
Graph Contraction for Physical Optimization

Methods: A Quality-Cost Tradeoff for Mapping

Data on Parallel Computers *

N. Mansour t R. Ponnusamy A. Choudhary G. C. Fox

Northeast Parallel Architectures Center, Syracuse University

111 College Place, Suite 3-201, Syracuse, NY 13244

tAIso, Beirut University College, Lebanon

ABSTRACT

Mapping data to parallel computers aims at minimiz-

ing the execution time of the associated application.

However, it can take an unacceptable amount of time

in comparison with the execution time of the applica-

tion if the size of the problem is large. In this pa-

per, first we motivate the case for graph contraction

as a means for reducing the problem size. We restrict

our discussion to applications where the problem do-

main can be described using a graph (e.g., comput a-

tional fluid dynamics applications). Then we present

a mapping-oriented Parallel Graph Contraction (PGC)

heuristic algorithm that yields a smaller representation

of the problem to which mapping is then applied. The

mapping solution for the original problem is obtained by

a straight-forward interpolation. We then present ex-

perimental results on using contracted graphs as inputs

to two physical optimization methods; namely, Genetic

Algorithm and Simulated Annealing. The experimen-

tal results show that the PGC algorithm still leads to a

reasonably good quality mapping solutions to the orig-

inal problem, while producing a substantial reduction

in mapping time. Finally, we discuss the cost-quality

tradeoffs in performing graph contraction.

“ This work was sponsored in part by DARPA under contract

DARPA contract no. DABT63-91-C-O028 and in part by NSF

grant MIP-911 0810. The content of the information does not

necessarily reflect the position of the policy of the Government

and no official endorsement should be inferred.

Permission to oopy without fee all or part of this material is

granted providad that the copiee are not made or distributed for
direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To oopy otherwise, or to republish, requires a fee

and/or specific permission.

ICS-7193 Tokyo, Japan

a 1993 ACM O-89791-600-X1931000710001 . ..$1.50

1 INTRODUCTION

Given an application based on an algorithm and a data

set, D, the data mapping problem refers to mapping

disjoint subsets of D to the processors of a distributed-

memory multiprocessor such that the execution time

of the application, taPP, on the multiprocessor is min-

imized. Data mapping is an NP-hard optimization

problem, and several heuristic and physical optimiza-

tion algorithms have been proposed for finding good

sub-optimal mapping solutions. Examples of heuris-

tic algorithms are recursive bisection [2, 9, 13, 24, 26],

mincut-based heuristics [1 O], clustering and geometry-

based mapping [4, 17, 25], and scattered decomposition

[15]. Examples of physical optimization algorithms are

simulated annealing [12, 15, 20, 27], neural networks

[3, 14, 20], and genetic algorithms [19].

For large data sets, the high-quality physical opti-

mization (PO) mapping algorithms are very slow [18].

Their execution time is unacceptable when compared

with typical execution times of applications using the

data sets. In fact, the same assessment holds even for

faster good-quality heuristic mapping algorithms, such

as recursive spectral bisection (RSB) [24] For example,

mapping takes a non-trivial amount of time relative to

the actual solution time when the data set is reason-

ably large [6]. Therefore, for realistic applications, we

need to minimize the sum of taPP and t~~P, where t~=P

is the mapping time. That is, the goal is to reduce the

mapping time significantly while preserving a favorable

mapping quality.

An approach to reducing t~,p is to shrink the prob-

lem first, and then map the reduced-size problem to

the multiprocessor. The mapping solution of the coarse

problem can be simply interpolated to yield the map-

ping solution of the original problem. The need for

such an approach has been recognized in previous works

1

[13, 8] However, its implementation has not had much

attention. We note that Nolting [22] has proposed the

formation of blocks of data objects during the process

of generating the data set itself. This technique may be

useful for the data and application dealt with in [22] ,

but it lacks flexibility and generalizability. Recently a

graph contraction method is also proposed in the con-

text of Recursive Spectral Bisection Algorithm [1].

