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Abstract. Tertiary storage systems are used when secondary storage
can not satisfy the data storage requirements and/or it is a more cost ef-
fective option. The new application domains require on-demand retrieval
of data from these devices. This paper investigates issues in optimizing
I/O time for a query whose data resides on automated tertiary storage
containing multiple storage devices.

1 Introduction

Tertiary storage systems are employed in cases where secondary storage can not
satisfy the data storage requirements or tertiary storage is a more cost effective
option [8]. NASA’s Earth Observing System (EOS) Data and Information Sys-
tem (EOSDIS) is an example of the former [4, 13]. The latter case, can be found
in data warehousing applications. Inmon [10] shows that substantial monetary
savings can be achieved using a hierarchical data storage containing compara-
tively small amount of secondary storage and vast amounts of tertiary storage
without sacrificing performance.

Tertiary storage devices have traditionally been used as archival storage. The
new application domains require on-demand retrieval of data from these devices
[9]. While data archiving applications access large chunks of contiguous data,
these new applications access data that is scattered on multiple media. Hence
correct scheduling of data retrieval requests becomes important. For example,
I/O time for a query that accesses data from two different media using a single
robotic arm and two tape drives is minimized when the tape that needs more
time to read is loaded first.

Many of the application domains that use tertiary storage access multidi-
mensional datasets [2]. In a multidimensional dataset, each data item occupies a
unique position in a n-dimensional hyper-space. A query selects a subset of the
data items by selecting a subset of the domain in each dimension. Given the wide
variety of expected queries [18], it is not possible to store data accessed by each
query contiguously without high amount of data replication. Hence, a query on
a multidimensional dataset stored on tertiary storage, accesses data from mul-
tiple media [15]. Time needed to read the query data from a media depends
on the amount of data and location of the data inside the media. When using
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automated tertiary storage, the total I/O time for the query is also influenced
by the order in which media are accessed.

Various issues in tertiary storage management have been addressed by the
database community. Carey et. al. [1] evaluate issues in extending database tech-
nology for storing/accessing data on tertiary storage. Stonebraker [23] proposes
a database architecture that uses hierarchical storage. Livny et. al. [17] and
Sarawagi [20, 21, 22] examine issues in query processing when data resides on
tertiary storage. Data striping on tertiary storage has been evaluated in [3, 5].
Tertiary storage space organization issues are addressed in [2, 6]. This paper
investigates issues in optimizing I/O time for a query whose data resides on
automated tertiary storage containing multiple storage devices. We model the
problem as a limited storage parallel two-machine flow-shop scheduling problem
with additional constraints. Given a query, we establish an upper bound on the
number of storage devices for an optimal I/O schedule. For queries that access
small amounts of data from multiple media, we derive an optimal schedule ana-
lytically. For queries that access large amount of data we derive a heuristics-based
scheduling algorithm using analytically proven results.

The rest of this paper is organized as follows. Section 2 introduces the prob-
lem. Sections 3, 4 and 5 analyze the problem and provide theoretical results for
the problem. Section 6 discusses important practical considerations and presents
performance evaluation of our approach. Conclusions are presented in Section 7.

2 Background

The system model consists of A ≥ 1 robotic arms and T > 1 tape drives. A query
needs data from n tapes. Reading data from a tape consists of the following set of
operations: rewinding currently loaded tape; ejecting the tape; putting it back;
fetching the tape to be read; loading the tape; searching and reading data inside
the tape. Putting back a tape and fetching a new one are handled by the robotic
arm and the rest of the actions are carried out by the tape drive. The time to do
the arm operations is denoted by tA (which we assume to be same for all tapes
[6]) and time to do the drive operations is denoted by tD.

Given a set of tapes and blocks from each tape that need to be accessed
by a query, find the order in which the tapes should be read to minimize the
total I/O time. The problem is cast as a special case of two-machine flow-shop
scheduling problem [19]. The arm operations denote the first machine and the
drive operations denote the second machine. There are n jobs to be scheduled.
The optimality criteria is makespan, total execution time of the schedule. The
distinctive features of our problem (in contrast to the traditional two-machine
flow-shop scheduling problem) are:

– Multiple instances of machines More common system configurations have
a single robotic arms servicing a number of tape drives. In this paper, we
consider the case where there is one instance of the first machine and multiple
instances of the second machine.
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– Buffer bound = T At the most T jobs can be in the shop simultaneously.
The robotic arm can not load more tapes while all drives are busy accessing
tapes loaded in them and must remain idle.

