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ABSTRACT

Motivation: Recently, a number of programs have been proposed
for mapping short reads to a reference genome. Many of them
are heavily optimized for short-read mapping and hence are very
efficient for shorter queries, but that makes them inefficient or not
applicable for reads longer than 200 bp. However, many sequencers
are already generating longer reads and more are expected to
follow. For long read sequence mapping, there are limited options;
BLAT, SSAHA2, FANGS and BWA-SW are among the popular ones.
However, resequencing and personalized medicine need much faster
software to map these long sequencing reads to a reference genome
to identify SNPs or rare transcripts.

Results: We present AGILE (AliGning Long rEads), a hash table
based high-throughput sequence mapping algorithm for longer 454
reads that uses diagonal multiple seed-match criteria, customized
g-gram filtering and a dynamic incremental search approach among
other heuristics to optimize every step of the mapping process. In
our experiments, we observe that AGILE is more accurate than BLAT,
and comparable to BWA-SW and SSAHA2. For practical error rates
(<5%) and read lengths (200 — 1000 bp), AGILE is significantly faster
than BLAT, SSAHA2 and BWA-SW. Even for the other cases, AGILE
is comparable to BWA-SW and several times faster than BLAT and
SSAHA2.

Availability: http://www.ece.northwestern.edu/~smi539/agile.html.
Contact: smi539@eecs.northwestern.edu

Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION

Recent advances in next-generation sequencing (NGS) technology
have led to affordable desktop-sized sequencers with low running
costs and high throughput. These sequencers produce small
fragments of the genome being sequenced as a result of the
sequencing process. By mapping these small fragments (reads) to a
reference genome, we can sequence the DNA of a new individual.
The NGSs are making it possible for these studies to be conducted at
amass scale. These advances will usher an era of personal genomics
when each individual can have his/her DNA sequenced and studied

*To whom correspondence should be addressed.

to develop more personalized ways of anticipating, diagnosing and
treating diseases (Patrick, 2007).

Studies of this nature have already begun. Scientists have
found the genetic causes of diseases like Charcot—Marie-Tooth
(Lupski et al., 2010) and Miller syndrome (Roach et al., 2010) by
sequencing the genomes of patients. These studies have been made
possible by plunging costs and increasing speeds of high-throughput
sequencing. Next generation sequencers (NGSs) sequence the DNA
by generating small substrings of the DNA called reads. With rapid
improvements in sequencing technologies, the lengths of the reads
are constantly increasing. For example, the lengths of 454 reads
increased from about 250 bp in 2007 to about 500 bp in 2009. The
length of illumina reads increased from about 30-50 bp in 2007 to
about 100 bp in 2009. Pacific Biosciences also announced 1000 bp
long reads in 2009. The rate of throughput as well as read lengths of
these NGSs are increasing at a pace that puts even the Moore’s law
to shame. Hence, there is a growing need for tools that can work for
longer reads and can still match the pace of the NGSs.

A number of tools have been developed for shorter illumina
queries. These include MAQ (Li er al., 2008a), ELAND, SOAP
(Li et al., 2008b), BowTie (Langmead et al., 2009), Mosaik, PASS
(Campagna et al., 2009), and SHRiMP (Rumble er al., 2009).
However, most of these tools work only for read lengths <200.
Also, they allow very few number of mismatches (usually <2) and
many of them do not allow any gaps. However, as the lengths of
reads are rapidly increasing, we need tools that can work for longer
read lengths. Moreover, these new tools for longer reads should be
able to handle a larger number of gaps and mismatches. To the best
of our knowledge, the only other tools specifically designed to work
for longer reads are BWA-SW (Li and Durbin, 2010) and FANGS
(Misra et al., 2009). BWA-SW is a package based on Burrows—
Wheeler Transform (BWT). It supports gapped global alignment
with respect to queries and is one of the fastest long read alignment
algorithms while also finding suboptimal matches.