In this paper, we propose graph contraction for re-

ducing the problem size prior to mapping. For example,

to study air flow over an aircraft, the structure of the air-

craft can be represented as a 3D unstructured mesh [21]

and the flow variables are computed only at the vertices

of the mesh. In a typical mesh representation, for a good

quaht y solution, there will be thousands of vertices and

millions of edges connecting the vertices in the mesh.

Efficiently mapping such a realistic mesh, as it is, onto

a multiprocessor system might take more time than the

solution. We propose to merge (cluster) the vertices of

the original mesh to form a contracted mesh maintain-

ing the edges between the vertices. The contracted mesh

is given as input to the data mapping algorithms. Since

the problem size is reduced, the mapping can be done in

an acceptable amount of time. The result of contracted

mesh mapping can be used to map the original mesh.

We present a parallel graph contraction (PGC) heuris-

tic algorithm oriented to satisfying the requirements of

the mapping step. One of these requirements is that its

execution time, tpgc,is significantly smaller than t~~p.

That is, the ultimate goal can be recast as the mini-

mization of the total sum: (tpg. + t~~p + Lpp). AIso,

PGC is not restricted by assumptions about the prob-

lem structure and thus enjoys general applicability. The

results show remarkable savings in mapping time, while

preserving good mapping solutions.

The tradeoffs involved in contraction level versus the

overall application execution time is illustrated in Fig-

ure 1. Note that the figure does not correspond to any

specific values and is not drawn to scale. The goal of the

figure is show the trend. As graph contraction is per-

formed, the mapping time reduces rapidly first, where

as the contraction time as well as the application execu-

tion time increases (A point on the Y-axis signifies no

contraction). Increase in the application execution time

is expected because the quality of mapping in terms

of communication and load balance will degrade due

to contraction. But initially, this degradation will be

more than compensated by the reduction in the map-

ping time. However, for very large contraction levels,

the quality may degrade so much that overall execution

Time

Total Time = Map IYme + App Time -i PGC Time

Map Time ‘ ~i Operauon :

Level of Craph Contraction

Figure 1: Tradeoffs..

time will rise again. Therefore, normally we may expect

a range of contraction levels (as shown in the figure)

which will provide reasonably good performance, and

at the same time providing a reduction in the overall

execution time.

This paper is organized as follows. Section 2 de-

scribes the data mapping problem. Section 3 explains

graph contraction and discusses requirements for guid-

ing the development of the graph contraction heuristics.

Section 4 presents a sequential graph contraction algo-

rithm. Section 5 presents a parallel algorithm based

on the sequential one. Section 6 describes how graph

contraction can be employed by PO and other map-

ping algorithms. Section 7 presents and discusses the

experimental results. We use a Parallel Genetic Algo-

rithm (PGA) mapper and a Parallel Simulated Anneal-

ing (PSA) mapper to study the tradeoffs involved in

graph contraction. Section

future work.

2 DATA MAPPING

8 presents conclusions and

To characterize processor workloads for a data map-

ping instance, we define a computation graph, Gc =

(Vc, EG), where its vertices, Vc, represent the data set

and ‘its edges, Ec, represent the computation depen-

dencies among the data objects specified by the par-

ticular algorithm used by the application. Hence, the

degree, O(v), of a vertex v determines its comput a-

tion weight. The two terms, data objects and com-

2

putation graph vertices, will henceforth be used inter-

changeably. We note that in this representation the

weights of edges, ~ (v, u), are unity for all vertices u

and u. Automatic methods for determining comput a-

tion graphs are discussed in [23]. The multiprocessor

to which Gc is mapped, is also represented by a graph

GM = (VM, EM). The vertices, VIW, refer to the proces-

sors, and the edges, EM, refer to their interconnections.

Data mapping becomes a function from VC to VM such

that t.ppis minimized. A data mapping configuration

can be represented by an array MAP[v], for v = O to

IVC I – 1, where MAP[v] is the processor number, from

O to IVM I – 1, to which v is mapped. For a given config-

uration MAP [v], the workload of a processor, p, is com-

posed of computation and communication components.