– If job i starts at time si on the first machine then it must be scheduled so
that it finishes by si + tA + tDi on the second machine. The second machine
is idle for time tA before a job can be scheduled on it. This accommodates
for the behavior of a tertiary storage system where a drive is empty while
the robotic arm is loading the next tape. The case where A = T = 1 (a
single tape drive serviced by a single robotic arm) is uninteresting under
this condition. In the rest of this paper we assume T > 1.

– Practical considerations prevent use of scheduling algorithms that compare
tA and tDi values. The value of tDi can not be predicted correctly unless a
very accurate analytical model of the tape drive is available. For example,
Johnson’s algorithm [12], which is optimal for traditional two-machine flow-
shop scheduling, performs such a comparison.

3 Workload Characterization

A job is characterized by a k value of the job. For any job i, its k value is
governed by the inequality ((k − 1) × tA) < tDi ≤ (k × tA). The k value of a
workload is defined as ((k − 1) × tA) < maxi(tDi) ≤ (k × tA) where 0 ≤ i < n.

Theorem 1. [14] For A = 1, if (k − 1) × tA < maxi(tDi) ≤ k × tA, then
increasing number of instances of the second machine beyond min(n, k + 1) does
not improve the makespan of any schedule.

The above result provides an interesting insight to the problem. Given a
workload, it tells us when the first machine is the bottleneck and when it is not.
Given the system configuration, makespans of workloads with k values less than
or equal to T will be constrained by the first machine, that is idle times can be
introduced on the second machine because the first machine is always busy. The
jobs in these kind of workloads have their execution time on the second machine
bounded above by T × tA. Jobs in these workloads are small jobs. Execution
time on the second machine for a large job is more than T × tA.

4 Workloads Consisting of Small Jobs

A workload containing small jobs represents a situation where after loading a
media in a drive, the drive finishes reading data off that media before the robotic
arm can finish loading media in other drives. In such a situation, we find that
the robotic arm is busy all the time (except at the end when there are no more
media to access) irrespective of the order in which the media are loaded.

Theorem 2. [14] ∀i, if tDi ≤ (T − 1) × tA and A = 1, then longest-tD-first
(LtF) schedule is optimal.
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5 Workloads Consisting of Big Jobs

For queries that access large amount of data from each tape (where tDi > (T −
1) × tA), the first machine is not a bottleneck. This leads one to believe that
eliminating idle times on the second machine will lead to an optimal schedule.

Proposition 3. [14] ∀i, if tDi > (T − 1)× tA and A = 1, then shortest-tD-first
(StF) schedule is optimal in terms of idle time for the second machine.

However, StF schedule does not necessarily produce the optimal schedule.
Apart from idle times of machines, the length of the head and tail of the schedule
determine the optimality of a schedule. For the problem under consideration, the
length of the head is independent of the scheduling algorithm. The StF schedule
puts the job with largest second machine time last. This results in bigger tail,
producing a suboptimal makespan. Schedules generated by longest-tD-first (LtF)
algorithm on the other hand can produce idle time on the second machine but are
successful in reducing the length of the tail. This is because the LtF algorithm
puts smallest jobs at the end of the schedule. [14] shows that when number of
jobs is less than or equal to number of instances of the second machine LtF
produces optimal makespan. But LtF is not necessarily optimal when number
of job exceeds number of instances of the second machine.

Proposition 4. [14] ∀i, if tDi > (T − 1) × tA and A = 1 and n > T , then
longest-tD-first (LtF) schedule can be suboptimal.

We propose a new heuristic that combines properties of StF and LtF:

1. Sort the jobs using StF strategy.
2. Pick the last T (number of instances of the second machine) jobs and reverse

their order. If there are n jobs, the last T jobs are numbered n− T, n− T +
1, . . . , n−2, n−1 at the end of previous step. And tDn−T ≤ tDn−T+1 ≤ . . . ≤
tDn−2 ≤ tDn−1 . We reverse their order so that tDn−T ≥ tDn−T+1 ≥ . . . ≥
tDn−2 ≥ tDn−1

3. Repeat the above step for jobs n− 2T, n− 2T + 1, . . . , n− T − 2, n− T − 1.
Keep repeating step 3 moving towards the start of the schedule.