Hash tables have been used extensively for short-read mapping
and many other related problems (Altschul ef al., 1990; Kent, 2002;
Li et al., 2008b; Ning et al., 2001; Pearson and Lipman, 1988;
Smith ez al., 2008). Hence, it may appear that we have exhausted
all possible uses of hash tables for sequence mapping. However, we
will find that with proper heuristics, hash tables can give excellent
speedups for sequence mapping of longer reads as well. The general
structure of any hash table-based sequence mapping algorithm is as
follows: (i) create a hash table index of the genome; (ii) use the index
to find regions in the genome that can potentially be homologous;
(iii) examine each region in more detail and output regions that are
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indeed homologous. The execution time of existing hash table-based
algorithms is dominated by stage (iii). The processing time of this
stage is directly proportional to the number of regions found. FANGS
is also a hash table-based tool. It uses g-gram filtering and pigeon
hole principle to filter out many of the regions to rapidly map 454
reads with nearly 100% sensitivity. However, FANGS is inefficient
for error rates greater than 1%. Using techniques in addition to
the ones used by FANGS to quickly filter out regions that are not
homologous will greatly reduce the time taken. We follow this path.

In this article, we will discuss five different techniques to filter
out non-homologous regions and their adaptations to the high-
throughput long read sequence mapping problem. Subsequently, we
present AGILE—yet another hash table-based tool for sequence
mapping—in which we have used these filtering techniques to
optimize every step of the sequence mapping process.

2 HIGH-THROUGHPUT SEQUENCE MAPPING

In the context of NGS, sequence mapping problem involves searching for a
small DNA sequence (read) in the reference genome allowing a small number
of differences. The reference genome is obtained from an organism of the
same species as the reads, implying a high level of similarity between the read
and the reference genome. The small number of differences are allowed, to
account for differences between individual organisms and sequencing errors.

Given a string S over a finite alphabet X, we use [S] to refer to the length
of S, S[i] to denote the i-th character of S and S[i:/] to denote the substring
of § which starts at position i and ends at position j. A g-gram of S is defined
as a substring of S of length ¢ > 0. A g-hit between two strings S; and S is
defined as the tuple (x,y) such that Sy [x:x4+¢g—1]=S52[y:y+¢g—1]. The unit
cost edit distance (Levenshtein distance) (Rasmussen et al., 2006) between
two strings S; and S, is defined as the minimum number of substitutions,
insertions and deletions required to convert S to So. We will use E(S1,5>) to
refer to the unit cost edit distance between S and S». It can be calculated by
using dynamic programming in O(|S1]|S2]) time (Needleman and Wunsch,
1970; Smith and Waterman, 1981). For a string S, we will refer to the
natural decimal representation of S over X as D(S,X). For example, for
Y ={A,C,G,T}, the nucleotides A,C,G,T can be mapped to the numbers
0,1,2,3, respectively. Therefore:

[S]—1
D(S.{A,C.G.Th= Y 4f(SliD),
i=0
where f(A)=0,f(C)=1,f(G)=2,f(T)=3.

This brings us to the formal definition of the sequence mapping
problem. We can represent every genomic sequence as a string over the
alphabet X ={A,C,G,T}. Given a genomic database G of subject sequences
{81, S2, .-+, S1}, a query sequence (read) Q of length |Q]|, the genome
sequencing problem is to find the substring « of G that has the minimum
value of E(w, Q) for all a. This problem can be reduced to finding the best
match o for a query such that E(o, Q) is less than a certain bound. We
can keep on increasing the bound till we find a match. Moreover, for a
given sequencing error rate, larger reads tend to have more differences in the
alignment as compared with shorter reads. Hence, having an absolute bound
on the number of differences in an alignment is inappropriate as the length
of the reads can vary. The bound should be a fraction of the read length.
Hence, we define the e-match sequence mapping problem:

Given a genomic database G of subject sequences {Si, S2, ..., Si}, a query
sequence (read) Q of length |Q] and an error rate € find the substring « of G,
such that E(c, Q) is minimum and E(a, Q) <€|Q).

3 ALGORITHM

Most sequence mapping algorithms divide the problem into two stages:
search stage and alignment stage. The search stage finds regions in the

Table 1. The value of threshold T for different values of error rate € and
read length (¢=16)

Error rate €(%) Read length

100 200 500 1000 10 000
1 2 3 4 4 5
2 1 1 1 2 2
3 0 0 1 1 1
5 0 0 0 0 0
10 0 0 0 0 0

genome that can potentially be homologous to the read. The alignment
stage verifies these regions to check if they are indeed homologous. The
alignment stage is usually more computationally intensive than the search
stage and the time taken is directly proportional to the number of regions
found in the search stage. Hence, the best strategy to a fast sequence mapping
algorithm is to filter out as many candidate regions as possible before the
alignment stage. Various programs try to achieve this with the use of well-
designed filters for the specific problem ranges. In this section, we describe
the AGILE algorithm that can achieve such filtering for a wide range of read
lengths and error rates through a number of carefully designed filters. Some
of these filters are generic and work for the entire range of read lengths and
error rates, while others cater to a specific subset. However, combining these
filters can achieve faster speeds over a wide range.

