
Design and Evaluation of Smart Disk Architecture for DSS Commercial
Workloads�

Gokhan Memik
ECE Department

Northwestern University
Evanston, IL 60208

memik@ece.nwu.edu

Mahmut T. Kandemir
CSE Department

The Pennsylvania State University
University Park, PA 16802

kandemir@cse.psu.edu

Alok Choudhary
ECE Department

Northwestern University
Evanston, IL 60208

choudhar@ece.nwu.edu

Abstract

The requirements for storage space and computational power of large-
scale applications are increasing rapidly. Clusters seem to be the most at-
tractive architecture for such applications, due to their low costs and high
scalability. On the other hand, smart disk systems, with their large storage
capacities and growing computational power are becoming increasingly
popular. In this work, we compare the performance of these architectures
with a single host-based system using representative queries from the De-
cision Support System (DSS) databases. We show how to implement indi-
vidual database operations in the smart disk system and also show how to
optimize the execution of the whole query by bundling frequently occurring
operations together and executing the bundle in a single invocation. Be-
sides decreasing the overall execution time, operation bundling also offers
an easy-to-program and easy-to-use interface to access the data on smart
disks. We also present a protocol for minimizing the communication time
in the smart disk based system.

To measure the response times, we have developed the DBsim, an ac-
curate simulator which can simulate the database operations for the single
host-based, cluster-based and smart disk based systems. Using this simula-
tor, we illustrate that the smart disk architecture offers substantial benefits
in terms of overall query execution times of the TPC-D benchmark suite. In
particular, the average response time of the smart disk architecture for the
representative queries from the TPC-D benchmark in our base configura-
tion is 71% smaller than the response time on the single host-based system
and 4:2% smaller than the response time on the fastest cluster architecture.
We also demonstrate the effectiveness of the operation bundling.

1. Introduction
The requirements for storage space and computational power of large-

scale applications are increasing rapidly. Although SMP’s and cluster of
workstations offer high computational power, there is a need for new ar-
chitectures especially for data-intensive applications. Such applications
manipulate huge amounts of disk-resident data, in addition to their sub-
stantial computational requirements. In traditional systems, these data are
moved back and forth between the storage device and the processing unit.
This imposes an overhead on the I/O bus which may degrade the system
performance. In the near future, the I/O interconnection is expected to be-
come the bottleneck in the I/O subsystem due to the increases in the drive
media rates.

For many of these large-scale applications, however, it is possible to
manipulate data on the storage device, before putting it on the bus. Smart

�This work is supported by the Department of Energy’s Accelerated
Strategic Computing Initiative (ASCI) program under a subcontract No
W-7405-ENG-48 from Lawarence Livermore National Laboratories and
by NSF CDA-9703228 and NSF ACI-9707074.

disks1, having embedded processors and a substantial amount of memory
on the storage device, solve this problem by manipulating the data on disks
and leveraging the bandwidth requirement on the bus. In the near future,
storage devices with 100 Gbytes of capacity, several hundred MIPS engine
and a few hundred MBytes of RAM are expected to exist in the market
[11]. Even today, it is possible to find storage devices in the market with
150 MIPS core and up to 2 MB of main memory [22, 24, 6, 14]. Most of the
processing power in these disks is devoted to disk scheduling and similar
duties. But, next generation smart disks will contain processors powerful
enough for performing application-level programming. They might even
contain co-processors for performing tasks related to disk scheduling. It
is possible to build such systems with a small amount of extra cost over
the disk cost due to the low costs of embedded processors and memory
chips. Previous work in this area focuses on the architectural and operat-
ing system related issues [15, 20, 28]. Smart disks seems to be an attractive
alternative especially for database applications. They are expected to per-
form well especially in a sequential operations, where significant amount
of data has to be processed and to be sent to the processing unit, which
usually performs a simple task on the data.

In this paper, we present a detailed quantitative evaluation of a smart
disk based architecture. To achieve this, we compare the performances of
a smart disk system, two types of cluster systems and a single host system
for whole database queries.

Both SMP’s and cluster of workstations are widely used for large scale
applications. But clusters are getting increasingly popular due to their cost
effectiveness. They are shown to perform well for many type of applica-
tions. Our goal is to measure the effectiveness of the emerging smart disk
technology by comparing its performance to the existing popular technol-
ogy of clusters.

We have selected Decision Support System (DSS) databases as our ap-
plication, because of the large storage requirements and wide usage of such
databases. Specifically, we measure the execution times, consisting of the
I/O, computation and communication times, for all the architectures for six
different queries from the TPC-D benchmark [25]. These queries contain
a combination of select, join, sort, group-by and aggregate operations and
are a representative of the whole benchmark suite. Our experiments show
that, smart disk architecture delivers high levels of performance under dif-
ferent values for processor speed, available memory size, number of disks
and database size. Based on our performance numbers, we also discuss
the cases where the smart disk based system is preferable to cluster-based
system and vice versa.

DSS databases process up to 4:5 TBytes of data, consisting of up to 50
billion rows [29]. These challenges require innovative approaches in archi-

1We use the term smart disks to refer to a class of architectures that put
substantial computational power on disks, such as Active Disks [1, 20] and
IDISKs [15].

2000 International Conference on Parallel Processing (ICPP'00)
0-7695-0768-9/00 $10.00 @ 2000 IEEE

(c)

Embedded Processor

Memory

Controller

Disk

Processor

Disk

Disk

Memory

(a)

Memory

Processor

Disk

Disk

Memory

Processor

Disk

Disk

Interconnection Network

(b)

Memory

Processor

Disk

Disk

Figure 1. (a) Traditional architecture. (b) Cluster ar-
chitecture. (c) Smart disk architecture.

tecture, software and algorithm areas because the traditional approaches,
which depend on the technological advances for improving their through-
put, may not be sufficient for solving these problems. Considering the
results we have obtained in this work and the low cost of this architec-
ture, the employment of smart disks in such applications seems to be an
attractive solution.