Below is the illustration explaining working of our heuristic algorithm:

Jobs a b c d e f g h i j k l m n
tD 6 10 7 13 8 5 4 1 9 2 0 12 11 3

Applying StF (Step 1) k h j n g f a c e i b m l d

Reversing order of the k h j n g f a c e i d l m b
last 4 jobs (Step 2)

Repeated application k h j n g f i e c a d l m b
of step 3 k h f g j n i e c a d l m b

h k f g j n i e c a d l m b
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The workload consists of 14 jobs (a, b, . . . , n). The configuration of the flow-
shop is A = 1, T = 4. The jobs are first sorted using StF algorithm. Then the
order of the last 4 jobs is reversed. The algorithm then works its way towards
the start of the schedule, reversing orders of 4 consecutive jobs. In the final step,
only two jobs remain, jobs h and k. Their order is reversed too.

6 Performance Evaluation

So far we assumed that the values of tA and tDi for each job (tape to be read) are
known. In general, its hard if not impossible to calculate tDi accurately given the
set of blocks on the tape that are to be read, since it requires accurate modeling
of the tape drive(s). On the other hand, tape drive manufacturers do provide
peak/average search (seek) rate and peak/average read rate. These values can
be used to estimate tDi . The estimated value of tDi is denoted by testimated

Di
.

Ideally, if tDj < tDk
then testimated

Dj
< testimated

Dk
should hold. We evaluated three

different schemes to compute testimated
Di

:

1. Maximum Offset Estimate For each tape find the offset of the farthest block
to be read inside that tape. For each tape i, testimated

Di
= maximum offset.

This value is approximately proportional to the time it will take to rewind
this tape under the tape drive model we use.

2. Data Volume Estimate For each tape i, testimated
Di

= number of blocks read
from the tape. This value is approximately proportional to the time it will
take to read the blocks from this tape.

3. Full Estimate This estimation method combines the above two estimation
methods. testimated

Di
= seek rate×maximum offset+read rate×blocks read+

seek rate × (maximum offset − blocks read).

Our experiments revealed that data volume estimates and full estimates help
scheduling algorithms perform better than using maximum offset estimates. We
also found that scheduling algorithms perform equally well whether data volume
estimates are used or full estimates are used. This is because read times dominate
seek times for the workloads we considered. We use data volume estimates for
all scheduling algorithms since it has lower computing requirements.

We use a tape library simulator to execute the schedules created by various
scheduling algorithm. Most of the literature [3, 17, 21, 22] uses a linear approxi-
mation of the locate time for tape drives. [7] found that such linear approxima-
tion is inaccurate. We use the analytical models of Exabyte’s EXB-8505XL tape
drive and EXB-210 tape library described in [6] in our tape library simulator.
We use the SORT algorithm described in [9] for I/O scheduling when fetching
data from the same tape.

Random Workload Fig. 1 shows the performance of various scheduling al-
gorithms over a set of randomly generated workloads. The set contains 1000
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Fig. 1. Performance of various scheduling algorithms for random workloads.

workloads1. For each workload, we determine how many blocks to read from
each tape by generating a random number2 between 0 and the total number of
blocks on the tape. Then for each tape, we generate N distinct block numbers
randomly, where N is the number of blocks to be read from this tape.

The UNOPTIMIZED algorithm loads the tapes in random order. The FoldLtF
algorithm is a heuristic proposed in [16] for job scheduling in a limited floor-space
flow-shop environment. The algorithm first generates a list using LtF algorithm
and then schedules jobs from both the ends of the list. The figure plots the
makespan of each scheduling algorithm as percent of an OPT value. The OPT
value is a lower bound on the makespan of the optimal schedule. The OPT value
is then sum of the times to access each tape divided by the total number of drives
in the system. Note that we use the same set of workloads for all the data points
in the figure. Hence the OPT value is inversely proportional to the number of
drives in the system. We find that performance of the scheduling algorithms is
not within a constant factor of OPT (for the expected range of value of number
of drives in the system), its a function of the number of drives in the system.
Since LtF always outperforms StF, we conclude that the length of the tail of
the schedule is more important than amount of idle time in the schedule for
reducing makespan, The FoldLtF algorithm performs only slightly better than
the UNOPTIMIZED case that too when number of drives in the system is com-
paratively higher. Our heuristic based algorithm always performs well due to a
careful balance between idle times and length of tail achieved by our algorithm.
Performance of LtF algorithm approaches performance of our algorithm when
number of drives in the system is very low or very high. The reason LtF (and
the UNOPTIMIZED case too) perform on par with our algorithm when number
of drives is small is because there is very little scope for optimization in that
case due to limited choice available to scheduling algorithms when fewer tape