The computation component is dependent on the sum

of the degrees of the vertices mapped to p. The com-

munication cost is dependent on the number of vertices

that are boundary with other processors. A vertex is a

boundary vertex if it has an incident edge whose other

end is a vertex mapped to a different processor; we re-

fer to such an edge as crossedge. Thus, a high-quality

mapping solution is that which balances computation

loads among the processors and minimizes interproces-

sor communication. A more formal formulation of the

mapping problem is given in [18].

3 MAPPING-ORIENTED GRAPH

CONTRACTION

In this section, we explain pre-mapping graph contrac-

tion and its parameters. We also discuss the require-

ments of data mapping that should guide the develop

ment of graph contraction heuristics.

The basic graph contraction operation involves

merging two adjacent vertices, ~: and VJ, to form

a supervertex ~:j whose computational weight is

@(Vij) = ~(v,) + @(v,); initially ~(v) = O(v).

u and VJ are henceforth referred to as partner vertices.

Merging two vertices, vi and VJ, is equivalent to the

contraction of the edge connecting them. Also, a su-

peredge connecting supervertices ~ij and v~~ is assigned

a weight ~(~i~, vnm) = Z.=c.ij,.vc.nm <(vz, v,), where

<(v=, V9) = 1 initially.

The contract-and-merge operations are applied to

all vertices in the graph in an iteration k. The num-

ber of such iterations is equal to a user-defined level of

contraction determined by the parameter

(1)

where]V.lx is the size of the contracted graph and (X) is

the nearest higher power of 2 integer to X. Equivalently,

the level of contraction is determined by the parameter

(2)

the ratio of the sizes of the contracted graph and the

multiprocessor. Graph contraction, with parameter K ,

leads to big reduction in the search space of data map-

ping from IVMIIVCI to IVMIWIVAJ1 , where ~lV~l is the size

of the contracted graph and can be considerably smaller

than the original size, IV. I . This makes the mapping of

contracted graphs a much faster step.

When mapping a contracted graph, the weights of

supervertices determine the computational workload of

processors, and the edge weights affect the interproces-

sor communication cost. Hence, for mapping purposes,

an optimally contracted graph would be a fairly homo-

geneous weighted graph that involves relatively small

edge weights. That is, optimal graph contraction is

identical to finding an optimal solution to the mapping

problem, which is intractable. Therefore, we can only

hope for reasonable heterogeneous contracted graphs.

The heterogeneity of contraction contributes to placing

an upper bound on the contraction parameter, x , as

shown in Section 7. On the other hand, PO mapping

algorithms have degrees of flexibility and adaptability,

which allows them to utilize graph contraction despite

non-optimality.

Based on these considerations, the requirements

guiding the development of graph contraction heuristics

can be stated as follows. The first requirement is mak-

ing edges with large weights intra-supervertices edges,

ensuring that most of the inter-supervertices edges have

relatively small weights. This requirement helps in re-

ducing the communication cost in a mapping configura-

tion. The second requirement is having a small average

supervertex degree in the contracted graph. Small su-

pervertex degrees are useful for decreasing the number

of communicating processors, and hence the communi-

cation cost, in a mapping configuration. The t bird re-

quirement is keeping the ~max to ~m;n ratio as small as

possible; smaller variations in the weights of the vertices

of a contracted graph reduces heterogeneity and yields

smaller size graphs. This requirement is also necessary

to support the second requirement. The fourth require-

ment is that a graph contraction heuristic algorithm

must be efficient; its execution time must be smaller

than the mapping time.

3

4 SEQUENTIAL GRAPH

CONTRACTION ALGORITHM

A sequential graph contraction (SGC) heuristic algo-

rithm which aims for satisfying the above mentioned

requirements is presented in this section.

An outline of SGC is given in Figure 2 . In each

contraction iteration, k, pairs of adj scent vertices, i.e.

partners, are selected from G~-l, to be merged. The

first vertex, ~i, is that which has the minimum ~(~i).