In the following section, we describe the smart disk architecture and
discuss the possible configurations of systems employing smart disks. In
Section 3, we introduce the queries used in our experiments. In Section 4,
we explain the algorithms we have used for single database operations and
also explain the execution of the whole query using operation bundling. In
Section 5, we present our simulator and discuss its accuracy. In Section 6,
we describe our experimental platform, define the methodology used in the
experiments, and present the simulation results. In Section 7, we discuss
related work and in Section 8 we conclude the paper with a summary and
an outline of the on-going research.

2 Smart Disk Architecture
Each smart disk consists of an embedded processor, a controller, disk

space and some amount of DRAM (see Figure 1(c)). Compare this ar-
chitecture with a traditional single host-based system (Figure 1(a)) and a
cluster-based system (Figure 1(b)). In today’s standards the CPU in Fig-
ure 1(a) is between 300�600 MHz, with up to 1 GBytes of main memory.
The I/O interconnect is between 200� 300 MB/s. To build a cluster, sim-
ilar hosts are connected to each other using a fast-speed interconnection
network. The speed of the interconnection is between 150 � 1200 Mbps.
We have simulated clusters with no shared disks. The embedded processor
in Figure 1(c) is 100 to 300 MHz. As far as the memory is concerned,
Texas Instruments C27x has a 16 MB address space [24]. So, we would
expect memory sizes of 16 to 128 MB in the future.

Many alternatives for the cluster hardware exist, especially for larger
systems. We have selected a configuration similar to Figure 1(b). Consid-
ering the size of our applications and the system size, we believe that our
selection of the configuration is a reasonable one. The software issues for
the cluster configuration is discussed in Section 3.

We can consider two alternatives for the configuration of smart disk
system. In the first configuration, the smart disks are connected to a host
machine through a bus. In such a system, host will do the tasks for security,
coordination, code loading, etc. In such a system, smart disks will process
the data and send only the relevant parts to the host (we call these filtering

operations). But compute-intensive operations will still be performed by
the more powerful host. This offloading of code performed by the smart
disks does not only reduce the network traffic, but also offloads the host
processor and increases the system power. The second alternative configu-
ration is a distributed system of smart disks. In such a system, smart disks
are connected through an interconnection network. One of the smart disks
may be assigned as a central unit for coordination purposes, but all the
applications are distributed among the smart disks. If parallelism in such
a system can be exploited efficiently, systems with significant computing
power and storage capacity can be constructed in a cost-efficient manner.
The architecture we have used for our experiments falls into this category,
with one of the smart disks assigned as a central unit.

For database applications significant amount of research has been con-
ducted. First, there is literature on database machines, which were studied
some time ago [4]. Special purpose hardware, which were employed by
the database machines, had high cost and moderate performance, which
eventually led the demise of database machines. Smart disk systems, on
the other hand, use commodity hardware, lowering the cost of the system.
Also the VLSI technology has improved dramatically, making smart disk
systems feasible. The improvements in the interconnection network tech-
nology is also in favor of the smart disks. There has also been significant
amount of research in parallel execution of database operations [7]. Con-
sidering each smart disk as a processing unit in the parallel database sense,
we should be able to adapt at least some of these techniques to the smart
disk architecture. Overall, armed with new optimization techniques from
parallel databases and lessons from old database machines, we believe that
we can build smart disk based systems which are cost-effective, practical
and effective in handling large database applications.

3 DSS Queries
Dr. Philip Bernstein estimates that 35% of all database servers are

decision support systems [5]. The storage and computational requirements
of these systems increase rapidly. This wide usage and the large storage
and computational requirements of these systems led us select them as
our application in this work. We have used six queries from the TPC-
D benchmark [25]. This benchmark has gained widely acceptance both
in the academia and industry. It contains 17 read and 2 update queries,
most of them being large and complex. The queries we have selected are
given in Table 1 along with the operations they involve. A ’�’ indicates
that the query involves the relevant operation. For example, Q1 involves
S (sequential scan), sort, group-by and aggregate operations. We have
selected these six queries, because we wanted to cover all the operations at
least once.

The TPC-D benchmark gives the SQL codes for the queries. It defines
some variables inside the query and also gives the possible values for these
parameters. Thus, the possibility of a tuple being selected is fixed. For ex-
ample, Q13 selects all the tuples from one of its input tables. On the other
hand, Q12 selects one out of 200 tuples from a table called lineitem.
Our choice of the queries also ensures that we experiment with both the
low selectivity and high selectivity queries.

In the following, we first explain the implementation of individual
database operations for both the smart disk and the cluster architectures.
Then, we discuss how to combine these individual operations to execute
the whole query. We introduce the notion of operation bundling and ex-
plain the protocol we devised for reducing the communication.

4 Query Execution
In this section, we first describe the algorithms we have used for in-

dividual database operations for all the architectures experimented with.
Then, we explain how the whole query can be executed on smart disk sys-
tem. We also explain the notion of operation bundling.

4.1 Individual Database Operations
Query optimization and processing in distributed environments has

been studied by many researchers [12, 16, 23]. Many of the algorithms

2000 International Conference on Parallel Processing (ICPP'00)
0-7695-0768-9/00 $10.00 @ 2000 IEEE

Table 1. The read-only TPC-D queries that we used
and their operations. The operations are sequential scan
(S), indexed scan (I), nested loop join (N), merge join
(M), hash join (H), sort, group (Gro.), and aggregate
(Agg.).

