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ABSTRACT

Next Generation Sequencing machines are generating mil-
lions of short DNA sequences (reads) everyday. There is a
need for efficient algorithms to map these sequences to the
reference genome to identify SNPs or rare transcripts and
to fulfill the dream of personalized medicine. We present a
Fast Algorithm for Next Generation Sequencers (FANGS),
which dynamically reduces the search space by using q-gram
filtering and pigeon hole principle to rapidly map 454-Roche
reads onto a reference genome. FANGS is a sequential algo-
rithm designed to find all the matches of a query sequence
in the reference genome tolerating a large number of mis-
matches or insertions/deletions. Using FANGS, we mapped
50000 reads with a total of 25 million nucleotides to the hu-
man genome in as little as 23.3 minutes on a typical desktop
computer. Through our experiments, we found that FANGS
is upto an order of magnitude faster than the state-of-the-art
techniques for queries of length 500 allowing 5 mismatches
or insertion/deletions.

Keywords

Sequence Mapping, Next Generation Sequencers, 454 Se-
quencers

1. INTRODUCTION

Recent advances in Next Generation Sequencing (NGS)
technology have led to affordable desktop-sized sequencers
with low running costs and high throughput. These se-
quencers produce small fragments of the genome being se-
quenced as a result of the sequencing process. For exam-
ple, the Roche-454 system can generate 400, 000 sequences
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of length 250-500 nucleotides in a 7.5 hour run [12]. The
Illumina-Solexa system generates smaller but many more
sequences. It can generate 50 million sequences of length
30-50nt in just 3 days [5]. The ABI-SOLID system can also
generate data at a similar rate [5]. This is a rapidly ad-
vancing field with a very high rate of increase in through-
put. It is speculated that the running costs of sequencing a
genome will eventually be as low as $1000 [16]. This major
technological breakthrough allows next generation sequenc-
ing to be used in a variety of biological analyses, including
metagenomics, SNP discovery, comparative genomics, gene
expression, genotyping and personal genomics.

A key step in many of these applications is to map these
short sequences, called reads, to a reference genome, to find
the locations where each read occurs in the genome, allow-
ing for a small number of mismatches or insertion/deletions.
Typically, the length of the query sequence can range from
30 — 50 (generated by Illumina-Solexa sequencers) to 250-
500 (generated by Roche-454 sequencers). A typical genomic
database, for instance, the human genome, can be 3 billion
nucleotides in length. In this article, we focus on the map-
ping of Roche-454 system reads. The longer length reads
produced by 454-sequencers ensure less ambiguity in map-
pings. A 454 sequencer was recently used for sequencing
the DNA sequence of James D. Watson to 7.4 fold redun-
dancy in just two months [19]. The authors used BLAT [6]
to map the 454 reads to a reference genome, which is not
at par with the sequencing speed. Moreover, BLAT is de-
signed for local alignment, while sequence mapping requires
the entire length of a query to be mapped. There have
been considerable efforts to develop faster sequence map-
ping tools which can match the speed of Next Generation
Sequencers, but most of them have been for reads gener-
ated by Illumina-Solexa machines (for example, ELAND,
MAQ [8], SOAP [9] and BowTie [7]). Even though 454 se-
quencers are widely used by researchers, there has not been
sufficient research to develop faster tools for mapping 454
reads. To the best of our knowledge, the only algorithm
which is specifically designed for 454 data is BWA, which
is an unpublished package written by the authors of Magq.
BWA is based on Burrows-Wheeler Transform (BWT). It
supports gapped global alignment with respect to queries



and is one of the fastest short read alignment algorithms
while also finding suboptimal matches. But, we demostrate
in our results that it suffers from low sensitivity. Therefore,
there is a need to design powerful algorithms and systems
which can efficiently and accurately map 454 reads.

In this article, we describe our algorithm FANGS, a Fast
Algorithm for Next Generation Sequencers, which dynami-
cally reduces the search space by using g-gram filtering and
the pigeonhole principle, to rapidly map 454 reads onto a
reference genome. FANGS is a sequential algorithm de-
signed to find all the matches of a query sequence in the
reference genome tolerating a large number of mismatches
or insertions/deletions. It uses an efficient lossy data struc-
ture which requires just 1GB memory to store the index of
the human genome, which is 3 giga-bases in size and still
achieves nearly 100% sensitivity. FANGS supports FASTA
input file format and many output file formats and comes
with command line options for controlling almost every as-
pect of the mapping process. In comparison with existing
tools, the most significant features of FANGS are:

e High flexibility. It allows a large number of mismatches
and insertions/deletions in mapping.

e High Sensitivity. It tries to find all the matches for
each query and maps nearly 100% of the queries.

e Ability to handle large datasets. Using FANGS, we
have mapped 50,000 queries of length 500 each to a
human genome in as little as 23.3 minutes.

e Speed. FANGS is upto an order of magnitude faster
than the state-of-the-art techniques for queries of length
500 allowing 5 mismatches or insertion/deletions.