‘We start by dividing the genome into non-overlapping g-grams and storing
the locations of the g-grams in a g-gram index (hash table). Using the g-gram
index, we find the list of g-hits between the read and the genome. Each g-hit
can be extended on either side to create a candidate region. Regions with a
large overlap with each other represent the same alignment and hence can
be merged together. This gives us a very large number of regions. In the
following subsections, we describe the filtering techniques used in AGILE
that we apply to these regions.

3.1 Contiguous perfect matches

Two strings of length m with n differences share a common (exactly

matching) substring of length at least n"’ﬁ (Pevzner and Waterman, 1995).

FANGS adapted the above formula to note that—given a read Q and genome

G, if a substring « of G is such that E(Q,«)<€|Q|, then Q and « have a

perfectly matching substring of length 7' g-grams, where T is given by:
- L] b,

where ¢ is the length of the g-grams. Therefore, we only consider regions
in the genome that have a common substring of length 7' g-grams with
the read. This filtering criteria significantly reduces the search space for
finding homologous regions. However, as Table 1 demonstrates, the value
of T quickly becomes zero beyond a certain percentage of errors. Hence this
filtering scheme does not help much if we consider a larger error rate.

3.2 Multiple perfect matches

Kent (2002) had discussed the possibility of using multiple perfect matches
as a filter. Each g-hit is a perfect match. The matches need not be contiguous.
Let g =16. Consider, for example, two g-hits—one starts at position 20 in the
read and position 10020 in the genome and second starting at position 52 in
the read and position 10052 in the genome. Since there is equal gap between
the g-hits in the read as well as the genome, they can easily be part of one
alignment. Notice that ‘genome-position’— ‘read-position’= 10000 for both
the reads. This value is called the diagonal. We can filter out a large number
of regions by keeping a minimum cutoff on the number of g-hits with equal
or slightly different diagonal.
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Table 2. The highest value of minimum number of perfect matches to get a particular sensitivity for different values of read lengths and sequence similarity

Read length — 10000 1000

500 200

Similarity (%) | Sensitivity — 1 0.9999 0.999 0.99 1

0.9999 0.999 0.99 1

0.9999 0.999 0.99 1 0.9999 0.999 0.99

90 71 81 87 9% 0 2
95 215 229 237 246 9 13
97 324 338 346 355 19 24

3 5 0 0 0 1 0 0 0 0
16 18 2 4 7 0 0 1 2
26 29 6 9 11 13 0 1 2 3

The first column lists the sequence similarity M. In each subsequent column, we report the maximum value of N for the given read length such that PV > sensitivity.

Let M be the sequence similarity between the read and the corresponding
homologous region in the genome. Assuming that each letter is independent
of the previous letter, the probability that a specific g-gram in the read
matches a g-gram in a homologous region in the genome is given by:

p1=M17

The match of the read in the genome will be of the same length as the read.
Number of non-overlapping g-grams in the homologous region is given by:

K=]01/4]

The probability that there are exactly n matches in the homologous

region is:
K _
Py= (n>p1"(l —p)f"

and the probability that there are N or more matches is the sum:
PN =Pyn+Pyyi+...4+Px

James Kent discussed the idea of using two perfect matches as a filtering
criteria as opposed to here we use a larger number of perfect matches for the
same. Table 2 displays the values of N that can be used for different values
of sequence similarity and read lengths.