Its partner,vj , is an unpaired vertex adjacent to vi with

maximum Lj(Vi, Vj). If vj does not exist, vi becomes

a vertex of G~. The way vi is selected ensures that

vertices with smaller weights are merged before those

with larger weights, which limits the differences in the

weights of supervertices in G&. It has been observed

that this yields a ~~am to ~m~n ratio in G~ that is

smaller than or same to that in G~-l, which is a rea-

sonable result satisfying the third design requirement

mentioned in the previous section. A partner vertex,

Vj, is selected with maximum &(vi, vj) to satisfy the first

design requirement. Also, both techniques for selecting

partner vertices support the second design requirement.

SGC is an efficient heuristic algorithm. A count-

ing sort algorithm, with complexity of order (IV. I~-l +

@ ~a~f ~-1)) ~ can be used for sorting vertex weights since

the maximum weight is known and is relatively small in

every contraction iteration [Cormen et al. 90]. It can be

easily shown that the complexity of SGC is of the order

of (@~a= lV, \). It is also clear that SGC’S complexity is

considerably less than that of any of the PO mapping

algorithms [18].

5 PARALLEL GRAPH CONTRACTION

ALGORITHM

A parallel graph contraction (PGC) algorithm is pre-

sented in this section. The PGC algorithm is based

on distributing the vertices among the NH process-

ing nodes and executing SGC concurrently on the dis-

tributed subgraphs. This strategy involves conflicts in

different nodes over nonlocal partner vertices. Resolv-

ing conflicts in accordance with SGC requires sequential

processing of boundary vertices over all nodes, which

leads to deterioration in PGC’S efficiency. Since our goal

is to efficiently produce contracted graphs that satisfy

the design requirements mentioned in Section 3 to a rea-

sonable extent, deviating from SGC is both acceptable

and necessary. Another issue that PGC has to address

is the expansion in the amount of nonlocal information

needed in successive contraction iterations. Figure 3 il-

lustrates how a supervertex formed across node bound-

aries leads to an increase in nonlocal and non-boundary

information; it also shows examples of conflicts. The

design of PGC presented next addresses the two issues

of conflicts and expanding nonlocal information. The

guiding concerns are: making the decisions in PGC as

close as possible to those in SGC, and keeping the PGC’S

time significantly smaller than the mapping time.

An outline of PGC is given in Figure 4. PGC is

based on executing SGC concurrently in NH nodes.

The initial graph, G$$, is partitioned among the nodes

in a naive way: each node is allocated IV: l/N~ ver-

tices; node ni is allocated vertices ni (IV: l/N~) to

(ni + l) V~/NH – 1. Such subgraphs are denoted as

(G~/NH). A PGC iteration includes the same steps

of SGC concerning the selection of vertices and their

partners for forming supervertices. Selection of nonlo-

cal partners is allowed, which sometimes causes conflicts

as illustrated in Figure 3. We note that only the ver-

tices at the node boundaries may be involved in such

conflicts. Although there are many ways in which the

conflicts can be resolved, a simple rule would be to re-

spect a nonlocal request for a partner vertex only if the

requested vertex is still free or has also selected the re-

questing vertex as a partner. This simple rule prevents

any ambiguities in forming supervertices.

After deciding about nonlocal partnership requests,

the decisions are exchanged among neighboring nodes in

order to update the local information about the nonlocal

requests in the most recent period. Those vertices that

find that their requests have been turned down select

a new partner, if possible, within the loca 1 set of ver-

tices before proceeding to the next PGC period. This

offers these smaller-computation-weight vertices earlier

chances for merging than the other free local vertices,

in accordance with SGC.

After partner selection process, the node boundaries

are redrawn in order to place whole supervertices in one

node. This avoids the problem of expanding nonlocal in-

formation. Boundary shifting is accomplished by some

nodes transferring their part of the cross-supervertices

to the other nodes that own the other part. Figure 5

shows an example of boundary shifting after the first

iteration. While merging two vertices, the vertex with

lower number is merged with its higher numbered part-

ner in even iteration steps. It is done the other way in

odd iteration steps. Finally, the new contracted graph

is constructed.