Query Scan Join Sort Gro. Agg.
S I N M H

Q1 � � � �
Q3 � � � � �
Q6 � �
Q12 � � � � � �
Q13 � � � � � �
Q16 � � � � �

we have used in this work are adopted from the algorithms developed for
distributed systems. We had to simplify some of the algorithms. But, these
simplifications do not invalidate our comparisons, because we use the same
assumptions and similar algorithms for both the cluster and the smart disk
based architectures.

The implementations of individual database operations we have se-
lected for smart disk architecture and clusters are similar in nature. The
main difference of these architectures is the way these individual opera-
tions are combined to execute the whole query. These differences will be
explained in Section 4.2 in more detail. The implementations of sequential
scan, group-by and aggregate operations are similar to those proposed by
Acharya et al. [2]. In the sequential scan operation, each smart disk scans
the input table and sends the tuples that match the selection criterion to
the central unit. Similarly, in the cluster architecture, hosts scan the input
table and matching tuples are sent to the front-end, which concatenates the
results. The aggregate operation is performed similarly. Each smart disk
performs the aggregation locally and sends the results to the central unit,
which combines the results. For indexed scan operation, we assumed that
the smart disks keep the indexes for the part of the data they are holding.
So, similar to the sequential scan, the smart disks scan their input table
and forward the matching tuples to the central unit. The implementation is
similar for the cluster architecture. For implementing the group-by oper-
ation, we have used a hashing based algorithm. In the first step, the local
hashes are performed by each smart disk. Then, in the second step, these
local hashes are sent to the central unit, which accumulates the results.

For the sort operation, we have used an external local sort in each
disk. Then, these results are forwarded to the central unit (or to the front
end), where the results are merged. Join operations require synchroniza-
tion among the processing elements (smart disks in the smart disk system
and hosts in the cluster architecture). For nested loop (N) join, one of the
tables is replicated in all the processing elements. The selection for this
table is done by the central unit in smart disk system. This table is joined
with the local tables using a doubly nested loop to match the elements of
one table to the other and the result is forwarded to the central unit (or to
the front-end in cluster architecture). The merge (M) join starts by sorting
one of the tables globally and replicating this sorted table in all the pro-
cessing elements. Then, the local tables are merged with the global table
and the results are forwarded to the central unit (to the front-end). For the
hash (H) join, we first form the local hashes. Then, these hashes are com-
municated to form a global hash table. After receiving the global hash, the
smart disks (the hosts) perform the join operation and the results are sent
to the central unit (to the front-end).

4.2 Whole Query Execution
The execution of the whole query in smart disk architectures and clus-

ter architectures differ in many ways. The processing elements in the
clusters (hosts) are machines with their full operating system support and
stand-alone database management systems. Their main difference from
a single host-based machine is that they are aware of the other machines
in the system and that each of them is setup to serve as an element in the

whole system, which makes the whole system look as a single system to the
clients. On the other hand, due to the limited memory and hardware, smart
disks will not have the full support of the operating system or the database
management system like their counterparts. Therefore, there must be a
central unit in the system coordinating or synchronizing the operations of
the smart disks in a finer grain. But, on the other hand, we believe that
the smart disks will be powerful enough to control their memory and disk
and will also be able to communicate with other smart disks without the
intervention of the central unit.

The query execution on clusters is started by the front-end. Then, each
host manipulates the data it owns. The hosts synchronize only when the
operation they are performing requires the data on other machines. Among
the individual operations we are performing, only the join operation re-
quires such an synchronization. In other words, hosts perform the sequence
of individual operations without any interruptions unless they encounter a
join operation. If there is a join operation, they synchronize and proceed
independently after the join operation is finished. Then, when all the oper-
ations are finished, they send their results to the front end.

In the following subsections, we are going to present the execution of
the whole query in the smart disk architecture. We are going to define the
notion of operation bundling and introduce a protocol we have devised for
reducing the communication between the central unit and the smart disks,
which in turn reduces the synchronization overhead.

4.2.1 Operation Bundling

The core of our approach for executing the whole query is to bundle a num-
ber of database operations and execute this bundle as a single operation on
the smart disks. The execution of the bundles is coordinated by the central
unit, which ensures that all the smart disks in the system are executing the
same bundle.

The decision of which operations are to bundle is also made at the
central unit. The algorithm uses a relation of bindable operations and the
query plan tree as input. The relation of bindable operations consist of
tuples of individual operations of the form (child; parent). If there exists a
(child; parent) tuple in the relation, this mean that any occurrence of these
consecutive individual operations in the query plan tree should be included
in the same bundle. The algorithm used for determining the bundles is
given in Figure 2. It is a greedy algorithm for determining the bundles.

The execution of the query starts by forming a query plan tree [18].
Then, the tree is traversed starting from the root. When an individual op-
eration is traversed, the algorithm checks all the children of the node. If
a child and the parent are bindable, in other words if there exists a cor-
responding tuple in the relation (line 7 of Find Bundle Algorithm), then
the child is included in the current bundle and the algorithm continues
recursively from the child. If they are not bindable, then the current bun-
dle is finalized, a bundle containing the child is formed and the algorithm
is called recursively with the child as the root of the plan tree. In sum-
mary, the algorithm traverses the entire query plan tree and bundles all the
bindable individual operations. Figure 2 gives the algorithm of operation
bundling. It uses a function called insert for both inserting a bundle to the
list of finalized bundles and for inserting a node to a bundle. The algorithm
returns a list of bundles. The corresponding bundles for q12 are given in
Figure 3.