The beta version of FANGS is being managed and freely
available at http://www.ece.northwestern.edu/~smi539/fan-
gs.html.

The remainder of the paper is organized as follows. We
give a formal definition of the problem in Section [2] followed
by related work in Section [3l Section H] describes our algo-
rithm in detail followed by results in Section Bl and conclu-
sion in Section

2. THE SEQUENCE MAPPING PROBLEM

In the context of Next Generation Sequencing, sequence
mapping problem involves searching for a small DNA se-
quence (read) in the reference genome allowing a small num-
ber of differences. The reference genome is obtained from
an organism of the same species as the reads, implying a
high level of similarity between the read and the reference
genome. The small number of differences are allowed to ac-
count for differences between individual organisms and se-
quencing errors.

Given a string S over a finite alphabet X, we use |S| to
denote the length of S, S[i] to refer to the i*" character of
S and S[i : j] to refer to the substring of S which starts
at position i and ends at position j. A g¢-gram of S is a
substring of S of length ¢ > 0. The unit cost edit distance
between two strings S1 and Sz is the minimum number of
substitutions, insertions and deletions required to convert
S1 to Sz [15]. We will refer to the unit cost edit distance
between S1 and Sy as edist(S1,S2). It can be calculated
by using Needleman-Wunsch algorithm in O(]S1]]S2|) time

[10]. For a string S, we will use dec(S,X) to refer to the
natural decimal representation of S over X. For example,
for ¥ = {A,C, G, T}, the nucleotides A, C, G, T are mapped
to the numbers 0, 1, 2, 3 respectively. Therefore:

f(A):va(O):lvf(G):27f(T):37

And, dec(S,{A,C,G,T}) = Y157 47 f(S[i])

This brings us to the formal definition of the short read
sequence mapping problem. Every genomic sequence can be
represented as a string over the alphabet ¥ = {A,C,G,T}.
Given a genome database G of subject sequences {S1, S2,

-+, Sm}, a query sequence (read) @ of length [ and an inte-
ger n, it is required to find all substrings from G, such that
for each substring «, edist(a, Q) < n. We will refer to the
integer n as the mazFEditDist parameter. There have been
studies to find the best match out of all matches satisfying
the edit distance criteria. However, since the edit distance
can be due to a number of reasons, including sequencing er-
rors, there is no definite way of knowing which one is the
best. Hence, we are focussing on finding all the matches
with edit distance less than mazEditDist.

3. RELATED WORK

The classical approach to sequence alignment involves sev-
eral variants of dynamic programming, the most prominent
being the algorithms of Needleman-Wunsch [10] and Smith-
Waterman [18]. Dynamic programming is prohibitively ex-
pensive in terms of time and space for larger sequences like
the human genome, and this has led to the development of
faster hash-table based heuristic methods like FASTA [13],
BLAST [4], BLAT [6] and SSAHA [11]. BLAST has been
the most popular tool for sequence alignment since its cre-
ation in 1990. However, it usually takes several hundreds of
days for the data generated in just a few hours by the latest
sequencers and hence is not a practical solution. Recently,
the advent of Next Generation Sequencers has prompted
researchers to develop high-performance sequence mapping
tools. Some of the most prominent tools for sequence map-
ping include ELAND, MAQ [8], RMAP [17], SOAP [9],
SWIFT [15], SHRIMP [1], SeqMap [5], BowTie [7], GMAP
[20], Mosaik [2], BWA [3] and SSAHA2 [11]. The key idea
behind these algorithms is the following lemma from [14].

Lemma 1: If two strings A[l..m] and B[l..m] have at
most n mismatches and p = [ 75], then there must be an
integer 4 such that A[i: i+p—1] = B[i : i+ p—1]. In other
words, A and B share a common substring of length p.

The following corollary can be easily derived from Lemma
1.