It is worth noting that the results of PGC depend on

the mapping of the initial graph, the number of proces-

4

Input: G&(VC, Et); X;

@o(v) = e(v); fo(vi, vj) = 1; Ivclo = IvCl;

fork= ltoxdo

Counting-Sort ();

repeat (of order of lv.1k-1)

vi = unpaired vertex with minimum @k–l (oj);

/* find vi’s partner, if exists “/

if k = 1 then

Vj = randomly chosen unpaired vertex adj scent to vi, if exists;

else

Vj= unpaired vertex adjacent to vi with max ~~(vi, Vj), if efists;

end-if-else

Form supervertex ~ij = v:, t)j;

until all vertices are paired or considered

Determine lVcl~;

Construct.contracted. graph(G~ (Vc, ~~-1 (~ij), &k (Vij, Wna));

endfor

Output: G& (V$, E%) with size IV. IX;

Figure 2: Sequential graph contraction algorithm

A COtilCt at k=~
‘Iivo simultaneous

node O I
conflicts at ~1

n es

A su$xwrtex at k=2 node 3

Figure 3: Possible conflicts and supervertex produced

4.

by PGC

Read computation subgraph (G~/NH);

fork= ltoxdo

counting-sort (@~_l (v));

while (m=o to m< lVcl~_l) do

Select vi and its partner ~j as in SGC;

resolve.conflictso;

for (all boundary vertices ‘Ub requesting nonlocal partners) do

if (request.of[v~] = REJECT) then

Select another local partner by an SGC step;

end-if

end-for

end- while

mergeo; /* remap vertices */

Build contracted subgraph (G~/.NH); /* involves communication */

end-for

/“ “1
resolve-conflictso

exchange-boundary (vj, mate[vj]); /* exchange decisions */

for all local boundary vertices ?J5

match mate[vb] with a received vj;

if (mate[Vb] # ‘Vj)

request-of[vb] = REJECT;

end-if

end-for

exchange_result (request-of[vb])

for all local boundary vertices ‘Ub

if (reqUeSt-Of[Vb] == REJECT) then mate[~b] = FREE;

end-for

I* ‘— ‘1
mergeo

if (k is odd) then

if (v; < vj) then merge Vj with vi;

else merge v; with Vj;

else

if (vi < VJ) then merge Oi with ZJj;

else merge vj with vi;

end-if-else

Figure 4: Parallel graph contraction algorithm

6

node O

sors used and

n

node 3

Figure 5: New node boundaries due to remapping in PGC (only O-1 boundary

the order in which conflicts are resolved.

6 MAPPING USING GRAPH

CONTRACTION

Some remarks are given in this section about how the

PO algorithms make use of pre-mapping graph contrac-

tion. The algorithms include parallel simulated anneal-

ing (PSA) and parallel genetic algorithm (PGA).

All the algorithms map the contracted graph first;

we refer to this step as coarse-structure mapping. Then,

the mapped graph is recontracted by a simple interpo-

lation in order to specify MAP[v], for v = O to IVCI.

That is, a vertex, v, in the original graph is mapped to

the same processor as the supervertex it belongs to; we

refer to this step as fine-structure mapping.

In coarse-structure mapping, the PO algorithms lose

some information in computing their objective func-

tions. For example, it becomes impossible to compute

the correct number of initial boundary vertices from su-

pervertices. These are replaced by an approximation

derived from the crossedges.

7 EXPERIMENTAL RESULTS AND

DISCUSSION

This section presents experimental results for PGC and

the use of its output graph for mapping. The experi-

ments employ data sets with different sizes. These data

sets constitute coarse and fine discretizations of an air-

shown)

craft wing [21] (unstructured mesh representations) aud

are henceforth referred to as USM(X), where x is the

number of data points. These data are mapped to hy-

percube multiprocessors. We study the effect of graph

contraction on these data sets for two PO methods im-

plemented on iPSC/860. The scheduling of irregular

communication that occurs in P GC is handled using

PARTI software [6].