The success of the bundling algorithm depends heavily on the selec-
tion of the bindable individual operations. If this relation is empty, all the
individual operations will be performed independently. If this relation con-
tains all the possible combinations of tuples of individual operations, then
the whole query plan tree will form a bundle. In this study, we have used a
relation with the following tuples:
f(indexed scan; nested loop join), (sequential scan; nested loop),
(indexed scan, merge join), (sequential scan, merge join),
(indexed scan, hash join), (sequential scan, hash join),
(indexed scan, group-by), (sequential scan, group-by),
(group-by; aggregation)g

Many consecutive individual database operations can be bundled to-
gether to form the bundle. On one side, it is beneficial to bundle as many

2000 International Conference on Parallel Processing (ICPP'00)
0-7695-0768-9/00 $10.00 @ 2000 IEEE

FIND BUNDLES (relation; root; current bundle)
1. /*relation is used to store the
2. relation of bindable operations,
3. root is the root node of the
4. plan tree.*/
5. begin
6. for i=0 to no. of root’s children do
7. if relation[childi, parent] == 1 then
8. insert (childi, current bundle)
9. FIND BUNDLES (relation, childi, current bundle)
10. elseif
11. new bundle = fg
12. insert (childi, new bundle)
13. FIND BUNDLES (relation, childi, new bundle)
14. insert (new bundle, final bundles)
15. end if
16. end for
17.return final bundles

18.end.

Figure 2. Algorithm for determining the bundles.

operations as possible together, because this will reduce the amount of traf-
fic and the synchronization overhead and also increase the performance.
On the other side, having large number of single operations within a bun-
dle will increase the number of bundles possible2 and will require the smart
disks to have more power and will make the query related system support
more complex on the smart disk side. Our selection is based on the fact
that, in all cases above, knowing the next individual operation can decrease
the overall response time. Specifically, the tuples we have selected have at
least one of the following properties:

� The results of the child operation can directly be supplied to the par-
ent operation, thereby eliminating the need of storing the temporary results
and also increasing the intra-query parallelism (for example, the results of
a scan operation can directly be used by the join operation following it).

� The consecutive operations can be performed as a single operation,
thereby decreasing the execution time (for example, while forming the
groups the smart disks can also perform the aggregation operation).

In Section 6.2, we present experimental results with the above selec-
tion of relation of bindable operations and compare the results against no
bundling. We also give results of another relation with more tuples and
show that having additional tuples in the relation brings only marginal im-
provement.

The query execution starts on the central unit, where the query is parsed
and optimized. These steps produce a query plan tree [18]. Then, the plan
tree is fragmented by the central unit using the operation bundling algo-
rithm described in this section. Then, the central unit sends each bundle
to the smart disks and waits for its execution before sending the next one.
The bundles are executed by the smart disks and the results are stored lo-
cally. Smart disks decide where to store the resulting data. According to
the size of the produced data and of memory, the results are stored either in
memory or on disk. In the last bundle, the central unit instructs the smart
disks to send the result to the central unit. Then, it receives these results
and combines them.

2The number of different possible bundles corresponds to the number
of different sequences of individual operations that both satisfy the bind-
able operation relation and are encountered in at least one query plan tree.
In other words, it corresponds to the number of different bundles the smart
disk system should be able to execute for the set of queries supported.

Lineitem

Seq.Scan

Sort

Seq.Scan Ind.Scan

Order

Merge J.

Sort

Group

Aggreg.

Sort

Figure 3. Query execution plan for Q12. (Each dashed
box contains a bundle).

5 Simulator
To conduct the experiments, we have developed a simulator, called

DBsim, which is used to simulate the database operations for all the ar-
chitectures. DBsim is capable of simulating both individual database op-
erations and a sequence of individual operations. It can simulate a wide
variety of disks, I/O interconnects and processors.

DBsim uses the Disksim developed by Ganger et al. [8], for simu-
lating the disk behavior. Disksim is an efficient and accurate disk sys-
tem simulator. It includes modules for simulating disks, intermediate con-
trollers, buses, device drivers and request schedulers.

The sequential scan, indexed scan, sort, group-by, aggregate, nested
loop join, merge join and hash join operations can be simulated in DBsim.
DBsim is also capable of executing combinations of these individual oper-
ations. It requires both the architectural values like processor speed, mem-
ory size, disk parameters and also database related parameters like the total
data size, location of data, index properties (e.g., whether there is an index
on the attribute accessed or not, the type of index, etc.), tuple size, types
and sizes of the resultant tuples and size of the resultant table.

The different architectures are simulated by using different programs
driving the DBsim. The single host simulator is a sequential program,
which reads the appropriate parameter values from a configuration file and
calls DBsim with the appropriate arguments. The cluster simulator and
the smart disk simulator are parallel programs. They read the parameter
values from a configuration file and then they call the DBsimwith the cor-
responding values. Then, according to the results obtained from DBsim,
the processors communicate with each other using message passing.

To measure the accuracy of the DBsim, we have compared the re-
sponse times of it against the values we have obtained from Postgres95
[30]. Postgres95 is installed on an IBM RS/6000 workstation with three
IBMRISC DFHSS4W 4.5GB, 16-bit SCSI disk drive. We have measured
the response times for the queries Q3 and Q6 from the TPC-D benchmark
for two different database sizes and three different selectivities. The largest
error DBsim has given was 2:4%. More information on DBsim and ex-
periments we have conducted to validate the simulator is given in [17].
Overall, the DBsim simulator is found to be highly accurate.

6 Experiments
In this section, we present the simulation results obtained. First, we

explain the base configuration used in the experiments. Then, we give

2000 International Conference on Parallel Processing (ICPP'00)
0-7695-0768-9/00 $10.00 @ 2000 IEEE

results for the experiments with different bundling schemes. Afterwards,
the results for the base configurations of the single host-based, cluster-
based and smart disk based systems are given. Finally, architectural and
database values are changed to evaluate the potential performance of smart
disks in the future. The results for all the variations are summarized in
Table 3.