Corollary 1: Given a genome G[1..L] and a query Q[1..m]
(L > m), if there is a substring a of G, such that o and Q
match with an edit distance of at most n and p = |77/,
then there must exist ¢,j such that G[i : i +p—1] = Q[j :
j+p-—1].

The substring « is called a homologous region of () in G.
Most sequence mapping algorithms first find the locations
of all the candidate homologous regions of G which can po-
tentially have an edit distance of less than the mazxEditDist
by using a criteria similar to Corollary 1. These candidate
regions are then checked using an accurate algorithm to see
if the edit distance is indeed less than mazEditDist.

The closest precursor of our sequential algorithm is the
program SWIFT [15]. A g-hit between two strings S1 and



Algorithm GetHits(seq,dbIndez,q)
Input:
seq : the query sequence.

dbIndex : The index-table of the database obtained after preprocessing

q : g-gram size used for the creation of ¢-gram indexz.
Output:
hitList : List of all ¢-hits.

wildCardList : List of query indices for which the ¢-gram starting at that index is more frequent than maxFreq

1: hitList < ¢
2: wildCardList <= ¢
3: for i in 0 to len(seq) — g+ 1 do

locations, numLocations < getD B Locations( dbIndex, seqli : i + q — 1])

4

5 if numLocations = —1 then

6 addT oList(wildCardList,1)

7.  else

8 for j in 1 to numLocations do
9 hit.dStart = locations[j]

0 hit.qStart =1

1 addT oList(hitList, hit)

Figure 1: Algorithm for obtaining g-hits

Ss is the tuple (%, ) such that Si[i : i+q—1] = S2[j : j+qg—1].
SWIFT creates an index of all ¢g-grams in the database,
called g-gram indez, and uses it to find all ¢-hits of G and
Q. It then identifies regions that have a certain minimum
number of hits. These regions are further analyzed to check
if the edit distance is within limits. FANGS also creates an
index of g-grams in the database. However, it does not in-
clude highly frequent g-grams in the index thereby saving
time and memory. It compensates for the data loss by us-
ing a wildcard strategy, which is described in the following
section.

4. FANGS: FAST ALGORITHM FOR NEXT
GENERATION SEQUENCERS

4.1 Preprocessing step: Creation of theg-gram
index
Here we describe the construction of the g-gram indez.

We preprocess the sequences in the database by breaking
them into non-overlapping g¢-grams and store the location
of each g-gram in the g-gram inder. We will refer to the g¢-
gram index as the index-table. We refer to the size of these
non-overlapping ¢-grams, q, as tileSize. Each ¢-gram t can
be uniquely mapped to a corresponding integer dec(t,X) as
defined in Section

For each g-gram t, we calculate two values: (1) tile Head(t) =

dec(t[1 : 12], %) and (2) tileTail(t) = dec(t[13 : q],%). The
index-table consists of two arrays. The first array occur-
renceTable stores (i) the location of ¢[1 : 12] in the database
G and (ii) tileTail(t) for each g-gram. Hence, occurrenc-
eTable contains the concatenation of lists L(¢[1 : 12]) =
{i, tileTail(Gli = i + q — 1])|G[i : i + 11] = #[1 : 12]}, where
t is a g-gram, that is ¢ € X9. For each ¢-gram t € X9, the
position tileHead(t) in the second array lookupTable con-
tains the pointer p(t), which points to the beginning of the
correponding list L(¢[1 : 12]) in the occurrenceTable; and
the count c(t) of the number of occurences of ¢[1 : 12] in
G. Hence the length of the lookupTable is |Z|'. In order
to find hits for a g-gram t, it first indexes the lookupTable

with tileHead(t). Let L(¢[1:12]) be the corresponding list.
The g-hits can be found by traversing through the list and
outputting those locations for which tileT ail(t) matches.

The index-table is created in two passes. In the first pass,
we find the number of non-overlapping occurrences of each
g-gram in the database, so that we can allocate appropriate
amount of memory to the occurrenceTable and calculate the
pointer positions for lookup Table. In the second pass, we fill
the array occurrenceTable with appropriate values for the
g-grams. Note that creation of index need to be done only
once for a given value of ¢. After that, we can process any
number of queries.