7.1 PARALLEL GRAPH CONTRACTION

The performance of the PGC for USM(1OK) on various

processor sizes is shown in Table 1. The table shows the

time taken for executing the PGC algorithm, tpgc, and

the corresponding size of the contracted graph, Vpgc.

There are two important observations to be made from

the table. First, the tot al time for contraction increases

sublinearly as the contraction level is increased. For ex-

ample, time to go from contraction level 1 to contraction

level 8 results in only a three-fold increment in the time.

Second, the effect of approximating the sequential algo-

rithm by a parallel one is illustrated when the number

of processors is varied. As the number of processors is

increased, the cent ract ed graph’s size also increases for

the same contraction level. This is because the number

of conflicts increases with the number of processors.

7.2 PARALLEL GENETIC ALGORITHM

The most important performance metrics for the PGC

algorithm, however, are the reduction in the mapping

7

Table 1: GraDh contraction time [see) for USM(1OK).

Contraction Level

No. 1 2 4 6 8

Procs tpgc Vpgc tpgc v pgc tpgc v pgc tpgc Vpgc tpgc v pgc

8 9.53 5003 12.29 2668 14.4 815 15.97 380 16.4 212

16 2.84 5153 4.05 2879 5.02 1021 5.72 470 6.00 300

32 1.00 5391 1.57 3429 2.22 1461 2.70 970 3.10 750

Table 2: Mapping time (see) after graph contractions Table 3: Average cross edges after contractions for PGA

for PGA on 16 procs. on 16 procs.

m :;:1 i: c ‘t? ‘: ‘X)7 8

USM(IOK) 1554 1537 1618 1713 2100 2691

time and the quality of the mapping based on the con-

tracted graph. The effect of PGC on the PGA mapping

time for meshes USM(2K), USM(3K) and USM(1OK) is

shown in Table 2. Note that there is a five-fold improve-

ment (reduction) in the mapping time for the PGA on

a graph contracted from level 3 to level 6. Therefore,

it can be seen that by paying a small penalty for GC,

mapping time can be considerably reduced. However,

the reduction in mapping time should be coupled with

the quality of the mapping solution to judge the overall

performance. One of the ways to measure the solution

quality of a mapper is using cross edges (Section 2).

Cross edges determine the communication cost of map-

ping. The average number of cross edges (per processor)

for USM(2K) and USM(1OK) for different levels, X, of

cent raction is shown in Table 3. For example, for con-

traction level 6 for USM(1OK), the number of crossedges

increases by approximately 10~0. That is, for a reduc-

tion in mapping time of five-fold, the mapping degrades

by 10~0 in terms of average cross edges. However, note

that the corresponding increase in the communication

time is expected to be less than 107o because a major

factor of communication cost is the startup cost, which

does not increase. As expected, for smaller values of

x the number of crossedges stays close to the number

of cross edges obtained without contraction. However,

beyond a threshold, the degradation in terms of cross

edges increases rapidly.

Table 4: Mapping time (see) after graph contractions

for PSA on 8 procs.

Contraction Level (x)

Mesh o 1 2 3 4 5 6 7

USM(2K) 199 123 67 40 31 18

USM(3K) 300 162 98 35 19 9

USM(1OK) - - 244 182 69 43 25 18

7.3 PARALLEL SIMULATED

ANNEALING

Tables 4 and 5 show the mapping time and the number

of cross edges for PSA. For example, for USM(1OK) the

cost of mapping reduces by a factor of 10 when con-

tracted from level 2 to level 6. But the number of cross

edges increases by almost 5070. Comparing PGA with

PSA indicates that the quality of the mapping is better

for PGA but the cost of mapping is also higher for PGA.