6.1 Parameters for Base Configuration

In this section, we explain the values used for architectural parame-
ters in the base configuration. The host-based system has a CPU with
frequency of 500 Mhz and has 256MB of main memory. The I/O inter-
connect is 200MB=s. Each node in the cluster systems has a 400MHz
CPU, 128MB of main memory and 200MB=s I/O interconnect. The
nodes are connected via a 155Mbps inteconnect. Each smart disk has a
CPU of 200MHz and 32MB of main memory. The disks employed by
all the systems are of the same type. For all the systems experimented the
total number of disks are kept constant at 8. The disks have a rotational
speed of 10000rpms, a minimum seek time of 1:62msec, a mean seek
time of 8:46msec and a maximum seek time of 21:77msec. The data
page size was 8KB for all the systems.

Our main goal was to have four systems of comparable prices. We
also wanted the smart disk system to be the cheapest system to build. Al-
though, it is hard to predict the market prices of smart disk systems, it is
safe to assume that their manufacturing costs will be much less then the
cluster or single-host based systems. One of the smart disks in the system
is employed as the central unit, accomplishing the task of coordination.

6.2 Effect of Operation Bundling

To see the effect of the operation bundling, we have conducted an ex-
periment with the base configuration explained in Section 6.1. We have ex-
perimented three different bundling schemes: no-bundling, bundling with
the relation given in Section 4.2.1 (we call this scheme optimal bundling3),
and excessive bundling. In no-bundling scheme, all the individual opera-
tions are performed independent of each other. Details about the optimal
bundling are given in Section 4.2.1. For excessive bundling, we included
the following tuples to the relation of bindable operations given in Sec-
tion 4.2.1:
f(indexed scan; sort), (sequential scan; sort), (sort; group-by),
(sort; aggregate), (aggregate; sort), (aggregate; group-by)g

Figure 4 gives the results obtained. The values in this figure corre-
spond to the percentage improvement of the overall execution time over
the no-bundling scheme. The average improvement over the no-bundling
scheme is 4:98% with optimal bundling scheme and 4:99% with excessive
bundling scheme. Note that, in Q6, which consists of only two individual
operations, no operations are bundled. Q3 gives the best results among the
queries we have examined. This query is one of the most complex queries
and contains two join operations. It also produces significant amount of
intermediate results. All these properties combined together, it has the
best performance improvement among all the queries. The results show
that building larger bundles does not improve the performance over the
bundling scheme we have selected.

Overall, we can conclude that the operation bundling improves the per-
formance of the smart disk systems. Another advantage of the commu-
nication using the operation bundling is the ease-of-programming. Using
operation bundling, it is easy to program a portable, easy-to-use interface
to access data residing on the disks.

6.3 Results for Base Configurations

In this section, we give the results for the configuration explained in
Section 6.1. In each of the results (Figures 5 through 11) presented later
in this section we compare four different architectures: a traditional archi-
tecture with a conventional disk subsystem, a cluster consisting of 2 host
machines, a cluster consisting of 4 host machines and a smart disk archi-
tecture.

3This scheme may not give the optimal bundling for some queries

0

2

4

6

8

10

12

Q1 Q3 Q6 Q12 Q13 Q16

Queries

P
er

ce
n

ta
g

e
Im

p
ro

ve
m

en
t

[%
]

Optimal Bundling Excessive Bundling

Figure 4. Results for operation bundling with the
smart disk system having 8 disks.

Figure 5 presents the normalized execution times for the six queries for
all the architectures. In this and the following figures the x-axis denotes the
queries and y-axis denotes the execution times normalized with respect to
the execution times of the single host-based system in base configuration.
The leftmost bar for each query shows the normalized time for the single
host machine (i.e, it shows the new execution time divided by the execution
time in base configuration), the second bar on the left represents the time
for the cluster with 2 machines (i.e, it shows the new execution time of the
cluster with 2 machines divided by the execution time of the single host-
based machine in base configuration), the second right bar represents the
time for the cluster with 4 machines, and the rightmost bar represents the
relative execution time of the smart disk system. Also, each bar for the
host-based system is broken down into two components, the computation
time and I/O time, whereas each bar for the clusters and the smart disk
system is divided into three parts, the computation time, I/O time, and
communication time. Computation time here denotes the time spent by
all processors (host and smart) during the execution of the query code.
The I/O time, on the other hand, is the time spent in I/O by host (in the
traditional host-based system and in the clusters) and by smart disks (in
the smart disk system). The communication time in clusters is the time
spent in communication between the hosts. The communication time in
smart disk system is the time spent in communication between the smart
disks and the time spent in communication between the central unit and
the smart disks.

The results show that in the base configuration the smart disk system
has a speed-up between 2:24 and 6:06 for different queries, averaging 3:5
against the single host system. The smart disk architecture performed 43%
better than the cluster with 2 machines and 4:2% better than the cluster
with 4 machines in average. Note that, the cluster with 4 machines has
twice as much memory with respect to all other systems. Only in Q16 , the
cluster performed better than the smart disk system. And inQ1, the cluster
with 4 machines catch the performance of the smart disk system. Q1 does
not involve any join operation, which allows hosts in the cluster system to
work independent from each other until the execution is finished. It also
has a low I/O percentage. Because of these two reasons the cluster with
4 machines can perform as good as the smart disk system. Q16, on the
other hand, involves a hash based join operation. This operation requires
substantial amount of main memory and computation. Therefore, cluster
with 4 machines having larger total memory than the smart disk system
favor from this property, resulting in a faster response time.

In conclusion, the smart disk architecture powered with fast serial links
can bring significant amount of improvement in execution times over a
host-based and can match the performance of more expensive cluster sys-
tems.

6.4 Sensitivity Analysis
In this section, we present the results obtained for different values of

several architectural and database parameters. Table 2 shows all the varia-

2000 International Conference on Parallel Processing (ICPP'00)
0-7695-0768-9/00 $10.00 @ 2000 IEEE

Figure 5. Relative execution times for the default configuration.