3.3 Ignore q-grams with high frequency

In both the optimizations above, we are applying theoretical constraints to
the g-hits between reads and genome in order to filter out unwanted regions.
However, some g-grams appear much more frequently than many others.
As a result, we get a very large number of g-hits for some reads. Moreover,
if a particular g-gram appears very frequently in the genome, then it will
produce a lot of matches at undesired places wasting time in processing
them. A less frequent g-gram is much more useful in pinpointing a match.
Hence, our heuristic ignores all g-grams with frequency more than a certain
cutoff frequency F to save time. To ensure that the contiguous perfect match
criteria still works, we give a wildcard to all g-grams with frequency greater
than F as done in FANGS. In principle, we need to reduce the values of N so
that we are still able to find all the homologous regions. A theoretical model
may not be accurate unless we take into account the exact probability of
each g-gram, which makes the model very complex. Hence, we decided to
do empirical analysis using synthetic queries for which the correct answers
are already known. Table 3 shows results of such experiments for read length
1000. Clearly, for a fixed value of N, higher value of F should result in
more regions to process in the alignment stage and more correctly mapped
regions. For example, for N =1, even F'=4 passes 3567070 regions to the
alignment stage. While with N=2 and F =17, AGILE correctly maps more
reads and filters out more regions. For N =1, if F is reduced, that will further
reduce correctly mapped regions. On the other hand, if F is increased, that
will increase the time taken. Comparing N =2 case with N=3 case, even
with F =64, N =3 case correctly maps less number of reads but costs more
time. Hence for a read length of 1000 and error rate of 10%, N =2 works the
best. With N =2 and F' =17, AGILE correctly maps 99.8% of the queries. As
compared to F'=17, F =29 takes 130 extra seconds to increase the number of

Table 3. Experiments to find the most appropriate values of F and N so as to
maximize the number of reads correctly mapped and minimize the number
of regions sent to the alignment stage (hence minimize the time taken)

F N Correctly mapped Number of regions Time taken (CPU in s)

4 1 9978 3567070 1790.73
16 2 9979 140453 166.39
17 2 9980 150242 176.28
18 2 9980 159895 185.91
19 2 9980 170223 196.15
20 2 9981 180430 206.27
28 2 9981 266621 294.38
29 2 9982 279457 307.4

32 3 9969 102282 171.42
64 3 9974 239962 391.9

Of total, 10000 reads of length 1000 were synthetically generated by sampling the
human genome. We introduced errors in the reads using an error rate of 10%. For a read
length of 1000 and error rate of 10%, N =2 and F =17 work the best. The genome used
is human genome.

correctly mapped reads by just 2. Hence, there is a trade-off between the time
taken and the number of correctly mapped queries. In this particular case,
N=2 and F=17 seems a relatively better choice. Using similar analysis,
for a read length of 10000 and error rate of 10%, N =32 and F'=4 turns
out to be a good choice. This filtering criteria works very well for large read
lengths.

3.4 Customized q-gram filtering

Another filter that we have applied in AGILE is keeping a minimum cutoff on
the number of g-hits between the read and the region. This is called g-gram
filtering. To estimate the effect of q-gram filtering, we conducted experiments
with synthetic reads. For each read, we calculated the number of g-hits in
each region and also whether the region is actually homologous or not. As
shown in Figures 1 and 2, homologous regions tend to have larger number
of g-hits while non-homologous regions tend to have smaller number of g-
hits. Hence, with a carefully chosen cutoff on the number of g-hits, we can
filter out non-homologous regions. However, some queries can have more
frequently appearing g-grams than others. In that case, those queries with
more frequently appearing g-grams can have many hits in each region. On
the other hand, queries with less frequent g-grams can have only a few hits
even in a homologous region. Hence, a generic cutoff is not appropriate.
In AGILE, we dynamically choose the cutoff for each read. For each read,
we find the maximum of the number of g-hits in all regions, say C. We
keep the cutoff as a fraction f of C. Hence, if a region has >fC g-hits, only
then it is processed further. The best value of f can filter out the maximum
number of non-homologous regions while keeping the number of correctly
mapped reads the same. As an example, Table 4 demonstrates the effect of
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Fig. 1. Histogram of the number of regions that are homologous and number
of g-hits they share with the reads. This demonstrates that the homologous
regions have larger number of g-hits.

80
70
60
50
40
30
20
10

Number of regions not homologous

O Od-da o
© O N~NN oo A

117
138
163
175
256
324
352

Number of g-hits in the region

Fig. 2. Histogram of the number of regions that are not homologous and
number of g-hits they share with the reads. This demonstrates that the non-
homologous regions have smaller number of g-hits.

using various values of f for read length 1000. In this case, the best value of
fis0.5.

3.5 Selecting the error rate ¢

All the above optimizations assume that we already know e, to filter out the
regions. However, the percentage error of a particular read cannot be known
in advance. Reads from different sources can have varying error percentages.
Even reads from the same source can have variations in error. To account
for this, we apply the following heuristics.