For example, for contraction level 4, the mapping cost

for PGA is a factor of 3 greater than that for PSA, but

the number of cross edges is more than 50 YO larger for

PSA. Hence, the selection of the contraction level also

depends the choice of the PO method along with the

cost of mapping.

8

Table 5: Average cross edges after contraction for PSA on 8 procs.

Mesh Contraction Level (x)

o 1 2 3 4 5 6 7

USM(2K) 669 701 716 776 910 1067

USM(3K) 837 815 859 909 1174 1190

USM(1OK) - - 1854 2002 2311 2530 2804 3014

8 CONCLUSIONS

In this paper we motivated the case for using Graph

Contraction when using Physical Optimization Meth-

ods for data mapping because for large size problems

the cost of mapping on the original data size can be ex-

orbitant. A parallel graph contraction algorithm with

a user-defined contraction parameter, x, was presented

for reducing the problem size prior to mapping. The ex-

perimental results show that PGC leads to considerable

reductions in the execution time of the mapping algo-

rit hms, while maintaining reasonable sub-optimal map-

ping qualities. The time reduction is larger for larger

problems, because with graph contraction, time is deter-

mined by x and]V~ [, not by IVCI. These findings make

the application of physical optimization algorithms to

large problems feasible and allows the mapping step it-

self to be an efficient and scalable operation. Therefore,

the use of graph contraction is imperative for large prob-

lems.

It was shown that with a small degradation in the

quality of the mapping solution, considerable savings in

the mapping time can be obtained. In our experiments

we were limited by the memory size of the available

parallel computer to apply our algorithms to even larger

problems. We expect that the performance gains are

expected to be even better for much larger problems. In

the near future, we expect to obtain access to machines

with larger memory to experiment with larger problems.

The graph contraction method can be used with

other physical optimization methods snch as Neural

Networks. It can also be used for other mapping meth-

ods that can use a weighted graph as an input. Further

work needs to be done to improve the PGC algorithm

itself. Also, techniques to perform good quality but low

cost initial graph mapping based on domain informa-

tion (e. g, geometric information) will be useful to re-

duce the cost of PGC as well ax to improve the quality

of the P GC. Finallyj graph contraction techniques that

are parallel yet determinist ic need to be explored.

ACKNOWLEDGEMENTS

We would like to thank Dimitri Mavriplis for providing

us with his unstructured meshes. We also would like

to thank R. Das and J. Saltz for providing us PARTI

software. This work was sponsored in part by DARPA

under contract no. DABT63-91-C-O028 and in part by

NSF grant MIP-911081O.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Barnard S. and Simon H. 1992. A fast multi-

level implementation of recursive spectrrd bisec-

tion for partitioning unstructured problems. Re-

port RNR-92-033, NASA Ames Research Center,

Moffett Field, CA 94035.

Berger M., and Bokhari S. 1987. A partitioning

strategy for nonuniform problems on multiproces-

sors. IEEE Trans. Computers, C-36, 5 (May), 570-

580.

Byun H., Kortesis S. K., and Houstis E.N. 1992. A

workload partitioning strategy for PD Es by a gen-

eralized neural network. Purdue University, Com-

puter Science, Technical Report CSD-TR-92-015.

Chrisochoides N. P., Houstis C. E., Houstis E. N.,

Papachiou P. N., Kortesis S. K., and Rice J.R. 1991.

Domain decompose. In Domain Decomposition

Methods for Partial Differential Equations, editors

R. Glowinski et al. SIAM Publication.

Cormen T., Leiserson C., and Rivest R. 1990. In-

troduction to Algorithms. McGraw Hill.

Das R., Ponnusamy R., Saltz J., and Mavripilis

D. 1991. Distributed memory compiler methods for

irregular problems - data copy reuse and runtime

partitioning. ICASE Report No. 91-73.

Das R., Mavripilis D., Saltz J., Gupta S., and Pon-

nusamy R. 1992. The design and implementation

of a parallel unstructured Euler solver using soft-

ware primitives. AIAA Aerospace Sci ences Meet-

ing, January.