1 We found that varying number of instances of the workload does not change the
results qualitatively.

2 We use an inversive congruential generator for generating random numbers.
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drives are used. As we saw earlier, LtF is optimal for large jobs when number
of instances of the second machine are equal to or greater than number of jobs.
When the number of drives is high, number of tapes to be loaded is close to/equal
to number of drives available, making LtF optimal. But our algorithm clearly
outperforms LtF when number of drives in the system is moderate (between 4
and 16). Note that this range of values of number of drives, is commonly found
in a typical data management system handling large amounts of data. Since the
performance of UNOPTIMIZED, StF and FoldLtF is considerably worse than
LtF and our heuristic algorithm, we did not consider these algorithms for further
performance studies.

Experimental Verification Using Sequoia 2000 Storage Benchmark We
use the national dataset from the benchmark over a period of four years (200
weeks) and is about 64GB in size. The schema for the tables used in these queries
is:

create RASTER(location=box, time=int4, band=int4, data=int2[][]);

time is a four byte integer and denotes the half-month over which the raster
image was captured. The location attribute is the bounding box for the raster
data. band is the wavelength band at which the data was captured. data is a two
dimensional array of size 10240X6400 of two byte integers at a spatial resolution
of 0.5kmX0.5km. All the raster images are stored chronologically sorted, since
they were captured such. Raster images for a half-month are not sorted in any
particular order.

A query type represents an access pattern on the dataset. A query is an
instance of a query type. In general multiple access patterns are observed on a
typical dataset. Access patterns are executed with different frequencies [2, 11].
In order to capture this phenomenon, we first define variety of access patterns
(query types) on the dataset. Then we create different query mixes using these
query types by manipulating number of different queries for each query type in
the mix. We use two types of queries. Query Type 1 selects all images belonging
to a band. The data of interest is spread over the entire set of tapes that store
the dataset. Query Type 2 selects all images belonging to a half-month. The data
of interest is localized in a few tapes of the set of tapes that store the dataset.
A query mix is generated using two parameters: Number of queries denotes the
total number of queries that this mix will consist of. Query type percentages
represent the percentage of query instances that belong to each query type. The
number of queries determines the accuracy of the query mix generation process.
For all query types, if the number of distinct query instances that belong to a
query type is n and the query type percentage is p, the mix should contain at
least n

p queries. This assures that the expected number of occurrences for any
query instance for a query type is at least 1. We evaluate two different query
mixes: Query mix 1 consists of majority (90%) of queries from query type 1.
Query mix 2 has equal mix of queries from query type 1 and query type 2.
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Fig. 2. Experimental results for Sequoia 2000 storage benchmark

Fig. 2 shows the performance results of our heuristic algorithm against LtF
algorithm. The time taken to execute a query mix by an algorithm is plotted as
a percent of the time taken by a naive scheme that does not do any scheduling.
The results show that our algorithm performs consistently well. Note that for 16
and 32 drives case, the number of tapes from which data is read for a query is less
than the number of drives in the system. Since LtF has already been proved to
be optimal in that case, LtF performs equally well when compared to our algo-
rithm. When number of drives in the system is moderate, our algorithm clearly
outperforms LtF. The gains in performance are due to a balanced optimization
of both drive idle times and the size of the tail of the schedule.

7 Conclusions

This paper investigated issues in optimizing I/O time for a query whose data
resides on automated tertiary storage containing multiple storage devices. We
modeled the problem as a limited storage parallel two-machine flow-shop schedul-
ing problem with additional constraints. The paper presented analytical results
that provide insight to the problem. We presented a heuristic algorithm for
scheduling data from a tape library. Our performance results show impressive
gains for synthetic as well as real workloads.
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