For each query, we start with a small value of €, say 3%. We keep
increasing the value until we find a match. There are various ways in which
the value can be increased. We can increase by 1% each time (e.g. 3, 4, 5,
etc.), or by a larger constant interval (e.g. 3, 8, 13, 18, etc.), we can increase
the value of the increment by one each time (e.g. 3, 4, 6, 9, 13, etc.), we can
double the value of increment each time (e.g. 3, 4, 6, 10, 18, etc.). Through
our experiments, we found that doubling the value of increment each time
(exponential increment) works faster than the other strategies mentioned
above.

Choosing an appropriate starting value of € is extremely crucial for the
above step and depends on the error distribution of the reads. If the errors
in the reads are distributed in a very small band on the lower side of the
spectrum, choosing a higher initial value of € will lead to a lot of extra
time wasted in unnecessary processing. On the other hand, if the errors in
the reads are distributed over a very small band on the higher side of the
spectrum, choosing a smaller initial value of € will mean that we will not
find any match for the initial few values of €. Hence, we will waste time
in unnecessary and unfruitful processing. In order to ‘guess’ a good initial
value of n to start with, we dynamically adjust the € by learning from the

Table 4. Effect of the value of f

f  #Regions # Regions processed # Correctly mapped Time taken (s)

0 180430 180430 9981 206.27
0.1 180430 160168 9981 193.26
0.2 180430 110497 9981 152.44
0.3 180430 90342 9981 133.81
0.4 180430 79593 9981 122.13
0.5 180430 69008 9981 111.45
0.6 180430 52900 9979 96.16
0.7 180430 32728 9975 77.46
0.8 180430 29490 9967 73.92
0.9 180430 28089 9957 72.21
1 180430 27647 9938 71.46

# Regions is the number of regions passed as a result of the previous filters. # Regions
processed is the number of regions with number of g-hits >fC for that read. Hence,
these are the number of regions processed by the alignment stage. The genome used is
human genome. 10000 reads of length 1000 were synthetically generated by sampling
the human genome. We introduced errors in the reads using an error rate of 10%. Clearly,
f=0.5 works best for this case.

Read Find Filter Check v
Regions Regions Regions es
1 Found a
match?
Reverse Find Filter Check
compliment Regions Regions Regions
No

Increment
€

Fig. 3. AGILE workflow.

previous queries. We take the average of the edit distance per unit length of
all the previous queries as the initial value of ¢ for the next query.

4 AGILE IMPLEMENTATION

Our implementation takes as input the genome FASTA file and a query
FASTA file. The query file typically contains a batch of many queries. In
the output, we report locations in the genome where the full length of the
read matches along with mapping quality and score of the match.

The high level workflow of AGILE is depicted in Figure 3. AGILE uses the
fact that 454 sequencers have a very small error rate (Rothberg and Leamon,
2008). Hence, we divide the problem of finding the best match « of a read
|Q| that minimizes E(«, Q) into multiple problems, allowing different values
of edit distance. Each such problem is now of the form—find a substring «
of G such that E(o, Q) <€|Q|. We start with allowing a small value of €. If
we find a match, we output that match and move to the next read. If we do
not find a match, we increase the value of € and try again.

AGILE uses a g-gram index of the genome to map queries. We process
the input reads one by one. Since the read can be from any strand of the
DNA, AGILE processes both the read and reverse complement of the read
to search for matches. For any sequence, we start by identifying the regions
in the reference genome that can potentially be homologous to the read.
In the next step, we filter out many of the regions using the heuristics
discussed in the previous section. Each homologous region in the filtered
list is further processed by using dynamic programming by creating the edit
distance matrix to check if the region actually has an edit distance <¢€|Q]|.
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Table 5. Effect of pruning

Query % similarity Without pruning With pruning
length
Time Correctly Time Correctly
taken mapped taken mapped
1000 98 137.01 9975 77.89 9975
1000 95 160.64 9982 92.84 9982
1000 90 164.52 9981 111.45 9981
10000 98 175.42 1000 144.58 1000
10000 95 205.77 999 188.1 999
10000 90 285.47 1000 270.57 1000

Since the edit distance is bounded by €|Q|, we only need to calculate a
diagonal band of width 2¢|Q|+1 of the matrix. If at any stage, all paths
in the edit distance matrix have an edit distance of more than €|Q|, we stop
further processing and discard the region. This pruning policy greatly reduces
the time taken by the algorithm as many regions are discarded after the first
few rows are processed. Table 5 demonstrates the speed benefit obtained by
this optimization.