9

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

De Keyser J., and Roose D. 1991. A software

tool for load balanced adaptive multiple grids on

dis tributed memory computers. Sixth Distributed

Memory Computing Conference, April, 122-128.

Dragon K., and Gustafson J. 1989. A low cost

hypercube load-balance algorithm. 4th Conf. Hy-

per cube Concurrent Computers, and Applications,

583-590.

Ercal F. 1988. Heuristic Approaches To Task Allo-

cation For Parallel Computing. Ph.D. thesis, Ohio

State University.

Farhat C. 1988. A simple and efficient automatic

FEM domain decompose. Computers and Strut

tures. Vol. 28, no. 5, 579-602.

Flower J., Otto S., and Salama M. 1987. A pre-

processor for finite element problems. Symp. Paral

lel Computations and their Impact on Mechanics.

ASME Winter Meeting (Dec.).

Fox G.C. 1988. A graphical approach to load baJ-

ancing and sparse matrix vector multiplication on

the hypercube. In Numerical Algorithms for Mod-

ern Parallel Computers, ed. M. Schultz, Springer-

Verlag.

Fox G. C., and Furmanski W. 1988. Load balancing

loosely synchronous problems with a neural net-

work. 3rd Conf. Hypercube Concurrent Comput-

ers, and Applications, 241-278.

Fox G. C., Johnson M., Lyzenga G., Otto S.,

Salmon J., and Walker D. 1988. Solving Problems

on Concurrent Processors. Prentice Hall.

Houstis E. N., Rice J. R., Chrisochoides N. P.,

Karathonases H. C., Papachiou P. N., Samartzis

M. K., Vavalis E.A. , Wang K. Y., and Weerawarana

S. 1990. //ELLPACK: A numerical simulation pro-

gramming environment for parallel MIMD ma-

chines. Int. Conf. on Super computing, 3-23, ACM

Press.

Lee S-Y, and Aggarwal J.K. 1987. A mapping strat-

egY for parallel processing. IEEE Trans. on Com-

puters, Vol. C-36, No.4, April, 433-442.

Mansour N. 1992. Physical optimization algorithms

for mapping data to distributed-memory mul tipro-

cessors. Ph.D. Dissertation, School of Computer

Science, Syracuse University.

Mansour N., and Fox G.C. 1992a. Parallel genetic

algorithms with application to load balancing par-

allel computations. Supercomputing Symposium,

Montreal, June 8-10.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Mansour N., and Fox G.C. 1992b. Parallel physi-

cal optimization algorithms for allocating data to

multicomputer nodes. Syracuse Center for Compu-

tational Science, SCCS-305, sub mitted for publi-

cation.

Mavriplis D., Three dimensional unstructured

mrdtigrid for the Euler equations, In AIAA 10th

Computational Fluid Dynamics Conference, June

1991.

Nolting S. 1991. Nonlinear adaptive finite element

systems on distributed memory computers. Eu ro-

pean Distributed Memory Computing Conference,

April, 283-293.

Ponnusamy R., Saltz J., Das R., Koelbel C., and

Choudhary A. 1992. A runtime data mapping

scheme for irregular problems. Scalable High Per-

formance Computing Conference, May, 216-219.

Pothen A., Simon H., and Lieu K-P. 1990. Parti-

tioning sparse matrices with eigenvectors of graphs.

SIAM J. Matrix Anal. Appl., 11, 3 (July), 430-452.

Sadayappan P., and Ercal F. 1987. Nearest-

neighbor mapping of finite element graphs onto

proces sor meshes. IEEE Trans. on Computers, vol.

C-36, no. 12, Dec., 1408-1424.

Simon H. 1991. Partitioning of unstructured mesh

problems for parallel processing. Conf. Parallel

Methods on Large Scale Structural Analysis and

Physics Applications, Permagon Press.

Williams R.D. 1991. Performance of dynamic load

balancing algorithms for unstructured mesh cal-

culations. Concurrency Practice and Experience,

3(5), 457-481.

10