Figure 6. Relative execution times for faster CPU.

Figure 7. Relative execution times for smaller page size.

Figure 8. Relative execution times for larger memories.

Figure 9. Relative execution times for more disks

Figure 10. Relative execution times for smaller database size.

Figure 11. Relative execution times for higher selectivity

Four bars for each query represent the following architectures from left
to right: single host based, cluster with 2 machines, cluster with 4
machines and smart-disk based systems.

F a s te r C P U

0

0 . 2

0 . 4

0 . 6

0 . 8

1

Q 1 2 Q 1 3 Q 1 6R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

es

B a s e C o n f i g u r a t i o n

0

0 .2

0 .4

0 .6

0 .8

1

Q 1 Q 3 Q 6R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

es

P a g e S i z e = 4 K B

0

0 .2

0 .4

0 .6

0 .8

1

Q 1 Q 3 Q 6R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

es

B a s e C o n f i g u r a t i o n

0

0 . 2

0 . 4

0 . 6

0 . 8

1

Q 1 2 Q 1 3 Q 1 6R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

es

F a s t e r C P U

0

0 .2

0 .4

0 .6

0 .8

1

Q 1 Q 3 Q 6R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

es

P a g e S i z e = 4 K B

0

0 . 2

0 . 4

0 . 6

0 . 8

1

Q 1 2 Q 1 3 Q 1 6R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

es

I / O C o m p u t a t i o n C o m m u n i c a t i o n

L a r g e r M e m o r y

0

0 .2

0 .4

0 .6

0 .8

1

Q 1 Q 3 Q 6R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

es

N u m b e r o f D i s k s = 1 6

0

0 . 2

0 . 4

0 . 6

0 . 8

1

Q 1 2 Q 1 3 Q 1 6R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

es

L a r g e r M e m o r y

0

0 . 2

0 . 4

0 . 6

0 . 8

1

Q 1 2 Q 1 3 Q 1 6R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

es

N u m b e r o f D i s k s = 1 6

0

0 .2

0 .4

0 .6

0 .8

1

Q 1 Q 3 Q 6R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

es

S m a l l D a ta b a s e S i z e

0

0 . 2

0 . 4

0 . 6

0 . 8

1

Q 1 2 Q 1 3 Q 1 6R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

es

H i g h S e l e c t i v i ty

0

0 .2

0 .4

0 .6

0 .8

1

Q 1 Q 3 Q 6R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

es

H i g h S e l e c t i v i ty

0

0 . 2

0 . 4

0 . 6

0 . 8

1

Q 1 2 Q 1 3 Q 1 6R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

e s

S m a l l D a t a b a s e S i z e

0

0 .2

0 .4

0 .6

0 .8

1

Q 1 Q 3 Q 6R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

es

2000 International Conference on Parallel Processing (ICPP'00)
0-7695-0768-9/00 $10.00 @ 2000 IEEE

tions we have experimented with. It gives the new values for the variables
whose values are modified for all the architectures. In each case, all the
parameters except the relevant parameter remain the same as in the base
configurations. The small database size corresponds to a database cre-
ated using a scale factor4 of s = 3. The scale factors for sizes medium
and large are s = 10 and s = 30, respectively. The exact interpretations
for the small, medium, and large database sizes and selectivities can
be found in [17].

6.4.1 Varying Architectural Parameters

We start our architectural variations by increasing the CPU speed. Figure 6
reveals that increasing CPU speed increases the effectiveness of the smart
disk system. The speed-up for the smart disk architecture increases to 3:56.
The smart disk architecture performs 49:64% better than the cluster with
2 machines and 6:73% better than the cluster with 4 machines. Although
the improvements in most of the queries are slight, the relatively larger
improvement in Q16 resulted in an improvement in the average.

Next, we modified the data page size to see its effect on the perfor-
mance. Due to space limitations, we only give the results for smaller page
size. The averages for larger page size are given in Table 3. Figures 7
gives the results for the experiments with page sizes of 4 KB. Reducing
the page size, reduces the effectiveness of the smart disk system. This is
due to the fact that as the page size is increased, the size of the ’irrelevant’
(unwanted) data increases, resulting in higher loads on the I/O bus.

When the memory sizes of all the architectures are doubled, the per-
centage decrease of the response times for all the architectures are similar.
So, the relative performances remain as in the base configurations. The
results for the experiment with larger memory sizes are given in Figure 8.

Finally, we changed the number of disks in all the systems, without
changing the number of machines in cluster systems. Note that, as the
number of disks is reduced in the smart disk system, the total computa-
tional power also drops and as the number of disks increases, the total
computational power automatically increases. Figures 9 gives the results
obtained for experiments with number of disks increased. The smart disk
system has a speed-up of 5:38 when there are 16 disks in the system, show-
ing that adding more disks to the single host machine (similarly to the hosts
in the clusters) without increasing the computational power does hardly
make a difference on the throughput of the system.

We have also conducted experiments with a faster I/O interconnection.
The averages are given in Table 3. The individual results for each query is
omitted due to space limitations.

As the technology advances, CPU speeds, memory sizes and number
of disks in almost all the systems are increasing. Looking at the results
we have obtained from our experiments, we can see that the smart disk
architecture performs better with the increased CPU speed and the number
of disks, and the performance improvement in smart disk system with the
large memory size matches the increases for both the cluster systems and
single host-based system. According to these results, we can conclude
that technology advances will favor smart disk systems more than it does
clusters and single host-based systems.