We have run extensive experiments in order to find the most efficient
parameter values for different read lengths and € values. Based on these
experiments, for each query we automatically set the optimal values of these
parameters. Also, as explained in Section 3.5, we dynamically select the
most appropriate starting values of € and increment € until we find a match.
Automatic selection of parameter values makes it easier for users to use
the program as they do not need to worry about deciding the appropriate
parameter settings. In addition, having tailored values of parameter settings
for different scenarios makes it possible to run real queries that can be of
varied lengths and error rates.

5 RESULTS

5.1 Mapping quality calculation

The concept of mapping quality was coined by Li et al. (2008a)
to estimate the probability that the read sequence has been mapped
at the correct place or not. Li and Durbin (2010) approximated the
mapping quality as 250(S1 —S,)/S, where S is the score of the
best alignment and S, is the score of the second best alignment.
We adopt the same approach in our experiments for calculating the
mapping quality.

5.2 Results on synthetic data

To create synthetic queries, we used WGSIM script provided in
the SAMTOOLS package. The script was modified to adapt to 454
data. We created reads of a total of 10 million bp of different read
lengths. For each read length, we introduced 2, 5 and 10% errors.
Of total, 20% of the errors were indels. We aligned these simulated
reads to the human genome hgl9 using AGILE, BWA-SW, BLAT
(option -fastMap), SSAHA2 (option -454), Mosaik and PASS.
Since these are synthetic reads, we know their coordinates in the
genome. Hence, we compared the aligned coordinates to the known
coordinates to calculate the alignment error. SSAHA2, BWA-SW
and AGILE report mapping quality. However, in the cases when
a tool is unable to pick the best and second best alignments, the
corresponding mapping quality will be incorrect. Hence, comparing
mapping quality values reported by different tools may be invalid

as some tools might find a larger number of second best alignments
than others. To solve this problem, we calculate mapping quality
for each tool using alignments reported by all the tools. For each
tool, let S be the score of the best alignment « found by that tool.
We take S as the score of the best alignment (other than «) found
by any tool. We compute the mapping quality using S and S, in the
similar manner as described in Section 5.1. For our evaluation, we
ran all the experiments on Intel Xeon quad core E5430 2.66 GHz
processor with 2 x 6 MB cache and 32 GB RAM running a Linux-
based operating system. Each tool was run in single-threaded mode.

Table 6 shows the CPU time, percentage of confidently (mapping
quality >20) aligned reads and percentage of reads incorrectly
aligned for AGILE (version 0.3.0), BWA-SW (version 0.5.7), BLAT
(version 34) and SSAHA?2 (version 2.5.1) for different values of read
length and sequencing error rates. We have reported the comparison
of AGILE against Mosaik and PASS in the Supplementary Table SI.
We used the default command line options for each program unless
necessary otherwise. Carefully selected command line options might
yield better results.

5.2.1 AGILEvs BWA-SW ltis observed from Table 6 that AGILE
is more accurate than BWA-SW especially for reads with shorter
lengths and more error rates. However, AGILE is also slower than
BWA-SW for the same case—reads with shorter lengths and more
error rates. For smaller error rates, AGILE is significantly faster
than BWA-SW (upto 5 times faster). AGILE is most efficient for
read lengths of about 1000. With the rate at which the 454 read
lengths are increasing, 1000 bp reads will soon be the norm.

5.2.2 AGILE vs BLAT From Table 6, it is clear that AGILE is
significantly faster (upto 30 times faster) than BLAT while still being
much more accurate in most cases; most importantly, the cases with
larger error rates. Even in cases where AGILE is less accurate than
BLAT, it is not much worse. BLAT’s lack of accuracy is also due to
the ‘-fastMap’ option. However, with default parameters BLAT is
more than an order of magnitude slower than with ‘-fastMap’ option.

5.2.3 AGILE vs SSAHA2 AGILE is several times faster than
SSAHA? on all inputs. Also, AGILE is either comparable or more
accurate than SSAHA?2 for all inputs apart from the case when the
read length is 100 and the error rate is 2%. SSAHA?2 does not work
well for 10 kb reads as it is not designed for such read lengths and
thus could not be tested on them.

