. Algorithms for Clustering Data.
Prentice-Hall Inc., 1988.

[11] P. McJones. Digital Equipment Corporation, Systems Re-
search Center. 1997. http://www.research.digital.com/SRC/.

[12] R. Michalski and R. Stepp. Learning from Observation:
Conceptual Clustering. Machine Learning: An Artificial In-
telligence Approach, I:331–363, 1983.

[13] R. Ng and J. Han. Efficient and effective clustering methods
for spatial data mining. Proc. 20th Int. Conf. on Very large
Data Bases, Santiago, Chile, pages 144–155, 1994.

[14] R. Ng and J. Han. Efficient and Effective Clustering Methods
for Spatial Data Mining. In Proc. 20th International Confer-
ence on Very Large Databases, 1994.

[15] C. Olson. Parallel algorithms for hierarchical clustering. Par-
allel Computing, 21, 1995.

[16] G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveClus-
ter: A Multi-Resolution Clustering Approach for Very Large
Spatial Databases. In Proc. 24th International Conference on
Very Large Databases, 1998.

[17] L. Ungar and D. Foster. Clustering methods for collabora-
tive filtering. AAAI Workshop on Recommendation Systems,
1998.

[18] A. S. Weigend and H. G. Zimmermann. Exploiting local
relations as soft constraints to improve forecasting. Journal
of Computational Intelligence in Finance, 6:14–23, 1998.

[19] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An effi-
cient data clustering method for very large databases. In Proc.
ACM SIGMOD International Conference on Management of
Data, 1996.

2000 International Conference on Parallel Processing (ICPP'00)
0-7695-0768-9/00 $10.00 @ 2000 IEEE