The above structure of g-gram index is similar to the one
used by BLAT [6]. The main difference is that BLAT stores
the locations of all the g-grams for ¢ > 12. But this greatly
reduces the speed of the algorithm. We ignore all the g-
grams with number of occurrences in the database greater
than a certain threshold frequency, say maxFreq. Hence for
such highly frequent g¢-grams, FANGS makes the locations
corresponding to frequently occurring ¢-grams in the occur-
renceTable as —1. This filtering step helps us in two ways.
First, it reduces the index table size. Second, it avoids un-
necessary false hits due to repetition of DNA thereby im-
proving efficiency. Due to this technique, we need only 1GB
memory to store the index of the human genome that is 3GB
in size.

4.2 Using index-table to map sequences

A substring of size p has at least L%j g-grams. Sub-
stituting p from corollary 1, we get:

Corollary 2: Given a query Q[1..m] and database G[1..L]
(m < L). For all substrings « of G such that edist(Q, o) <
n, J,jsuchthat Qi :i+q—1=a[j:j+q¢—1],Q[i +¢:
i+2¢—1] =alj+q:j+2¢—1],- Qi+ (T - 1)g :
it+Tq—1=alj+ (T —1)q:j+Tq— 1], where T is given
by:

TZLL%J;((Z_I)J

We use the above corollary to dynamically reduce the



Algorithm FindRegions(hitList, wildCardList, q, size,n, T'(> 1))

Input:

hitList : List of all g-hits <d;, x>, where d; is the dStart value and 7y is the ¢gStart value.
wildCardList : List of query indices for which the ¢-gram starting at that index is more frequent than maxFreq

q : g-gram size used for the creation of indez-table.
size : size of the query sequence.

n : maximum edit distance allowed in the mapping (mazEditDist).

T : T as given in corollary 2
Output:
regionList : list of candidate homologous regions.

sortList(hitList,dStart)

for all i do

9: if size of matchingBlock > T then

10: add the matchingBlock to the matchingBlockList

11: regionList <= ¢
12: for all blockHit in matchingBlockList do

13:  region.dBegin < blockHit.dStart — blockHit.qStart —n

Let di,d2, ...,d: be the distinct dStart values in ascending order.

Let < di,ri1 >,< di,ri2 >, -+, < di, iy > be the hits containing d;
Let < di+177"i+1,1 >,< di+177"i+1,2 >, < di+177‘1‘+1,z > be the hits containing d;1
if there exists a, b such that riy1 — ri,a = dit+1 — d; then
if d;+1 and d; are either adjacent in the database or are separated only by highly frequent ¢-grams then
add < dit1,Tit1,6 > to the matchingBlock containing < d;, ria >

14:  region.dEnd < blockHit.dStart — blockHit.qStart + size —1+n

15:  addToRegionList(regionList,region)

Figure 2: Algorithm for stitching together g-hits to find candidate homologous regions

search space and map query sequences at a very high speed.
For each query, we first find the list of candidate homologous
regions. The algorithm for finding the candidate homologous
regions can be divided in three steps. First we find all the
g-hits of the query in the database. Each ¢-hit consists of
two values : starting position of the ¢-gram in the query
(¢Start) and in the database (dStart). The algorithm is
given in Figure[Ill The algorithm takes each overlapping g-
gram in the query and finds the locations of all occurrence
of the g-gram in the database using the index-table. The
algorithm creates a hit with each location and adds it to
the hitList. For some of the ¢-grams which are more fre-
quent than the maxFreq parameter, the number of locations
numLocations is returned as —1. We add all such query
indices to the wildCardList.

In the next step, we stitch together g¢-hits which are ad-
jacent to each other both in the query and the database
to create maximal matchingBlocks. A block is defined as a
contiguous sequence of g-grams in a sequence. Also, we de-
fine a matchingBlock as a block in the query that perfectly
matches a block of same length in the database. We repre-
sent a matchingBlock as a tuple (¢Start, dStart,len), where
gStart and dStart are the starting locations of the first g¢-
gram of the matchingBlock in the query and the database re-
spectively and len is the number of g-grams in the matching-
Block. A maximal matchingBlock is a matchingBlock which
will result in a mismatch if extended any further on either
side. The algorithm is given in Figure

As the hits are obtained in the order of increasing gStart
values, the hitList is already sorted according to the ¢Start
values. Now we sort the list according to database positions
(dStart values). As a result, the list is now sorted according
to the dStart values and for each dStart value, it is sorted

according to the gStart values. Let di,d2, ..., d: be the dis-
tinct dStart values in ascending order. For each ¢, we check
if di+1 — d; is equal to g; i.e.; they are the neighboring g¢-
grams in the database. Let < d;,ri1 >,< di,7mi2 >, -+,
< di, i,y > be the hits containing d; and < di41,7i+1,1 >,<
dit1,Tix1,2 >, -+, < dit1,Ti+1,- > be the hits containing
dit1. If diy1 — di = q, then we search for a pair of hits
< di,ri,a > and < dit1,Tit+1,6 > such that 7116 — 1,0 = g
This means the pair of hits has neighboring tuples both in
the query and the database. Hence, we have a matching-
Block of length 2 ¢-grams. This way we keep on combining
hits to form matchingBlocks. If the length of a matching-
Block > T, we store it in the matchingBlockList.