5.2.4 Memory comparison As far as memory usage is concerned,
for mapping reads against human genome, BLAT and BWA-SW use
about 4 GB memory. The peak memory requirement of SSAHA2
is about 5.6 GB. For AGILE, the g-gram index requires about
3.5 GB memory and the genome itself requires about 3 GB memory.
Memory required by each query is insignificant with respect to them.

5.3 Results on real data

It is difficult to evaluate on real data because of the lack of ground
truth. However, if two algorithms output the same alignment for a
read, it is most likely correct. If two aligners X and Y output different
alignments for a read, if X and Y both report low mapping quality,
then the alignment is ambiguous and it does not matter which one is
wrong. If X reports high mapping quality for a read and X alignment
score is worse than or slightly better than Y, X mapping quality is
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Table 6. Results on synthetic reads

Read length (bp) Program AGILE BWA-SW BLAT SSAHA2
Error rate  CPU (s) Q20% errAln% CPU (s) Q20% errAln% CPU (s) Q20% errAln% CPU (s) Q20% errAln%
100 2 112,75  93.39  5.05 161 93.66 4.74 430.54 89.41 16.37 2014.92 93.94 2.05
5 19194 91.62 2.94 135 90.63 12.8 3272 78.75 51.71 2857.75 93.9 4.42
10 350.93 79.54  8.98 104 77.2 38.03 261.96 62.56 86.47 3567.85 92.22 8.45
200 2 7727 9554 0.72 223 95.68 4.43 565.83 95.52  2.57 1064.29 95.43 3.57
5 142.06 9536 1.01 189 95.41 8.39 392.38 92.99 19.64 1049.98 95.51 7.02
10 395.06 92.83 242 145 91.39 17.7 278.78 78.95 68.39 1613.21 95.54 10.14
500 2 56.97 97.2 0.22 277 97.2 0.53 900.65 97.19  0.01 1256.23 96.78 0.47
5 111.39 97.33  0.37 205 97.34 0.69 583.64 97.19  0.83 1078.03 96.67 0.74
10 277.72 96.73  0.61 160 96.59 1.4 326.71 93.87 32.76 844.04 96.06 0.95
1000 2 69.34 9738 0.26 243 97.38 0.4 1107.92 97.37  0.01 1585.27 97.04 0.34
5 78.38  98.02 0.23 201 98.02 0.35 808.55 97.96  0.07 1359.22 97.02 1.02
10 86.52 97.56 0.19 135 97.52 0.5 3929  96.09 9.93 1077.6  95.77 1.89
10000 2 122.57 98.2 0.1 160 98.2 0.1 3016.57 98.2 0 - - -
5 139.58 99 0.1 136 99 0.1 1654.69 99 0 - - -
10 197.78 98.2 0.1 125 98.2 0 757.92 98.2 0 - - -

We created reads of a total of 10 million bp of different read lengths. Q20%, percentage of reads with mapping quality >20; errAln%, percentage of reads incorrectly aligned.

Table 7. Breakup of alignments that are mapped inconsistently between BWA-SW and AGILE

Condition Count Average read BWA-SW AGILE
Average mapping length Average Average mapping Average
quality difference quality difference (%)
BWA-SW> 20; AGILE unmapped 46 285.89 122.61 11.21 - -
BWA-SW> 20 plausible; AGILE< 20 49 250.31 60.53 5.65 3.16 12.1
BWA-SW> 20 questionable 6 268.33 255 5.45 125 6.32
AGILE> 20; BWA-SW unmapped 203 140.34 - - 250 9.46
AGILE> 20 plausible; BWA-SW <20 247 175.3 1.93 11.8 249.07 8.23
AGILE> 20 questionable 413 273.69 0.61 3.95 250 3.45

‘We mapped 100000 reads uniformly selected from SRR005010 (pre-filtered to remove any reads smaller than 100 bp) against the human genome hg19 with BWA-SW and AGILE,
respectively. We call a read inconsistently mapped if the left most position of the alignments found by BWA-SW and AGILE differ by more than the length of the read. For each
alignment, we calculated the score [number of matches—three times the number of differences (edit distance)]. We call a AGILE alignment plausible if 250 (AGILE score — BWA-
SW score)/(AGILE score)> 20 (i.e. using BWA alignment as the next best alignment, AGILE mapping quality > 20). Essentially, this means that the AGILE alignment is sufficiently
better. Otherwise, we call an AGILE alignment questionable. We use similar definitions of plausible and questionable for BWA-SW alignments. In adddition, ‘AGILE> 20’ is defined

as AGILE alignments with mapping quality > 20.

wrong and X is not aware of an equally probable alignment. This
analysis is similar to the one reported in Li and Durbin (2010).