6.4.2 Varying Database Parameters

In this section, we present the experiments conducted with different
database parameters. First, we experimented with different database sizes.
Figure 10 give the results for smaller database size. For smaller database
size, the speed-up drops to 3:32, which is matched by the cluster with 4

machines. The smart disk architecture performs better with larger database
size, because as the size is increased, constant overheads of the smart disk
system (synchronization, start-up, etc.) become negligable. As expected,
increasing selectivity (Figure 11) decreases the effectiveness of the smart
disk system. One of the advantages of the smart disk system is that the
irrelevant data (e.g., database tuples which do not have any effect on the
result of the operation) are not sent through the I/O bus, which enhances

4Scale factor corresponds to the total database size in GB; for instance,
s = k means that the total size of all the tables in the TPC-D database is k
GB.

Table 3. Averages of experiments for different archi-
tectural and database related parameters (Each number
corresponds to the average of the response times with re-
spect to the single host machine for all queries).

Single Cluster Cluster Smart
Variation Host with2 with4 Disk

Mach: Mach: Mach: System

Base Conf. 100 50:6 30:3 29:0
Faster CPU 100 55:8 36:0 28:1
Large Page Size 100 48:6 29:2 25:6
Small Page Size 100 57:1 33:8 30:0
Large Memory 100 51:1 30:7 29:1
Faster I/O inter. 100 48:1 28:9 30:6
Fewer Disks 100 52:9 32:0 52:3
More Disks 100 50:1 29:6 18:6
Smaller DB. Size 100 59:7 30:1 30:1
Larger DB. Size 100 49:6 29:1 25:6
High Selectivity 100 49:3 29:5 29:4
Low Selectivity 100 52:3 31:5 28:5

the I/O performance of the system. When the selectivity is increased, the
proportion of this irrelevant data decreases, decreasing the advantage of
the smart disk system.

7 Related Work
In the late 1970s and early 1980s there were numerous proposals on

putting processing power in storage sub-systems. As an example, in the
IBM 360, the I/O processors were able to execute channel programs that
perform I/O on behalf of their hosts. Database machines employed pro-
cessors on different levels of the disk architecture. For example, Banerjee
et al. [4] proposed putting a processor per disk head. The others offered
processor per track and processor per disk. As we have mentioned in Sec-
tion 2, there are many differences between our work and the database ma-
chines. First of all, smart disk systems use commodity hardware, which
makes them cost-effective. Secondly, we take efficient query optimization
techniques into account and we also have experience in parallel databases.

Derived Virtual Devices [27] are proposed as a means of exporting
devices with different capabilities to different users. DVDs are assumed
to have IP-connectivity and that they can be accessed through a wide-
area-network. This general-purpose connectivity increases the overhead
of accesses to devices, specially when only communication between disk-
processors and central unit is needed. The main focus of this work is to
design mechanisms for maintaining security at the disks. Secure devices
and migration of file-system capability to devices are also investigated as
part of network-attached secure-disks (NASD) at CMU [9].

Acharya et al. [1] have recently proposed an Active Disk architecture
which integrates significant processing power and memory into a disk drive
and down-loads application specific code on disk. They hand-optimized a
number of isolated database operators to run on the active disk architec-
ture [2]. They also compare the performance of smart disk architecture,
SMP’s and clusters for a subset of individual database operations we have
used in this work [2, 26]. Our research is different from theirs in the sense
that we evaluated the execution of whole queries. Since a typical database
query might involve parts that are suitable for the smart disks and parts
that are not, it is very important to focus on the entire queries to reach a
reliable evaluation. We have also implemented individual operations like
indexed scan and hash join which were not considered in their work. We
also use a different communication scheme. Riedel et al. [20, 19] have
also focused on the active disk architecture and using them on database
applications. Their work concentrates mainly on applications with almost
no communication between disks. We believe that with the advances in
serial communication links the disk-processors will be able to communi-
cate with each other without the involvement of the hosts. Patterson et
al. [15] present a disk architecture called intelligent disks (IDISKs) that
puts processing power at the disks to overcome the I/O bus bottleneck of
conventional systems. The main idea, as in active disks [1], is to off-load

2000 International Conference on Parallel Processing (ICPP'00)
0-7695-0768-9/00 $10.00 @ 2000 IEEE

Table 2. Variations in simulation parameters with respect to the base configuration.
Variations ! CPU Page Memory I=O Number Database Selectivity

speed size size inter: ofDisks Size

Single Host 1GHz f4K,16Kg 512MB 400MB/s f4,16g fsmall,largeg fsmall,largeg
Clusters 800MHz f4K,16Kg 256MB 400MB/s f4,16g fsmall,largeg fsmall,largeg
Smart Disk 350MHz f4K,16Kg 64MB – f4,16g fsmall,largeg fsmall,largeg

computation from expensive desktop processors. As compared to the ac-
tive disks, the IDISKs are meant to be more general purpose.

8 Conclusions
Putting excessive computational power to the embedded systems and

bringing processing units closer to the data are growing trends in computer
architecture. Smart disks are a continuation of these trends. A smart disk
system takes advantage of the processing power on disks by offloading
user-defined code to the disks. This reduces the traffic in the I/O network,
thereby increasing the system throughput dramatically. We evaluated a
single host-based system, two cluster systems and a smart disk system us-
ing queries from the TPC-D benchmark. Our results show that the smart
disk system can bring significant speed-ups for Decision Support System
(DSS) databases. Specifically, for our base configuration, the smart disk
system performed 71% better than the single host system, 43% better than
the cluster with 2 machines and 4:2% better than the cluster with 4 ma-
chines. CPU speeds, memory sizes, total number of disks in the computer
systems and the storage requirements of applications are increasing as the
technology advances. Our experiments show that, for all these parameters,
the relative performance of smart disk system increases as the parameter
values are increased, except for the case of memory where the increase of
performance of other systems is matched by the smart disk system. These
performance results along with the cost-effectiveness of the smart disk sys-
tems make them very attractive for data-intensive applications. The work
in-progress includes the design and implementation of automatic query op-
timizers that can handle other types of queries as well (e.g., update queries)
and investigation of different applications for smart disk architecture.