This technique does not capture all the matchingBlocks
with length greater than or equal to T" because we do not
store the database locations of very frequently occuring g-
grams. Since multiple matchingBlocks may contain the fre-
quently occuring g-grams, this leads to some of them not
being detected. In order to solve this problem, we give a
wildcard to all the frequently occuring ¢-grams. Accord-
ing to this wildcard, the frequently occuring ¢-grams can be
part of any matchingBlock. Therefore, if two matchingBlocks
are separated only by frequently occuring ¢-grams, the two
of them together with the frequently occuring g-grams are
combined to form one big matchingBlock.

Once we have the matchingBlockList, we extend each match-
ingBlock in the list to create a candidate homologous region.
We also keep a buffer of size n on either side to account for
gaps in the alignment. Each region consists of two values -
beginning location, dBegin and end location, dEnd of the
region in the database. Hence the beginning of the match-
ingBlock would be:

dBegin = dStart — ¢Start —n



Algorithm FANGS(seqList, seqCount, db, dbIndez, n, q, outFile)

INPUT:

seqList : list of query sequences.

seqCount : total number of query sequences
db : genomic database.

dbIndex : The index-table of the database obtained after preprocessing
n : maximum edit distance allowed in the mapping (mazEditDist).

q : g-gram size used for the creation of indez-table.
outFlile : file where output has to be written.
Output:

All mappings of each query sequence in seqList in the database db

for all seq in seqList do
hitList <= GetHits(seq, dbIndex,q)
o LEl-(a-D)
T=|"F—]
for all region in regionList do
if edist(region, seq) < n then
outputmapping(region, seq)

1:
2
3:
4:  regionList < FindRegions(hitList, wildCardList, q, size, n, T)
5.
6
7

Figure 3: The sequence mapping algorithm

and the end would be:
dEnd = dStart — qStart 4+ size — 1 +n

Thus the homologous region is created by extending the
matchingBlock on either side to cover the whole query and
adding a buffer of n bases on either side. The function ad-
dToRegionList ensures that we do not add two regions which
have a huge overlap as they will result in the same map-
ping. If one region completely covers another region, we
only include the former. Moreover, if two regions have an
overlap of more than a certain value, then we merge them
together into one region. This is done to avoid multiple
outputs for the same homologous region. The potential ho-
mologous region is further processed by using an adaptation
of the Needleman-Wunsch algorithm to check if the homolo-
gous region actually has an edit distance < n. Since we are
trying to find regions with a maximum edit distance of n,
we only need to calculate the diagonal band of width 2n 4+ 1
of the matrix used for Needleman-Wunsch algorithm. The
complete algorithm is as given in Figure [3l

The novelty of FANGS lies in the fact that it stitches the
hits obtained into contiguous blocks of query which exactly
match a contiguous block in the database. Another impor-
tant contribution is that it gives a wildcard to all highly
frequent ¢-grams. Hence, even though we do not store the
highly occurring g-grams in the index-table, we can still map
queries with 100% sensitivity.

5. RESULTSAND DISCUSSION

In this section, we describe the various results obtained
by running FANGS on different datasets. We also compare
our results with those of other state-of-the-art tools. The
focus of this article is 454 sequencing data. Hence, we only
consider query lengths within the range of 300 — 500 in our
experiments.

5.1 Dataset description and experimental setup

We performed our experiments on reads from the 1000
Genomes project pilot (National Center for Biotechnology

Information [NCBI] Short Read Archive : SRR005010, SRR005011,

SRR005012, SRR005013). These reads are obtained from
the LS454 platform and are part of the SRX001297 experi-
ment. We created the following three pools of queries using
the short read archive:

e SRX001297_300 : Obtained by filtering reads smaller
than 300 in length and trimming the resulting reads
from right to a length of 300.

e SRX001297_400 : Obtained by filtering reads smaller
than 400 in length and trimming the resulting reads
from right to a length of 400.

e SRX001297_500 : Obtained by filtering reads smaller
than 500 in length and trimming the resulting reads
from right to a length of 500.