We ran BWA-SW and AGILE on real queries obtained from the
NCBI short read archive SRR005010. We filtered the read set to
remove queries smaller than 100bp long and uniformly selected
100k read with an average length of 338 bp. AGILE took 283 CPU
seconds and BWA-SW took 939 CPU seconds. Both tools found
96293 common alignments. Of total, 357 reads were not mapped
by any of the tools. Table 7 shows breakup of reads that are aligned
by only one aligner or mapped to different places, and are assigned
mapping quality >20 for either BWA-SW or AGILE. Overall, BWA-
SW misses 203 4247 =450 alignments that AGILE maps well.
AGILE misses 95 (46+49) alignments that are aligned well by
BWA-SW. Note that, even though the average read length of the
entire read set is 338, the inconsistencies come mostly in the case

of smaller read lengths (average length 286 or smaller). This is in
accordance with the results on synthetic reads as both aligners tend
to make more mistakes in aligning reads of shorter lengths. BWA-
SW tends to miss more alignments in even shorter (140-170) read
length range, while AGILE misses more alignments for a bit longer
(250-286) reads.

6 ANALYSIS

AGILE is similar to BLAT, SSAHA2, FANGS, Mosaik, PASS and
BWA-SW in sharing the seed and extend strategy to get candidate
regions. However, the major difference lies in the way heuristics
are employed to reduce the number of regions to be processed.
BLAT and SSAHAZ2 consider short (10-15bp) exact matches as
seeds. BLAT also provides functionality to use short inexact match
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(one mismatch allowed) or two exact matches slight differing in
diagonal values. For longer reads, both these techniques result in a
very large number of candidate regions. AGILE filters the candidates
by allowing longer seeds (upto 28 bp). It also uses a cutoff on the
minimum number of contiguous exact seed matches and larger cutoff
on the minimum number of exact matches with equal or slightly
different diagonal values. To the best of our knowledge, no other tool
uses multiple perfect match filtering criteria with a cutoff of more
than two matches. This is similar to using a long gapped seed. BWA-
SW also uses long gapped seeds for the similar reason. The main
difference between BWA-SW and AGILE is the way long gapped
seed is implemented. While BWA-SW uses Prefix Trie and Prefix
DAWG, AGILE relies on a much simpler data structure g-gram index
(hash table) and diagonal coordinates. Both BWA-SW and AGILE
further use different heuristics in order to reduce the search space.

The heuristics used by AGILE are similar to the ones used in
string matching or sequence mapping algorithms. For each heuristic,
AGILE adapts it to the problem of long read mapping. Customized
g-gram filtering is an example. Q-gram filtering is a well-known
technique for filtering out unwanted regions. However to the best
of our knowledge, no algorithm has used g-gram filtering with the
cutoff customized for each read. Another major contribution of
AGILE is the gradual increase of the allowed error rate till we find a
match. Most tools use the allowed error rate to decide thresholds for
pruning the search space. However, many reads have a small number
of errors. Since these tools use a fixed value of the allowed error
rate, they end up using a larger value of the allowed error rate for all
reads in order to also map the reads with larger errors, resulting in a
loss of efficiency. Hence, gradually increasing the allowed error rate
in mapping can have tremendous effects on the efficiency of these
tools.

7 CONCLUSION

Advances in sequencing techniques necessitate the development
of high performance, scalable algorithms to extract biologically
relevant information from these datasets. Research on developing
sequence mapping algorithms has been largely focused on mapping
short reads, and little work has been done for longer 454 reads.
AGILE is a hash-based sequence mapping algorithm that rapidly
maps long reads using efficient heuristics to optimize different steps
of the mapping process. AGILE can handle very large genome sizes
and read lengths. It is flexible in that it allows a large number
of mismatches and insertions/deletions in mapping and provides
command line parameters to control every step of the mapping
process. The best sensitivity and specificity of AGILE is achieved

when the reads are longer and the error rate is small. Considering that
with the improvement in sequencing technology, the read lengths
will increase further and the error rates will decrease, AGILE should
be even more useful in the future.
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