References
[1] A. Acharya, M. Uysal, and J. Saltz. Active disks: programming

model, algorithms, and evaluation. In Proc. ASPLOS VIII, October
1998, pp. 81–91.

[2] A. Acharya, M. Uysal, and J. Saltz. Structure and performance of de-
cision support algorithms on active disks. Technical Report TRCS98–
28, Dept. of Computer Science, UCSB, October 1998.

[3] R. H. Arpaci-Dusseau, Eric Anderson, Noah Treuhaft, David E.
Culler, Joseph M. Hellerstein, David Patterson, and Katherine Yelick.
Cluster I/O with River: Making the Fast Case Common, Input/Output
for Parallel and Distributed Systems, May, 1999.

[4] J. Banerjee, et al. DBC – A database computer for very large
databases. IEEE Transactions on Computers, June 1979.

[5] P. Bernstein. Database Technology: What’s Coming Next?, Keynote
Presentation at Fourth Symposium on High Performance Computer
Architecture, February 1998.

[6] Cirrus Logic, Inc. Preliminary Product Bulletin CL-SH8665, June
1998.

[7] D. DeWitt and J. Gray. Parallel database systems: the future of high
performance database systems. Communications of the ACM, June
1992, Vol.35, No. 6, pp. 85–98.

[8] G. Ganger, B. Worthington, and Y. Patt. The DiskSim Simulation
Environment Version 1.0 Reference Manual. Technical Report CSE-
TR-358-98, Dept of Electrical Engineering and Computer Science,
Feb 1998.

[9] G. A. Gibson et al. File server scaling with network-attached secure
disks. In Proc. of the ACM Sigmetrics, Jun. 1997.

[10] G. Graefe. Query evaluation techniques for large databases. ACM
Computing Surveys, 25(2):73–170, June 1993.

[11] J. Gray. Put everything in the storage device. Talk at NASD Workshop
on Storage Embedded Computing, June 1998.

[12] W. Hasan and R. Motwani. Coloring Away Communication in Par-
allel Query Optimization. In Proc. 21st Conference on Very Large
Databases (VLDB’95), 1995.

[13] High Performance Computing and Communications: Grand Chal-
lenges 1993 Report. A Report by the Committee on Physi-
cal,Mathematical and Engineering Sciences, Federal Coordinating
Council for Science, Engineering and Technology, 1993.

[14] Intel Corporation. i960 Hx Microprocessor Developer’s Manual,
September 1998, Order Number:272484-002, Intel, Santa Clara, CA.

[15] K. Keeton, D. A. Patterson, and J. M. Hellerstein. The case for intel-
ligent disks (IDISKs). In SIGMOD Record, 27(3), 1998.

[16] M. Mehta and D.J. DeWitt. Managing Intra-Operator Parallelism in
Parallel Database Systems. In Proc. 21st Conference on Very Large
Databases (VLDB’95), pp. 382-394, 1995.

[17] G. Memik, M. Kandemir, and A. Choudhary. An Experimental Eval-
uation of Smart Disk Architectures Using DSS Commercial Work-
loads. Technical Report CPDC-TR-9909-015, Dept of Electrical and
Computer Engineering, Sep 1999.

[18] R. Ramakrishnan. Database Management Systems, The McGraw-
Hill Companies, Inc., 1998.

[19] E. Riedel and G. Gibson. Active disks – Remote execution
for network-attached storage. Technical Report CMU-CS-97-198,,
School of Computer Science, Carnegie Mellon University, PA, 1997.

[20] E. Riedel, G. Gibson, and C. Faloutsos. Active storage for large scale
data mining and multimedia applications. In Proc. 24th Conference
on Very Large Databases (VLDB’98), New York, NY, 1998.

[21] C. Ruemmler, J. Wilkes. An Introduction to Disk Drive Modeling.
IEEE Computer, Vol.27, No.3, March 1994, pp. 17–28

[22] Siemens Microelelectronics, Inc.TriCore Architecture Overview
Handbook, February 1999.

[23] M. Stonebraker, et al. Mariposa: A wide-area distributed database
system. In VLDB Journal 5, pp. 48-63, January 1996.

[24] A. Tessardo. TMS320C27x: New generation of embedded proces-
sor looks like a microcontroller, runs like a DSP. White Paper:
SPRA446, Digital Signal Processing Solutions, March 1998.

[25] Transaction Processing Performance Council. TPC Benchmark D
Standard Specification Revision 2.1, February 1998.

[26] M. Uysal, A. Acharya, and J. Saltz. Evaluation of Active Disks for
Decision Support Databases. To appear in Proceedings of the 6th
International Symposium on High-Performance Computer Architec-
ture, Toulouse, France, January 10-12, 2000

[27] R. Van Meter, S. Hotz, and G. Finn. Derived Virtual Devices: A
secure distributed file system mechanism. In Proc. 5th NASA Conf.
on Mass Storage Systems and Technologies, Sept. 1996.

[28] R. Y. Wang, T. E. Anderson, and D. A. Patterson. Virtual log based
file systems for a programmable Disk. Proc. Third Symposium on
Operating Systems Design and Implementation (OSDI’99), February
1999.

[29] R. Winter and K. Auerbach. The big time: the 1998 VLDB Survey,
Database Programming and Design Vol 11, No 8, August 1998

[30] A. Yu and J. Chen. The POSTGRES95 User Manual. Computer Sci-
ence Div., Dept. of EECS, University of California at Berkeley, July
1995.

2000 International Conference on Parallel Processing (ICPP'00)
0-7695-0768-9/00 $10.00 @ 2000 IEEE