We ran FANGS for all these different sets of queries. We
also evaluated the performance of several currently existing
sequence alignment tools to compare our performance. For
all our experiments, our database consists of the hgl9 ver-
sion of unmasked human genome. For our evaluation, we
ran all the experiments on Intel Xeon quad core E5430 2.66
GHz processor with 2x6MB cache and 32GB RAM running
a Linux based operating system. In our experiments, none
of the sequence mapping tools considered the quality infor-
mation.

5.2 Comparison with BWA, Mosaik and BLAT

Table [Tl compares FANGS with BWA, Mosaik and BLAT
[6]. BWA is a mapping tool for 454 reads developed by Heng
Li, the author of MAQ [8]. For this comparison, we used the
real reads obtained from 1000 genomes project. The query
sets were created by randomly selecting 50000 queries each
from SRX001297_300, SRX001297_400 and SRX001297_500.
All tools were run so as to allow a maximum edit distance of
5. As mentioned earlier, with FANGS we are focussing on
finding all possible mappings of reads produced by 454 se-
quencers. We ran BWA with the -N option so that it outputs
all possible alignments. The table shows that FANGS pro-
duces more alignments at a much faster speed. For Mosaik,



Table 1: Mapping results of FANGS, BWA (bwa-0.4.6), Mosaik(Mosaik-0.9.891) and BLAT (version 34) for
50000 queries of length 300, 400 and 500 against the human genome hgl9 allowing a maximum edit distance
of 5. Third column specifies the sum of the number of mappings found for each query.

Query length | Program | Number of map- | Time taken (min) | Peak virtual | Percentage of | Reads mapped
pings found memory footprint | reads mapped per hour
(gigabytes)

300 FANGS [ 96230 37.0 4.5 92.00 81195
BWA 36046 177.1 2.3 72.09 16942
Mosaik | 44433 109.4 1.8 87.79 27416
BLAT | 83123 97.9 3.8 85.52 30635

400 FANGS [ 57256 26.6 4.5 86.27 112627
BWA 27248 128.3 2.3 54.50 23385
Mosaik | 41546 182.8 1.8 82.48 16410
BLAT | 51884 176.6 3.8 75.10 16985

500 FANGS | 41014 23.3 4.5 73.23 128893
BWA 15693 67.8 2.3 31.39 44227
Mosaik | 34877 278.8 1.8 69.45 10760
BLAT | 32586 250.1 3.8 57.14 11994

Table 2: This table shows a matrix of similar-
ity in mapping between various tools. Each row
and column of the matrix is marked by a mapping
tool. Each entry in the matrix gives the percent-
age of queries mapped by the row tool that are also
mapped by the column tool. For example, FANGS
maps 99.98% of queries mapped by Mosaik for query

length 300.
Query length Mapping similarity
300 FANGS Mosaik BWA BLAT
FANGS 100 95.40 78.35 92.33
Mosaik 99.98 100 78.66  92.60
BWA 99.99 95.79 100 99.32
BLAT 99.33 95.06  83.73 100
400 FANGS Mosaik BWA BLAT
FANGS 100 95.57  63.16  86.40
Mosaik 99.96 100 63.30 86.62
BWA 99.99 95.82 100 98.96
BLAT 99.26 95.14 71.81 100
500 FANGS Mosaik BWA BLAT
FANGS 100 94.83  42.86 T77.44
Mosaik 99.98 100 4291 77.84
BWA 99.99 94.97 100 98.41
BLAT 99.25 94.62  54.06 100

we ran it for each chromosome separately since it needed
more than 32GB memory to map queries against all the
chromosomes at once. Since BLAT does not have any way of
specifying the maximum allowed edit distance, we used the
minScore parameter to approximately simulate them. If we
run BWA without the -N option, it runs much faster (takes
13.8min, 12.7min and 10.4min for 50000 queries of length
300, 400 and 500 respectively) but produces only one map-
ping per query. We also tried to compare with Seqmap [5],
but the gapped alignment did not finish after running for
more than two days.

Table 2] shows similarilty in the queries mapped by each
tool. Note that, FANGS maps more than 99.25% of the
queries mapped by Mosaik, BLAT and BWA. Moreover,
Mosaik maps approximately 95% of the queries mapped by

FANGS. This shows a high degree of similarity between the
results of the two tools. It also shows that FANGS maps
approximately all the queries that Mosaik, BLAT and BWA
map.

5.3 Comparison with Bowtie, SOAP, MAQ and
SHRIMP

In this section, we compare FANGS against leading map-
ping tools for Illumina/Solexa data. We understand that
these tools are specifically designed for shorter reads and
it might not be an appropriate comparison. The query
sets were created by randomly selecting 50000 queries each
from SRX001297_300, SRX001297_400 and SRX001297_500.
MAQ does not allow queries of length > 128 and SHRiMP
did not finish in more than two days. So, we could not com-
pare with them. Bowtie and SOAP do not allow more than
2 mismatches. Hence, for a fair comparison, we ran FANGS
with a maximum edit distance of 2. Table [B] compares the
results. FANGS is significantly slower than both Bowtie
and SOAP but finds many more alignments and maps many
more queries. Moreover, allowing 2 mismatches is not suf-
ficient for 454 reads. Hence, as expected, tools specifically
designed for Illumina/Solexa data can not be used for map-
ping 454 reads and hence there is a need of tools specifically
designed for longer 454 reads.

54 Experimentswith synthetic reads

Although it is better to perform experiments with real
data, it is impossible to assess the accuracy of read map-
ping, because we cannot know where the reads came from
and how many errors are there in each read. Hence, in addi-
tion to real reads, we also created some simulated reads. In
order to create reads, we took the whole human genome and
filtered it to get a set of regions in the genome which were
free of N’s. In order to get queries of length I, we sampled
each of these regions for strings of length . We randomly
changed 5 bases in each query to introduce 5 SNPs. This
gave us 9537575,7153137 and 5722485 queries of size 300,
400, and 500 respectively. For each query length, we created
querysets by randomly choosing 50000 queries. Allowing an
edit distance of 5, FANGS was successful in mapping more
than 99.98% of the queries in all querysets.



Table 3: Mapping results of FANGS, Bowtie(bowtie-0.9.9.3), Soap(soap2.18) for 50000 queries of length 300,
400 and 500 against the human genome hgl9 allowing a maximum edit distance of 2. Third column specifies
the sum of the number of mappings found for each query.

Query length | Program | Number of map- | Time taken (sec) | Peak virtual | Percentage of | Reads mapped
pings found memory footprint | reads mapped per hour
(gigabytes)
300 FANGS | 38962 155.06 4.5 73.81 1160840
Bowtie [ 30580 56.00 24 41.81 3214285
Soap 21945 32.67 5.4 43.89 5509641
400 FANGS [ 30220 175.85 4.5 58.07 1023599
Bowtie [ 13172 68.00 24 24.67 2647058
Soap 13378 45.9 5.4 26.76 3921568
500 FANGS [ 18416 178.59 4.5 35.74 1007895
Bowtie | 5271 70.00 24 10.02 2571428
Soap 5733 48.01 5.4 11.47 3749218

6. CONCLUSIONS

Advances in sequencing techniques necessitate the devel-
opment of high performance, scalable algorithms to extract
biologically relevant information from these datasets. In this
paper, we describe a new sequence mapping tool FANGS,
which outperforms existing tools in terms of performance
and sensitivity when the number of mismatches and gaps
is small. While some tools do not allow any gaps or al-
low a limited number of mismatches and gaps to be speci-
fied, FANGS allows a large number of gaps and mismatches
to be specified by the user. Moreover, FANGS successfully
finds all possible mappings for each query within the speci-
fied edit distance with reasonable memory usage. However,
as expected, FANGS is not very efficient for larger number
of mismatches and insertion/deletions. Moreover, FANGS
does not consider quality information while mapping the
queries. Both these issues need to be addressed in future
work.

With the advent of new technologies, we will need even
faster sequence mapping tools to stay at par with the in-
creasing sequencing speed. In addition to developing faster
algorithms; we need to use parallel processing, graphics pro-
cessing unit (GPU) based systems and application specific
hardware to build faster sequence mapping tools. The Next
Generation Sequencers along with high-speed sequence align-
ment tools will enable us to fulfill the dream of personal ge-
nomics. Just imagine how much this can help in using a
patient’s DNA in diagnosing a disease or better still, know-
ing in advance whether a person’s DNA encodes a risk of a
certain disease.
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